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Agenda

1. Introduction: Purpose of clustering in reserving 

2. How to find clusters

a) Cluster Analysis 
b) Principal Component Analysis (PCA)
c) Data transformation (curve fitting)

3. Practical considerations and observations

4. Next steps   

3



Introduction
Clustering

 Clustering is about finding groups in a set of objects

 The objects in a group should be similar and groups should be different from each other

 No need to define the groups in advance (i.e. unsupervised learning) 

 Essential to assess the usefulness and meaning of the identified groups

Original data Two clusters
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Introduction
Why Clustering? 

 What reserving questions could be answered with cluster analysis?

 Test the data homogeneity
 Find a benchmark 
 Identify drivers of development

 What kind of data can be clustered?   

 Segments, contracts or claims
 Loss development patterns, loss ratios, severity, frequency…   
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Introduction
How to Find Clusters? 

 Exploratory Data Analysis

 Cluster analysis 
 Principal Component Analysis (PCA)
 Data transformation (curve fitting)
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Introduction
Schedule P Example

PPAL

MedMal
WCCo. 24 36 48 60 72

1 2.01 1.24 1.21 1.12 1.06
2 2.05 1.29 1.16 1.07 1.00
3 1.20 1.09 1.05 1.03 1.01
4 1.15 1.04 1.01 1.01 1.00
5 1.34 1.14 1.07 1.04 1.02
6 1.28 1.14 1.06 1.04 1.02

…

Co. Line Ownership Geographic Distribution
1 MedMal Mutual Regional Direct, Ind Agency
2 MedMal Stock National Direct, Ind Agency
3 PPAL Stock National MGA, Ind Agency
4 PPAL Stock Regional Ind Agency
5 WC Stock National MGA
6 WC Mutual Regional Ind Agency

…
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Introduction
Where to Start?

Explanatory Variables
Variables used for 
clustering, PCA, …

Co. Line Ownership Geographic Distribution 24 36 48 60 72
1 MedMal Mutual Regional Direct, Ind Agency 2.01 1.24 1.21 1.12 1.06
2 MedMal Stock National Direct, Ind Agency 2.05 1.29 1.16 1.07 1.00
3 PPAL Stock National MGA, Ind Agency 1.20 1.09 1.05 1.03 1.01
4 PPAL Stock Regional Ind Agency 1.15 1.04 1.01 1.01 1.00
5 WC Stock National MGA 1.34 1.14 1.07 1.04 1.02
6 WC Mutual Regional Ind Agency 1.28 1.14 1.06 1.04 1.02

… …
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Cluster Analysis
How to Find Clusters? 

 Exploratory Data Analysis

 Cluster Analysis 
 Principal Component Analysis (PCA)
 Data transformation (curve fitting)
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Cluster Analysis
Types of Clustering

 Types of clustering algorithms

 Hierarchical vs. Partitioned
 Hard vs. Soft (ex: K-means vs. Fuzzy C-means)
 Complete vs. Partial
 Density Based Clusters (ex: DBSCAN)  

 K-means partitions the data in a user-specified number of clusters (K), in which 
each observation belongs to the cluster with the nearest mean.
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Cluster Analysis
How does K-means work?

 Initiate the centroids

 Assign points to the closest centroid 

 Recalculate new centroid

 Iterate until no point has to be reassigned

24 August 2017 11
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Cluster Analysis
Pros & Cons

 K-means is simple, fast and efficient

 K-means does not perform well when: 

 There are no natural clusters

 Clusters are of different size 

 Clusters are not spherical

 Outliers exist
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Cluster Analysis
No natural clusters

K-means resultOriginal data
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Cluster Analysis
Clusters of different size

K-means result

n=4000

n=400

n=200

Original data

16



Cluster Analysis
Non spherical clusters

K-means resultOriginal data

Source: Introduction to Data Mining [5] 17



 Outliers make the centroid less representative

 Eliminate outliers prior to clustering 

 K-medoids: variation of K-means where the centroids are actual data points

Cluster Analysis
Outliers
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Cluster Analysis
How to perform the Clustering? 

