Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.

Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.

It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

100

Cluster Analysis in Loss Reserving

Dave Clark Diana Rangelova Christina Oda

CLRS - September 2017

- 1. Introduction: Purpose of clustering in reserving
- 2. How to find clusters
 - a) Cluster Analysis
 - b) Principal Component Analysis (PCA)
 - c) Data transformation (curve fitting)
- 3. Practical considerations and observations
- 4. Next steps

- Clustering is about finding groups in a set of objects
 - The objects in a group should be similar and groups should be different from each other
 - No need to define the groups in advance (i.e. unsupervised learning)
 - Essential to assess the usefulness and meaning of the identified groups

Introduction Why Clustering?

- > What reserving questions could be answered with cluster analysis?
 - Test the data homogeneity
 - Find a benchmark
 - Identify drivers of development
- What kind of data can be clustered?
 - Segments, contracts or claims
 - Loss development patterns, loss ratios, severity, frequency...

Introduction How to Find Clusters?

- Exploratory Data Analysis
 - Cluster analysis
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)

Introduction Schedule P Example

Co.	Line	Owners	Ownership Geographic			Distribution	ATA Loss Development Factors						
1	MedMal	Mutual		Regional		Direct, Ind Agency	2.50						
2	MedMal	Stock		National		Direct, Ind Agency							
3	PPAL	Stock		National		MGA, Ind Agency	2.25						
4	PPAL	Stock		Regional		Ind Agency							
5	WC	Stock		National		MGA	2.00						
6	WC	Mutual		Regional		Ind Agency							
							1.75 MedMal						
Co.	24	36	48	60	72		1 50 - WC						
1	2.01	1.24	1.21	1.12	1.06		— PPAL						
2	2.05	1.29	1.16	1.07	1.00								
3	1.20	1.09	1.05	1.03	1.01		1.25						
4	1.15	1.04	1.01	1.01	1.00								
5	1.34	1.14	1.07	1.04	1.02		1.00						

24

36

48

60

1.06

1.04

1.02

1.14

6

1.28

7

72

Introduction Where to Start?

Explanatory Variables

Variables used for clustering, PCA, ...

Со	. Line	Ownership	Geographic	Distribution	24	36	48	60	72
1	MedMal	Mutual	Regional	Direct, Ind Agency	2.01	1.24	1.21	1.12	1.06
2	MedMal	Stock	National	Direct, Ind Agency	2.05	1.29	1.16	1.07	1.00
3	PPAL	Stock	National	MGA, Ind Agency	1.20	1.09	1.05	1.03	1.01
4	PPAL	Stock	Regional	Ind Agency	1.15	1.04	1.01	1.01	1.00
5	WC	Stock	National	MGA	1.34	1.14	1.07	1.04	1.02
6	WC	Mutual	Regional	Ind Agency	1.28	1.14	1.06	1.04	1.02

Cluster Analysis How to Find Clusters?

- Exploratory Data Analysis
 - Cluster Analysis
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)

Cluster Analysis Types of Clustering

- > Types of clustering algorithms
 - Hierarchical vs. Partitioned
 - Hard vs. Soft (ex: K-means vs. Fuzzy C-means)
 - Complete vs. Partial
 - Density Based Clusters (ex: DBSCAN)
- K-means partitions the data in a user-specified number of clusters (K), in which each observation belongs to the cluster with the nearest mean.

Cluster Analysis How does K-means work?

- Initiate the centroids
- Assign points to the closest centroid
- Recalculate new centroid
- > Iterate until no point has to be reassigned

How does K-means work?

Initiate the centroids

Cluster Analysis

- Assign points to the closest centroid
- Recalculate new centroid
- Iterate until no point has to be reassigned

Cluster Analysis How does K-means work?

- Initiate the centroids
- Assign points to the closest centroid
- Recalculate new centroid
- Iterate until no point has to be reassigned

Cluster Analysis Pros & Cons

Munich RE

- > K-means is simple, fast and efficient
- K-means does not perform well when:
 - There are no natural clusters
 - Clusters are of different size
 - Clusters are not spherical
 - Outliers exist

Cluster Analysis No natural clusters

Cluster Analysis Clusters of different size

K-means result

6

Cluster Analysis Non spherical clusters

Original data

K-means result

Source: Introduction to Data Mining [5]

Cluster Analysis Outliers

- > Outliers make the centroid less representative
- Eliminate outliers prior to clustering
- > K-medoids: variation of K-means where the centroids are actual data points

Cluster Analysis How to perform the Clustering?

