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Problem
Standard methods may underestimate the 
volatility of residuals towards the right side of 
the triangle, thus understating runoff risk
Theoretical
– Aggregate distribution moment relationships likely 

to change across triangle
Empirical
– Supported by distributions in older completed 

runoff years
Modeling
– Models that can address the issue
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Aggregate Moments
X is severity variable, N is frequency, S is aggregate
ES = EN EX
Var S = EN VarX + (EX)2VarN
Usually VarN = aEN, VarX = b(EX)2 for some a and b
→ Var S = bEN(EX)2 + a(EX)2EN = (a+b)(EX)2EN
Often larger claims pay later, so moving right, EX is 
going up, EN down. 
– EN goes down a lot, EX goes up a bit, EN EX goes down, 

EN(EX)2 goes down less or even up, so:
– Var S goes down slower than ES does.
– If variance were proportional to a power of the mean, the 

power would be less than 1
For Work Comp, there are big early payments, but 
also a lot of small claims that close fairly soon, so 
even there the later payments can be larger

3



Empirical Data
Used completed 10x10 runoff squares of old years in 
CAS NAIC Triangle Database
Looking at completed runoff can illustrate features of the 
runoff process
Triangles there on net losses, so sometimes have pay 
pattern distorted by timing of reinsurance recoveries
Computed incremental payout patterns as incremental 
losses divided by lag 10 cumulative losses by accident 
year; same for cumulative
Looking for how mean and variance of payout percents 
relate to each other by column – is variance going down 
more slowly than mean?
Using companies that had full ten years of history 
Results varied some by line, more by company
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Mean-Variance Relationship Data

Graph mean and variance of each column 
of triangle on log scale
Graphically illustrates how mean and 
variance change together in later columns
Patterns emerge by line
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Work Comp Pattern
Typically variance drops slower than mean at 
first, same rate as mean later
That’s pattern for about ¾ of the 50 companies 
that met sample criteria
Since later payments are typically periodic, 
they could stabilize to some degree, reducing 
variance but not mean
Powers of mean are not always < 1
Other ¼ of companies have various patterns
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Lumbermens Underwriting 
Alliance

Workers Compensation

Both mean and variance generally declining over the lags
In scatterplot, latest means are lowest so they are smallest values on x-axis
Slope of scatterplot is regression estimate of p in: Variance = s*meanp

Here that is 0.7
But for first 3 lags, variance is increasing as payments slightly decrease 
Slope for rightmost 3 points in scatterplot is 0.19, vs. 0.98 for other 7 lags

– In scatterplot, right is higher, which means earlier in triangle
Later will estimate p by MLE – better and can be different than slope
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State Farm

Variance dropping with mean, or a bit faster, at first
Levels off later
Opposite of typical pattern
For 1st six lags, power is 1.2, for last 4 is -0.85. 
Negative is because variance increasing while mean is 
decreasing for these points
Based on right 6 and left 4 points on scatterplot
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Island Insurance

Variance generally declining with mean
Power is 1.11
Yasuda Fire & Marine looks similar but 
power is 0.74
Church Mutual as well, power = 0.79
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California Casualty

Typical pattern – variance slightly increases 
over 1st 4 lags as mean decreases
Power for 1st 4 lags is -0.6 and is 0.49 for last 
4 lags
Maybe ok to use overall power of 0.53
Split is supported mainly by fact it is typical 
but probably not worth modeling in small 
triangles
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Celina Mutual

Typical pattern but steeper
Power for 1st 5 lags is 0.28, for last 5 it 
is 2.0
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Commercial Auto
Typical pattern among the 50 companies was 
variance increasing or declining slowly at 
first, then dropping sharply
– A lot of those companies had virtually completed 

payments by lag 8
2nd most common pattern was gradual 
decline in variance at near constant power of 
mean, usually in range 0.7 to 1.4
– Such companies tended to have continuing 

payments through lag 10
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Island Insurance
Typical pattern
Variance increasing slightly at first then falling off
Power of mean -0.04 for first 5 lags 1.6 for last 5
Protective Insurance, THE Insurance, Celina 
Mutual very similar
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Grange Insurance
Version of typical pattern with variance 
slowly decreasing then quickly 
decreasing
For first  7 lags power is 0.77, then 2.3 
for last 3 lags

14



USAA
Example of gradual steady decline, with power = 
0.98. Others:

• Federal Insurance, power = 1.36
• State Farm, power = 0.71
• Erie Insurance Exchange, power = 0.98
• Florida Farm Bureau, power = 1.05
• Grinnell, power = 1.10
• Lumber Insurance, power = 0.98
• Eveready Insurance, power = 0.70
• Federated Rural Electric, power = 1.2
• Brotherhood Mutual, power = 1.11
• Interboro Mutual, power = 1.2
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Philadelphia IND INS
One of various other patterns
Payout pattern declines slowly
Variance basically flat
Power of 0.08
Mean/variance like normal distribution –
however this one is fairly skewed
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Other Liability

This showed a lot of the same patterns as 
Commercial Auto
However drop in variance was less at late 
lags, with generally longer payout pattern
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Products Liability

Some companies had pattern like 
Commercial Auto, Other Liability
Quite a few had power around 2
Possible influence of claims made coverage
Possible higher volatility frequency 
distribution
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How to Model This?
Will assume model is one of those that specifies a 
density function for each observation, as in MLE 
estimation, Bayesian estimation, GLM etc.
Usually model specifies mean as a function of the 
parameters, then specifies a density function, like 
lognormal, for the residuals, with one parameter for 
each cell (like µj) determined by the mean of the cell, 
then with all the other parameters of the density (like 
s) constant for all cells, to be estimated.
But more flexible if you let sj vary across the triangle 
as well.
Tweedie distribution has parameters µj, l and p with 
variance = lµj

p. Often make l and p constant, but we 
will consider varying lj across the cells.
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Exponential Family
Family of distributions defined by form of density: parameters 
appear only in exponential function with a restricted 
interaction of parameters and data
That form leads to simplified methods for MLE
– Useful before modern computers – from 1950s

Normal, Poisson, Gamma, Negative Binomial, Tweedie all in it
But only some restricted forms of these distributions are. E.g., 
reparametrizing NB gives a useful form not in it.
For all of these but NB, variance = qµp for a certain p.
For normal, Poisson, common form of Tweedie, Gamma, p = 
0, 1, 1 < p < 2, 2.
For the Tweedie, p is a parameter and can be > 1
None has 0 < p < 1
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In Application
p would be the same for every cell of a fitted 
model by choice of distribution or Tweedie p.
If all the other parameters are constant across the 
triangle, then variance = qµp for all the cells. 
But if q varies by cell there might not be any 
constant mean-variance relationship across the 
triangle, or it could be some other relationship 
depending on how q varies.
In exponential family, if variance = qµp, then 
skewness / CV = p.
This happens whether or not q is constant across 
the cells and still holds if density reparameterized.
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Variance a Lower Power of Mean
Say you are ok with normal skewness of zero but 
want the variance proportional to the 0.7 power of 
the mean. Reparameterize normal to do this.
Set µj= f(parameters) and sj

2 = sµj
0.7, with s a 

parameter, constant for all observations j, to be 
estimated by MLE, Bayes estimation, etc. 
– Instead of s you are estimating s to be constant 

across the cells.
Or with one more parameter k, you can set sj

2 = 
sµj

k, and estimate the power as part of the model. 
Usual regression just assumes k = 0.
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What about Other Distributions?
Now let µ and s denote the mean and standard 
deviation of a cell, not the normal parameters
Denote the parameters for the jth cell by aj, bj.
Suppose you want to model µj = f(parameters) 
and sj

2 = sµj
k. Say you want skewness / CV = 2.

Then use the gamma, µj= ajbj and sj
2 = ajbj

2.
Solve then for: aj = µj

2/sj
2 and bj = sj

2/µj, so in 
terms of the cell moments, aj = µj

2-k/s and bj = sµj
k-1

This makes each cell gamma distributed with 
mean and variance functions of the parameters, 
and makes the variance proportional to µj

k across 
all the cells. Still sj

2 = bjµj
2 in every cell.
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More Skewed Distributions
For an Inverse Gaussian with sj

2 = µj
3/aj take aj = 

µj
3/sj

2 = µj
3-k/s. Then sj

2 = sµj
k. Skew / CV = 3.