 Use scaled and centered data for clustering

 R package ‘cluster’
 K-means: kmeans(data, k=2, …) 
 K-medoids: pam(data, k=2,…)
 Fuzzy clustering: fanny(data, k=2,…)

 SAS
 Proc FASTCLUS 

https://support.sas.com/documentation/cdl/en/statugclustering/61759/PDF/default/statugclustering.pdf
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Cluster Analysis
Schedule P example: Cluster Analysis

K-means K-means K-medoids
LOB 2 clusters 3 clusters 3 clusters
MedMal 1 1 1
MedMal 1 1 1
MedMal 1 2 1
MedMal 1 1 1
MedMal 1 2 1
MedMal 1 2 1
PPAL 2 3 2
PPAL 2 3 2
PPAL 2 3 2
PPAL 2 3 2
PPAL 2 3 2
PPAL 2 3 2
WC 2 3 3
WC 2 3 3
WC 2 3 3
WC 2 3 3
WC 2 3 3
WC 2 3 3

PPAL

MedMal
WC

20



Cluster Analysis
Too Many Dimensions

Data

12 24 36 48 60 72
5.70 2.01 1.24 1.21 1.12 1.06
3.86 2.05 1.29 1.16 1.07 1.00
1.92 1.20 1.09 1.05 1.03 1.01
1.64 1.15 1.04 1.01 1.01 1.00
2.19 1.34 1.14 1.07 1.04 1.02
2.33 1.28 1.14 1.06 1.04 1.02

…



PCA
How to Find Clusters? 

 Exploratory Data Analysis

 Cluster Analysis 
 Principal Component Analysis (PCA)
 Data transformation (curve fitting)
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PCA
Principal Component Analysis

 PCA reduces the dimensions of the data and keeps the signal 

Redundant Information 

Correlated variables

Example: Socioeconomic status 

Noise & Signal

Noise Signal

Income

E
du

ca
tio

n
Education = c*Income
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PCA
How does PCA work?

 Finds the most meaningful basis to re-express complex data
 Minimizes redundancy by using orthogonal components
 Maximizes signal by taking a linear combination of the dimensions

New Coordinate Basis
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PCA
What are PC1 & PC2?

 Principal Component are linear combinations of the original data dimensions
 How to find them? 

Eigenvalues & Eigenvectors

A x = xλ

Square matrix

Eigenvector

Eigenvalue

• Most square matrixes with n dimensions have n eigenvectors

• Each eigenvector has an eigenvalue

• The magnitude of the eigenvalues is an indicator of how much 
variance is captured by each eigenvector
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PCA
How to perform a PCA?

=CORREL(Var1,Var2,…)

VBA code for Eigenvalue/vectors: 
http://www.freevbcode.com/ShowCode.asp?ID=9209

prcomp(data, scale=TRUE,…)

Data

Correlation 
matrix

Eigenvalues &
Eigenvectors

With Excel
Co. 24 36 48 60 72
1 2.01 1.24 1.21 1.12 1.06
2 2.05 1.29 1.16 1.07 1.00
3 1.20 1.09 1.05 1.03 1.01
4 1.15 1.04 1.01 1.01 1.00
… …

With R
Co. 24 36 48 60 72
1 2.01 1.24 1.21 1.12 1.06
2 2.05 1.29 1.16 1.07 1.00
3 1.20 1.09 1.05 1.03 1.01
4 1.15 1.04 1.01 1.01 1.00
… …

AGE 24 36 48 60 72
24
36
48
60
72
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PCA
How to perform a PCA?

x

Principal
Componentsx =

=

Data Eigenvalues &
Eigenvectors

1

2

3
4

PC
2

PC1

Scatterplot

Co. 24 36 48 60 72
1 2.01 1.24 1.21 1.12 1.06
2 2.05 1.29 1.16 1.07 1.00
3 1.20 1.09 1.05 1.03 1.01
4 1.15 1.04 1.01 1.01 1.00
… …