- Use scaled and centered data for clustering
- R package 'cluster'
 - K-means: *kmeans*(data, k=2, ...)
 - K-medoids: pam(data, k=2,...)
 - Fuzzy clustering: *fanny*(data, k=2,...)
- > SAS
 - Proc FASTCLUS

https://support.sas.com/documentation/cdl/en/statugclustering/61759/PDF/default/statugclustering.pdf

Cluster Analysis Schedule P example: Cluster Analysis

	K-means	K-means	K-medoids
LOB	2 clusters	3 clusters	3 clusters
MedMal	1	1	1
MedMal	1	1	1
MedMal	1	2	1
MedMal	1	1	1
MedMal	1	2	1
MedMal	1	2	1
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
PPAL	2	3	2
WC	2	3	3
WC	2	3	3
WC	2	3	3
WC	2	3	3
WC	2	3	3
WC	2	3	3

Cluster Analysis Too Many Dimensions

o

0

۰0

0

° °

Age48

00

‱° • •

0 0

1.1 1.2 1.3 1.4

00

°~0

°°

ō

l<u>e_88</u>°

0

0

lę 88°

 $\overset{\circ}{_{88}}^{\circ}$

1.02 1.06 1.10

ŝ 0 0

Age60

8

2

ς,

Ę

1.10

8

8

Scatterplot Matrix

2468 12

Data

12	24	36	48	60	72
5.70	2.01	1.24	1.21	1.12	1.06
3.86	2.05	1.29	1.16	1.07	1.00
1.92	1.20	1.09	1.05	1.03	1.01
1.64	1.15	1.04	1.01	1.01	1.00
2.19	1.34	1.14	1.07	1.04	1.02
2.33	1.28	1.14	1.06	1.04	1.02

PCA How to Find Clusters?

- Exploratory Data Analysis
 - Cluster Analysis
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)

PCA Principal Component Analysis

> PCA reduces the dimensions of the data and keeps the signal

Example: Socioeconomic status

PCA How does PCA work?

- Finds the most meaningful basis to re-express complex data
 - Minimizes redundancy by using orthogonal components
 - Maximizes signal by taking a linear combination of the dimensions

New Coordinate Basis

- Principal Component are linear combinations of the original data dimensions
- How to find them?

Eigenvalues & Eigenvectors

- Most square matrixes with n dimensions have n eigenvectors
- Each eigenvector has an eigenvalue
- The magnitude of the eigenvalues is an indicator of how much variance is captured by each eigenvector

PCA How to perform a PCA?

	With R												
Co.	24	36	48	60	72								
1	2.01	1.24	1.21	1.12	1.06								
2	2.05	1.29	1.16	1.07	1.00								
3	1.20	1.09	1.05	1.03	1.01								
4	1.15	1.04	1.01	1.01	1.00								

Data

AGE	24	36	48	60	72
24					
36	=CORF	REL(Va	ar1,Va	r2,)	
48					
60					
72					

prcomp(data, scale=TRUE,...)

Eigenvalues & Eigenvectors

VBA code for Eigenvalue/vectors: http://www.freevbcode.com/ShowCode.asp?ID=9209

PCA How to perform a PCA?

- PCA provides an opportunity for interpretation
 - PC1 captures the mean development
 - PC2 indicates a change in the curve shape

Co.	24	36	48	60	72
1	2.01	1.24	1.21	1.12	1.06
2	2.05	1.29	1.16	1.07	1.00
3	1.20	1.09	1.05	1.03	1.01
4	1.15	1.04	1.01	1.01	1.00

Dim	1	2
24	0.47	(0.39)
36	0.46	(0.38)
48	0.50	(0.11)
60	0.46	0.35
72	0.33	0.75

=

Х

Co.	PC1	PC2
1	2.98	(0.20)
2	2.96	(0.29)
3	2.40	0.12
4	2.32	0.15

PCA Visualization

PCA Visualization - Ownership

PCA Visualization - LOB

PCA Schedule P example: PCA

Data Transformation How to Find Clusters?