For lognormal parameterized by µj = exp(bj+½aj
2) 

– CV2 = sj
2 /µj

2 = exp(aj
2) – 1. Then:

– aj
2 = log(1+sj

2 /µj
2) and bj = log(µj) – ½log(1+sj

2 /µj
2) 

– aj
2 = log(1+sµj

k-2) and bj = log(µj) – ½log(1+sµj
k-2) 

– Skew / CV > 3
For Tweedie with sj

2 = ljµj
p, let lj = sµj

k-p

– Every cell is then Tweedie with sj
2 = ljµj

p = sµj
k

– There is no single Tweedie across the triangle       
anyway, as each cell has at least a different µj
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What Distribution to Use?
Can try a few and check likelihood function
With variance modeled, choose distribution 
based on other shape characteristics
Almost all companies and lines in the 
sample had skewness/CV < 2.5
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Distribution Skewness	/	CV

Normal 0

Poisson,	ODP 1

Negative binomial p	=	2	– mean/variance; 2	>	p	>1	

Tweedie 2 >	p	>	1;	variance	~	meanp

Gamma 2

Inverse	Gaussian 3

Lognormal 3+CV2

Inverse	Gamma 4/(1–CV2 )	for	CV<1	and	infinite	otherwise



GIG Distribution
Gaussian - Inverse Gaussian weighted average. 
(Allows negative observations)
Give both distributions variance = sµk, but have one 
more parameter, a, for percent Gaussian
Then skewness/CV can range from 0 to 3
Vs. choice of distribution to get right shape, using an 
implicit parameter, plus usually one more for the scale
GIG with 3 parameters for shape instead of 2 can get 
realistic variance-mean relationship and tail shape 
without having to try various distributions
Often have a lot of parameters already for cell means 
(like row, column factors) so one more not a big deal
Normal-gamma or normal-lognormal possible instead
Used single k for entire triangle but could split

26



Completed      Fits – GIG MLE

Company/Line Power %	Normal

State Farm	CA 0.750 100%

Farmers CA 0.553 21%

KY	Farm	CA 0.972 100%

Penn	Natl	PR 1.118 0%

Federal	PR 0.591 100%

Employers	PR 1.168 19%
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Also assumed a cell normal if 
it or the column mean was 
zero or negative
CA = commercial auto
PR = products liability
MLE pretty easy in R
MLE better way to estimate 
power – can make a 
difference
Some strange data won’t 
converge for this distribution –
e.g., one with 73% of 
payments at lag 10

Shape like normal but variance 
decreasing slowly as mean decreases

Fairly highly skewed so all IG



Actual and Fitted Log Variance
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Farmers CA Fitted Distributions
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GIG MLE for 10x10 Square in R
library(tweedie) # not needed here – used for Tweedie MLE which is very similar
library(optimx)
library(statmod)
y = read.table('farmers_ca.txt', header = FALSE)  # 10 x 10 txt file of payouts – each row sums to 1
nll.gig = function(v) {# NLL function for GIG
s = v[1]        # scale, want > 0 but usually comes out that way without constraint 
k = v[2]        # power, can be any real number  
a = 1/(1+exp(v[3])) # fraction normal ; v[3] can be any real but 0 < a < 1; easier to optimize that way 
mu = colMeans(y)  # could estimate means by MLE but here jut taking column means
sd = s*abs(mu)^k     # absolute value in case mu is negative
ll = 0  
for (j in 1:10) {    for (i in 1:10) { 
if (y[i,j] > 0 & mu[j] > 0)    
ll = ll + log(a*dnorm(y[i,j], mu[j], sd[j], log = FALSE) + (1-a)*dinvgauss(y[i,j], mu[j], mu[j]^3/sd[j]^2))    
else ll = ll + dnorm(y[i,j], mu[j], sd[j], log = TRUE)}}   # zero or neg values get normal dist
-ll

}
ans = optimx(c(.01, 0.3, -8), nll.gig, method = "Nelder-Mead", control = list(parscale = c(1, 10, 100)) ) 
#optimx is R function that consolidates several optimization methods; better if scaled
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Inverse Gaussian vs. Gamma
Skewness indicative of right tail shape but negative 
moments, like E(X-2) tell about the left tail
Gamma can have some negative moments infinite , 
which means that probability concentrated near zero
Density graph asymptotic to y-axis
Inverse Gaussian has all moments existing, so near 
x=0, density is asymptotic to x-axis
Lognormal similar and more skewed, so a possible 
alternative
Usually parameterization of inverse Gaussian has 
variance = µ3 / l. l not a scale parameter – but 
alternative with scale parameter exists
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Inverse Gaussian Alternative
Scale parameter b, with mean = ab and variance = ab2. 