Dim 1 2
24 0.47 (0.39)
36 0.46 (0.38)
48 0.50 (0.11)
60 0.46 0.35
72 0.33 0.75

Co. PC1 PC2
1 2.98 (0.20)
2 2.96 (0.29)
3 2.40 0.12
4 2.32 0.15
… …
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PCA
Interpretation

 PCA provides an opportunity for interpretation

 PC1 captures the mean development

 PC2 indicates a change in the curve shape

x =

Co. 24 36 48 60 72
1 2.01 1.24 1.21 1.12 1.06
2 2.05 1.29 1.16 1.07 1.00
3 1.20 1.09 1.05 1.03 1.01
4 1.15 1.04 1.01 1.01 1.00
… …

Dim 1 2
24 0.47 (0.39)
36 0.46 (0.38)
48 0.50 (0.11)
60 0.46 0.35
72 0.33 0.75

Co. PC1 PC2
1 2.98 (0.20)
2 2.96 (0.29)
3 2.40 0.12
4 2.32 0.15
… …
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PCA
Interpretation

29



PCA
Visualization
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PCA
Visualization - Ownership
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PCA
Visualization - LOB
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PCA
Schedule P example: PCA

PPAL

MedMal
WC

33



Data Transformation
How to Find Clusters? 

 Exploratory Data Analysis

 Cluster Analysis 
 Principal Component Analysis (PCA)
 Data transformation (curve fitting)
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Data Transformation
Sherman Curve

 Sherman proposed a curve that fits to the typical LDF pattern 

𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 = 1 +
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑡𝑡 + 𝑐𝑐

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
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Data Transformation
How to estimate the parameters? 

 Sherman recommends estimating the parameters by using log-linear regression

 All actual age-to-age factors must be strictly greater than 1 

 Fitting a logged value rather than actual amounts

 GLM to the rescue!

 Apply GLM with log-link on actual data
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Data Transformation
Schedule P example: Sherman curve

PPAL

MedMal
WC

PPAL

MedMal
WC
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Data Transformation
Pros & Cons

 Allows comparison of loss development patterns of different sizes

 Does not work well for flat curves

 The focus is on the fit and not on maintaining the distances between points
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Practical Considerations
How Many Clusters Do You See?
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Practical Considerations
How Many Clusters Do You See?
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Practical Considerations
The Coins Experiment 
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Practical Considerations
Clustering Illusion

“The predisposition to detect patterns and make connections is what 

leads to discovery and advance. The problem, however, is that this 

tendency is so strong and so automatic that we sometimes detect 

patterns when they do not exist.”
T. Gilovich, “How We Know What Isn't So - The Fallibility of Human Reason in Everyday Life”
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Practical Considerations
Finding the Right Question

high bended

high flat

low bended

low flat
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Practical Considerations
Magnitude Clusters

 K-means and PCA on original data identify “magnitude clusters”

high

low
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Practical Considerations
Variable Transformation

 Data enrichment
 Cluster on parameters from PCA and Sherman fit
 Include new variables

 Emphasizing similarities of interest 

New Variables  = ATA / Mean 

Level Shape 12 24 36 48 60 72 Mean
low bended 2.2 2.0 1.8 1.7 1.6 1.5 1.8
high bended 3.2 3.0 2.8 2.7 2.6 2.5 2.8
low flat 1.7 1.7 1.7 1.7 1.6 1.6 1.7
high flat 2.7 2.7 2.7 2.7 2.6 2.6 2.6

Level Shape 12 24 36 48 60 72
low bended 1.2 1.1 1.0 0.9 0.9 0.8
high bended 1.1 1.1 1.0 1.0 0.9 0.9
low flat 1.0 1.0 1.0 1.0 1.0 1.0
high flat 1.0 1.0 1.0 1.0 1.0 1.0
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Practical Considerations
Shape Clusters