- Exploratory Data Analysis
 - Cluster Analysis
 - Principal Component Analysis (PCA)
 - Data transformation (curve fitting)

55

Data Transformation Sherman Curve

Sherman proposed a curve that fits to the typical LDF pattern

$$ATA_t = 1 + \left(\frac{Scale}{t+c}\right)^{Shape}$$

Data Transformation

How to estimate the parameters?

- > Sherman recommends estimating the parameters by using log-linear regression
 - All actual age-to-age factors must be strictly greater than 1
 - Fitting a logged value rather than actual amounts
- ➢ GLM to the rescue!
 - Apply GLM with log-link on actual data

Data Transformation Schedule P example: Sherman curve

- > Allows comparison of loss development patterns of different sizes
- Does not work well for flat curves
- > The focus is on the fit and not on maintaining the distances between points

Practical Considerations How Many Clusters Do You See?

Practical Considerations How Many Clusters Do You See?

Practical Considerations The Coins Experiment

"The predisposition to detect patterns and make connections is what

leads to discovery and advance. The problem, however, is that this

tendency is so strong and so automatic that we sometimes detect

patterns when they do not exist."

T. Gilovich, "How We Know What Isn't So - The Fallibility of Human Reason in Everyday Life"

Practical Considerations Finding the Right Question

Practical Considerations Magnitude Clusters

K-means and PCA on original data identify "magnitude clusters"

Practical Considerations Variable Transformation

- Data enrichment
 - Cluster on parameters from PCA and Sherman fit
 - Include new variables
- Emphasizing similarities of interest

Level	Shape	12	24	36	48	60	72	Mean
low	bended	2.2	2.0	1.8	1.7	1.6	1.5	1.8
high	bended	3.2	3.0	2.8	2.7	2.6	2.5	2.8
low	flat	1.7	1.7	1.7	1.7	1.6	1.6	1.7
high	flat	2.7	2.7	2.7	2.7	2.6	2.6	2.6
								1
Level	Shape	12	24	36	48	60	72	
low	bended	1.2	1.1	1.0	0.9	0.9	0.8	
high	bended	1.1	1.1	1.0	1.0	0.9	0.9	
low	flat	1.0	1.0	1.0	1.0	1.0	1.0	
high	flat	1.0	1.0	1.0	1.0	1.0	1.0	

New Variables = ATA / Mean

Practical Considerations Shape Clusters

K-means and PCA on transformed variables identify "shape clusters"

Practical Considerations

Correlations between lines of business

- Compare the first principal component for two different lines, written by the same company
- Schedule P data for loss reserving posted on the CAS website
 - 54 companies with CAL and GL lines
 - 20 companies with WC and GL lines
 - Data is from 1988 to 1997
- Check if historical dependency is preserved in more recent years

Practical Considerations First principal component for WC/GL

PCA on Reported loss

1988 - 1997 1998 - 2007 General Liability Seneral Liability Workers Compensation Workers Compensation

Practical Considerations First principal component for CAL/GL

PCA on Reported loss

1988 - 1997

- Investigate factors causing correlation between classes of business by company
 - Stock vs. Mutual
 - Regional vs. National

Investigate connection between Fuzzy Clustering and "Mixed Models" (what actuaries know as credibility theory)

Conclusion Soft Clustering

- Soft (a.k.a. fuzzy) clustering allows each data point to belong to more than one cluster
- Membership grades are assigned to each data point

	Fuzzy 1	Fuzzy 2	Fuzzy 3
LOB	(MedMal)	(PPAL)	(WC)
MedMal	45%	27%	28%
MedMal	54%	22%	24%
MedMal	66%	17%	18%
MedMal	46%	26%	28%
MedMal	65%	17%	18%
MedMal	66%	17%	18%
PPAL	6%	57%	38%
PPAL	12%	51%	37%
PPAL	16%	44%	40%
PPAL	8%	55%	37%
PPAL	5%	45%	49%
PPAL	6%	49%	44%
WC	5%	51%	44%
WC	5%	41%	54%
WC	9%	36%	56%
WC	5%	34%	61%
WC	5%	37%	58%
WC	13%	36%	51%

