Reserve Variability

2017 CLRS James Ely, FCAS

Session Outline

- 1. Convolution Equations in Loss Reserving
- 2. Properties of Convolutions
- 3. Reserve Risk = Inflation Risk + Insurance Risk
- 4. Duality and Transforms

Convolution

Statistical Meaning: The sum of two independent random variables

Algebraic Meaning: A linear transformation to or from diagonals

Sum of Two Dice

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Joint Probability of Two Dice

	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

Convolution of Two Dice Prob(7) = \sum Prob(A) Prob(7-A)

	1	2	3	4	5	6
1						1/36
2					1/36	
3				1/36		
4			1/36			
5		1/36				
6	1/36					

Convolution

The sum of two independent random variables: T = X + Y

$$P(T = t) = \int_{-\infty}^{\infty} f(x)g(t - x)dx$$

Paid Loss Development

- 1. Ultimate(AY) = CumPaid(AY) x LDF(age)
- 2. Unpaid = \sum Ultimate(AY) CumPaid(AY)

Substitute age = CY-AY in 1, then combine 1 & 2:

Unpaid(CY) = \sum CumPaid(AY) (LDF(CY-AY) -1)

Traditional Methods as Convolutions

- Paid Loss Method: Unpaid(CY) = ∫ CumPaid(AY) (LDF(CY-AY) -1) dAY
- Incurred Loss Method: IBNR(CY) = $\int CumInc(AY)(LDF(CY-AY) - 1) dAY$
- Bornheutter-Ferguson: IBNR(CY) = $\int ExpLoss(AY) (1-1/LDF(CY-AY)) dAY$

Session Outline

1. Convolution Equations in Loss Reserving

2. Properties of Convolutions

- 3. Reserve Risk = Inflation Risk + Insurance Risk
- 4. Duality and Transforms

Notation

We will use the symbol * to denote convolution,

i.e. h = f * g means

$$h(y) = \int_{-\infty}^{\infty} f(x)g(x-y)dx$$

Linearity

Commutative

$$f * g = g * f$$

• Associative

$$f^{*}(g^{*}h) = (f^{*}g)^{*}h$$

• Distributive over addition $f * (\alpha g + \beta h) = \alpha f * g + \beta f * h$

Operator Algebra

Operator

- Identity
- Shift by t
- Definite Integral
- Indefinite Integral
- Derivative

Distribution

- Point mass at 0, or δ
- Point mass at t, or $\delta(t)$
- 1
- 1⁻ or 1⁺ (right or left limit)
- $d\delta/dt$, denote Δ

Derivative Rule

(f * g)' = f' * g = f * g'

$$(f * g) * \Delta = (f * \Delta) * g = f * (g * \Delta)$$

Session Outline

- 1. Convolution Equations in Loss Reserving
- 2. Properties of Convolutions
- 3. Reserve Risk = Inflation Risk + Insurance Risk
- 4. Duality and Transforms

Three Factor Model

Incremental:

IncrLoss(AY, age) = X(AY) Y(CY) Z(age)

Three Factor Model

Incremental:

IncrLoss(AY, age) = X(AY) Y(CY) Z(age)

$$Ultimate(AY) = \int_{age=0}^{\infty} X(AY)Y(CY)Z(age)dage$$

Three Factor Model

Incremental:

IncrLoss(AY, age) = X(AY) Y(CY) Z(age)

$$Ultimate(AY) = \int_{age=0}^{\infty} X(AY)Y(CY)Z(age)dage$$

$$Ultimate(AY) = \int_{CY=AY}^{\infty} X(AY)Y(CY)Z(CY - AY)dCY$$

Rearrange Terms

Ultimate(AY) = $\int X(AY) Y(CY) Z(CY-AY) dCY$

$$Ultimate(AY) = \int Y(CY) [X(AY)Z(CY-AY)]dCY$$

Ultimate(AY) = Inflation * Insurance Risk

Unpaid(AY,t) = Inflation * Insurance Risk * 1⁺(t)

Expanded Version

Reserve Risk(AY) = Inflation Risk * Insurance Risk

Reserve Risk = Inflation Risk * Frequency Risk * Claim Intensity Risk

Risk Theory

Traditional

Frequency – Systemic

Convolution Frequency – Systemic

Severity - Diversifiable

Intensity – Diversifiable

Inflation - Systemic

Risk Theory

Traditional

Frequency – Systemic

Convolution Frequency – Systemic

Severity - Diversifiable

Intensity – Diversifiable

Inflation - Systemic

Session Outline

- 1. Convolution Equations in Loss Reserving
- 2. Properties of Convolutions
- 3. Reserve Risk = Inflation Risk + Insurance Risk
- 4. Duality and Transforms

Transform

An operation on distributions that changes convolution to multiplication

$$T(f * g) = T(f) T(g)$$

Drawback:

Actuaries don't like "magic formulas"

General Form

$$T(f(x)) = \int_{a}^{b} f(x)g(s)ds$$

Familiar Transforms

Transform

MGF

Fourier Transform

Object Space

Limit points of sequences of smooth functions with...

... Bounded Support

... Bounded

LaPlace Transform

... Exponentially Bounded

LaPlace vs. Fourier Transforms

Theorem:

 $\mathcal{L}(f(x)) = \mathcal{F}(e^{-\alpha x} f(x))$

The LaPlace Transform of a distribution equals the Fourier Transform of the "de-trended" distribution

Count – Time Duality

Duality:

An alternate formulation of a problem that preserves basic properties

Equivalence between a discrete distribution and a continuous distribution

Poisson – Exponential Duality

Poisson (Discrete)

Let N_t denote the number of occurrences in [0,t]

Exponential (Continuous) The time between occurrences (T_1) is Exponential

Let T_n denote the time of the nth occurrence $P[N_t \ge n] = P[T_n \le t]$

Geometric Distribution

The number of failures until the first success

The Geometric distribution can be used as a discrete approximation to the Exponential

For a short time interval t, define failure as no claims, The Geometric distribution will give the discrete time until a claim occurs.

 $P(no claims) = q = 1 - e^{-\lambda t}$

Negative Binomial

Traditional Formulation

Poisson mixed by Gamma

Alternate Formulation

N-fold convolution of Geometric Distributions

LaPlace Transform

 $\int (x^n/n!) = (1/s)^n$

The Laplace Transform maps from Poisson to Geometric

Collective Risk Model

Traditional Formulation

A combinatoric mix of convolutions

Alternative Formulation A convolution of convolutions

Collective Risk Model

Aggregate Loss = $\sum_{n=0}^{\infty} P(n) f(x)^{*n}$

Aggregate Loss = Normal $* g(x)^{*m}$

Collective Risk Model

Aggregate Loss = $\sum_{n=0}^{\infty} P(n) f(x)^{*n}$

Aggregate Loss = Normal $* g(x)^{*m}$

Aggregate Loss = P(N) n
$$\mu_x * f(x-\mu_x)^{*\mu_N}$$