 K-means and PCA on transformed variables identify “shape clusters”
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Practical Considerations
Correlations between lines of business

 Compare the first principal component for two different lines, written by the same 
company 

 Schedule P data for loss reserving posted on the CAS website
 54 companies with CAL and GL lines 
 20 companies with WC and GL lines 
 Data is from 1988 to 1997

 Check if historical dependency is preserved in more recent years
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Practical Considerations
First principal component for WC/GL

1988 - 1997

 PCA on Reported loss

1998 - 2007
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Practical Considerations
First principal component for CAL/GL

1988 - 1997

 PCA on Reported loss

1998 - 2007
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Conclusion
Next Steps

 Investigate factors causing correlation between classes of business by company

 Stock vs. Mutual
 Regional vs. National

 Investigate connection between Fuzzy Clustering and “Mixed Models” (what 
actuaries know as credibility theory)
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Conclusion
Soft Clustering

 Soft (a.k.a. fuzzy) clustering allows each data 
point to belong to more than one cluster

 Membership grades are assigned to each 
data point

LOB
Fuzzy 1 

(MedMal)
Fuzzy 2 
(PPAL)

Fuzzy 3 
(WC)

MedMal 45% 27% 28%
MedMal 54% 22% 24%
MedMal 66% 17% 18%
MedMal 46% 26% 28%
MedMal 65% 17% 18%
MedMal 66% 17% 18%
PPAL 6% 57% 38%
PPAL 12% 51% 37%
PPAL 16% 44% 40%
PPAL 8% 55% 37%
PPAL 5% 45% 49%
PPAL 6% 49% 44%
WC 5% 51% 44%
WC 5% 41% 54%
WC 9% 36% 56%
WC 5% 34% 61%
WC 5% 37% 58%
WC 13% 36% 51% 51



Conclusion
Key Takeaways

 Clustering techniques help us obtain a better estimate of reserves: 

 Explore the structure of data 
 Go beyond “just” practical grouping of data 
 Identify variables impacting the development    

 Each method has strengths and weaknesses 

 Look for robustness between methods
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 PCA uses a covariance-variance matrix of the data

 GRC uses an alternative matrix based on ranked scores of the data

 GRC is more robust in the presence of outliers  

Appendix
PCA-Gaussian Rank Correlation (GRC)
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Appendix
How GRC works?

 ATA 1  ATA 2  ATA 3
5.99 2.31 1.32
5.13 2.24 1.68
1.92 1.2 1.09
1.64 1.15 1.04
2.19 1.34 1.14
2.33 1.28 1.14
2.25 1.35 1.16

 ATA 1  ATA 2  ATA 3
1 1 2
2 2 1
6 6 6
7 7 7
5 4 4
3 5 4
4 3 3

 ATA 1  ATA 2  ATA 3
93% 93% 79%
79% 79% 93%
21% 21% 21%
7% 7% 7%

36% 50% 50%
64% 36% 50%
50% 64% 64%

 ATA 1  ATA 2  ATA 3
1.47 1.47 0.79
0.79 0.79 1.47

-0.79 -0.79 -0.79
-1.47 -1.47 -1.47
-0.37 0.00 0.00
0.37 -0.37 0.00
0.00 0.37 0.37

 ATA 1  ATA 2  ATA 3
 ATA 1 
 ATA 2
 ATA 3

CORREL(Var1, Var2, …)

Data – age to age 
factors

Rank each 
observation

Rescale / compute 
percentiles

Calculate Guassian
rank scores

Correlation matrix based 
on Gaussian rank

1 2 3 4
Data

Correlation 
matrix

Eigenvalues &
Eigenvectors
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Appendix
PCA-Gaussian Rank Correlation Example

Traditional PCA PCA – Gaussian Rank Correlation 

 Schedule P example
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Appendix
Determining the Number of Cluster 

24 August 2017 58
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