- Clustering techniques help us obtain a better estimate of reserves:
 - Explore the structure of data
 - Go beyond "just" practical grouping of data
 - Identify variables impacting the development
- Each method has strengths and weaknesses
 - Look for robustness between methods

Selected References

- 1. K. Boudt, J. Cornelissen, C. Croux (2012) **The Gaussian rank correlation estimator: robustness properties**, *Statistics and Computing*, *March 2012, Volume 22, Issue 2, pp 471–483*, <u>http://feb.kuleuven.be/public/ndbae06/pdf-files/grcort.pdf</u>
- 2. D. Clark (2017) Estimation of Inverse Power Parameters via GLM, *Actuarial Review, May-June 2017*, http://ar.casact.org/actuarialreview/may_june_2017/MobilePagedArticle.action?articleId=1112695#articleId1112695
- 3. T. Hastie, R. Tibshirani, J. Friedman (2009) **The Elements of Statistical Learning Data Mining, Inference, and Prediction**, Springer <u>https://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf</u>
- 4. C. Hennig (2015) **Clustering strategy and method selection,** In C. Hennig, M. Meila, F. Murtagh, and R. Rocci (Eds.). *Handbook of Cluster Analysis*. Chapman and Hall/CRC, <u>http://www.homepages.ucl.ac.uk/~ucakche/</u>
- 5. P. Tan, M. Steinbach, V. Kumar (2005) Cluster Analysis: Basic Concepts and Algorithms, In P. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Pearson Addison Wesley, <u>http://www-users.cs.umn.edu/~kumar/dmbook/index.php</u>
- 6. J. Shlens (2003) **A Tutorial on Principal Component Analysis: Derivation, Discussion and Singular Value Decomposition,** arXiv preprint arXiv:1404.1100, 2014, <u>https://www.cs.princeton.edu/picasso/mats/PCA-Tutorial-Intuition_jp.pdf</u>
- 7. CAS Schedule P data for Loss Reserving: <u>http://www.casact.org/research/index.cfm?fa=loss_reserves_data</u>

Thank you!

Appendix PCA-Gaussian Rank Correlation (GRC)

- PCA uses a covariance-variance matrix of the data
- GRC uses an alternative matrix based on ranked scores of the data
- GRC is more robust in the presence of outliers

Appendix How GRC works?

Data	Data	– age to factors	o age	e	2 R ol	ank ea oservati	ch on		3 Resca	ale / cor ercentile	npute es	4 Calcul rai	ate Gua nk score	assian es
	ATA 1	ATA 2	ATA 3		ATA 1	ATA 2	ATA 3		ATA 1	ATA 2	ATA 3	ATA 1	ATA 2	ATA 3
	5.99	2.31	1.32		1	1	2		93%	93%	79%	1.47	1.47	0.79
	5.13	2.24	1.68		2	2	1		79%	79%	93%	0.79	0.79	1.47
	1.92	1.2	1.09		6	6	6		21%	21%	21%	-0.79	-0.79	-0.79
	1.64	1.15	1.04		7	7	7		7%	7%	7%	-1.47	-1.47	-1.47
	2.19	1.34	1.14		5	4	4		36%	50%	50%	-0.37	0.00	0.00
+	2.33	1.28	1.14		3	5	4		64%	36%	50%	0.37	-0.37	0.00
Correlation	2.25	1.35	1.16		4	3	3		50%	64%	64%	0.00	0.37	0.37
matrix						Correla on	ition ma Gaussia	trix I n ra	based Ink					
						ATA 1	ATA 2	2	ATA 3					
				AT	A 1									
				AT	A 2	CORR	EL(Var1,	, Va	r2,)					

ATA 3

Appendix PCA-Gaussian Rank Correlation Example

Schedule P example

Traditional PCA

PCA – Gaussian Rank Correlation

Appendix Determining the Number of Cluster

