

Agenda

- · Goal of session: Provide a framework to attack the problem
- Problem Description
- Solution Outline
- Example Implementing Solution
- Considerations in Practice
- Conclusion

Problem Description

- Client requires a distribution around projected loss ratio
 - Underwriters want reasonable range of results
 - DFA model requires loss ratio distribution
- Sources of uncertainty
 - Trend estimates
 - Reserve Estimates
 - Written activity
- Inherent volatility in loss ratio distribution
- Forecast loss ratio estimates linked to reserve estimates
 - Recent history not at ultimateVariation in ultimate affects forecast

Solution Assumptions

Models available

- Stochastic Reserve Model
 _ Isolates Effect of Trend
- Produces simulated losses
 - Payment pattern model
- Stochastic Loss Ratio Model
- Captures random variation in losses
- Can program to build simulation linking loss distributions
- Data Available
- · Historical inflation index with
- forecast

 Suitable exposure base
- Enough history to build models

Simulation to Link Reserve Variability to Loss Ratio Variability

- Algorithm similar to Compound Poisson on Exam S or Aggregate Loss
- Distributions on Exam 4/C
- For each time series fit to a given reserve adequacy level - Link the relative reserve level histogram expected counts to the
 - parameters from the time series fit to data developed using those relative reserve level
 - Set the sample size for each set of time series parameters describing a loss ratio forecast using the expected counts from the reserve histogram
 - Set up a Do Loop using that sample size
 Invert the loss ratio forecast distribution using the time series loss ratio estimate parameters
 - Write the result to a file
 - · Repeat until reach sample size limit

Simulation to Loss Ratio Variability to Trend Variability

- For each pre-inflated simulated loss ratio
 - Simulate a balanced payment pattern to ultimate
 - Multiply loss ratio by the percent split by development year
 - Multiply split losses by cumulative loss cost trend
 - Total split losses for that simulation to obtain trended, simulated loss ratio

Example	THE

Models Underlying Example

- Stochastic Reserve Model
 - Linear Mixed Model as covered on Modern Actuarial Statistics II
 - See repeated measures examples in West textbook
- Variation of reserve model in "Best Estimate for Reserves" by Zehnwirth Stochastic Loss Ratio Model
 - ARIMA as covered on Modern Actuarial Statistics I or Exam S
 - First degree moving average with differencing
- Data
- Model on log scale
 - Real data but transformed
 - Rescaled Slight randomization

Data Transformation Prior to Joining Reserving & Loss Ratio Forecast

Reserving

- · Forecast with no inflation for simulation
- Bootstrapped modeled results With Bayesian MCMC simulation already available
- Summarize total reserve
- distribution to link to time series
- Summarize total reserve distribution to arrive at payment pattern distribution by development year
- Loss Ratio Forecast • De-trend data.
- · Adjust IBNR estimate with set number of adjustments
- · Label new set of time series to link back to reserve histogram

Model Results by Relative Reserve Adequacy Group		
Forecast Accident Year Loss Ratio on Natural Log Scale		
Reserve Ratio	Mu	Sigma
0.6	-1.32	0.15
0.7	-1.21	0.13
0.8	-1.11	0.12
0.85	-1.06	0.12
0.9	-1.02	0.11
0.95	-0.98	0.11
1	-0.94	0.10
1.05	-0.90	0.10
1.1	-0.87	0.09
1.15	-0.83	0.09
1.2	-0.80	0.09
1.3	-0.74	0.08
1.4	-0.68	0.08
1.5	-0.63	0.08
1.6	-0.58	0.08
1.7	-0.53	0.08
1.8	-0.49	0.09

Considerations in Practice

- · Need to delay including experience until some aging occurs - Similar to classic ratemaking concern
- Capping simulation results

 - Limitation of modeling accuracy
 Results from inverting parameter estimates at tail may be unstable
- Limit to usable length of time series
 - Underwriting practices could change
 - Need similar variance level across time for ARIMA

Conclusions

- We have tools to build forecast loss distributions - Material now covered on exams
 - Software becoming friendlier
- Move from point estimate to distributions

 - Realistic picture of inherent variability
 Starting point to evaluate actual to expected results
- · Lots of moving parts
 - Only covered logical flow to link components
 - Constructing underlying models topic for separate sessions