Density is:    𝑓 𝑥 = 2𝜋 &'( )
*

+
*

&,( 𝑒𝑥𝑝 −
0
1⁄ &) (

3)( 0
1⁄

The CDF uses the standard normal F: 

𝐹 𝑥 = Φ 𝑎 *
+

� +
)*
− 1 + 𝑒3)Φ −𝑎 *

+
� +

)*
+ 1

To simulate x, take two random draws and set:
• y = ½normsinv(rand()1)2 and z = 1/rand()2

• w = 𝑏 𝑎 + 𝑦 − 𝑦(2𝑎 + 𝑦)�

• If w > ab(z – 1) then x = (ab)2/w, otherwise x = w.
CV is a–½ and skewness is 3CV. 
Sum of IG variates all with same b is IG in b and sum of a’s.
Can simulate sum of claims with one IG draw, like gamma.
Can do that with standard parameterization, but the IG 
parameters for the sum very awkward – see Wikipedia       
for how bad this can be



Weibull Distribution

𝑓 𝑥 = >
+

+
?

>
𝑒&(0 @⁄ )A

𝐸 𝑋 = 𝜃Γ 1 + F >⁄ .   1 + 𝐶𝑉3 = I(FJ( A⁄ )
I(FJ' A⁄ )(

Skewness < 0 for t > 3 or so,    as t
Usually no single t works for whole triangle
But if make variance = sµk, get changing t
Skewness can then vary across the 
triangle like it does for GIG
Need all observations > 0

33



Problem is all those gammas

Makes it harder to force variance = sµk

But then CV2 = sµk-2, so solve for t using R 
function uniroot inside of fitting program from 
1 + 𝐶𝑉3 = I(FJ( A⁄ )

I(FJ' A⁄ )(

weib = function (t, u) gamma(1+2/t)/gamma(1+1/t)^2 – 1 – u
tau = as.numeric(uniroot(weib, c(0.1, 10000), u=s*m^(k-2))[1])

34



Tried for Farmers CA

Only 2 very slight negatives and 2 zeros in 
triangle – made them all 0.000001 for e.g.
Fit actually better than GIG by NLL
Power 0.503 instead of 0.553 but mean 
and variances by column all very close
Skewnesses close to GIG fit but lower at 
right side and higher on left of triangle
Good alternative when all positive
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Weibull Fit
1 2 3 4 5 6 7 8 9 10

t 9.71 7.62 5.27 4.12 2.71 1.74 1.05 0.63 0.39 0.36

q 0.350 0.261 0.169 0.127 0.078 0.046 0.022 0.0072 0.0012 0.00074

weib	skw -0.62 -0.51 -0.29 -0.11 0.27 0.83 1.85 4.22 12.02 15.54

gig	skw 0.40 0.50 0.69 0.86 1.24 1.82 2.88 4.95 9.56 11.13
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Incremental or Cumulative?

Build model of incremental or cumulative
losses?
Want residuals to be independent
Cumulative might be positively correlated
Incremental might be negatively correlated 
due to catch up after slow period
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Testing Independence of Residuals

Dividing by row totals effectively models loss 
levels by AY – row total is the parameter
Results show remaining payout pattern 
differences among accident years – so are 
proxies for residuals
Some models try to adjust for trends in 
payout patterns over time
So looked at correlations between adjacent 
columns cumulative and incremental with and 
without detrending each column
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State Farm – Fairly Typical
1	to	2 2	to	3 3	to	4 4	to	5 5	to	6 6	to	7 7	to 8 8	to	9 9	to	10 Average

Cumulative Correlation
detrended 56% 59% 87% 41% 54% 91% 77% 65% 66% 

Correlation
88% 88% 86% 67% 85% 97% 90% 75% 84% 

Incremental Correlation	
detrended -22% -13% 23% -34% 10% -16% -7% 0% -40% -11% 

Correlation
-17% -11% 29% -17% 10% -14% -3% 31% -1% 1% 

In 10 x 10 triangle can have spurious correlations
Average correlation probably more reasonable
Cumulative showing a lot more correlation
Most companies look like this
Conclusion: model incremental losses
But if you do model cumulative, t-test for significance of 
development factors should be difference from 1, not 0
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Conclusions
Model incremental losses
Variance often decreases slower than mean 
does for smaller cells
Can model as variance proportional to 
power less than 1 of mean
Can do that with any distribution by setting 
the parameters appropriately
GIG does that and matches other shape 
characteristics like higher moments as well
Weibull good too when you can control 
variance – mean relationship
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