New Statistical Methods That Improve on MLE and GLM – Including for Reserve Modeling

GARY G VENTER

MLE Going the Way of the Buggy Whip

- Used to be gold standard of statistical estimation
 - Minimum variance unbiased estimate estimation and predictive variance
- But even by 1956, Stein's Paradox was that if you are estimating 3 or more means, shrinking them all towards overall mean reduces variance
 - Paradox part was the means don't have to be related conceptually
 - This shrinking ends up with lower variances, but some biased up, some down
 - Having lower errors generally better than having bigger unbiased errors
 - Method is same as credibility shrink using within and between variances
 - Famous example is estimating year-end batting averages by player from early season averages
 - ▶ In regression or GLM, every fitted value is an estimated mean, so lots of them

Now Regularization

- Not very informative name for another way of shrinking
- Minimizes negative log likelihood (NLL) plus parameter penalty
 - **Examples of penalties, with** $\lambda > 0$, parameters bi
 - Ridge regression: Σλbi² : in 1970 this proved to have lower error than MLE for some λ, but method of determining λ not clear
 - Lasso: $\Sigma\lambda|b_i|$: some parameters go to zero, so variable selection as well
 - ► Cauchy mode: $\Sigma \log(\lambda + b^2)$. Cauchy is t-distribution with one dof.
- Shrinking parameters tends to shrink estimates towards overall mean
 - Constant term is not included in parameters that are shrunk
 - Typically variables are scaled to have mean zero, variance one by a linear transformation, so really shrinking towards mean.
 - Coefficients and constant term adjust for the linear scaling
 - Takes away size of the variable from influencing the shrinkage

How Much to Shrink: Choosing λ

- Instead of within and between variances, keep a holdout sample
- Measure NLL of the holdout sample for various λ 's
- Some shrinkage always better than MLE
- Typically divide the data into several subsets and leave each out in turn, rotating through all of them
 - **Choose** λ that best predicts holdout samples
 - In case of a tie, pick one with the most shrinkage
- Best case considered to be leave one out loo where every point is used as a holdout sample of 1.
- NLL sum of those holdouts a good estimate of NLL of a new sample
 - Fitting the population vs. fitting the sample

Bayesian Version

- Give each parameter a prior distribution symmetric around zero.
- Posteriors are shrunk towards zero. E.g., normal and double exponential priors give ridge regression and lasso as posterior modes.
- MCMC estimation simulates a sample of the posteriors doesn't need to have the form of the posterior – just needs prior and density
- Advantages:
 - Loo likelihood for a point well estimated as Pareto-smoothed harmonic mean of the point's likelihood across the sample parameters – more weight for worse fits. Fast.
 - Parameter uncertainty already there from posterior sample
 - Can put a prior on λ too usually fairly small uniform prior works, and gives a good posterior sample for λ . So don't need a lot of runs.
 - Good software packages available
 - Not restricted to distribution choices from GLM better for runoff ranges
 - Makes posterior mean available frequentist versions like lasso only have mode

Posterior Mean vs. Posterior Mode

- Mean uses all parameter sets that could have generated the model, weighted by probability of being the right set
- Mode looks at one sample only the one with the highest probability
 - That probability is still quite low
- If the mean is very different from the mode, there is a risk that the mode is over-responsive to the particular sample.
- Issue of trying to fit to the population instead of fitting to the sample
- Mode can be computed as a maximization of prior * likelihood, so can be done as a frequentist calculation, but where prior is reinterpreted as the distribution of the effect being measured, not of the parameter.
- Frequentist regularization like lasso and ridge regression compute mode

Easy Application Example – Regression

- Just shrinks regression coefficients
- Straightforward for estimating pricing factors when there are many variables
- Reserving can be set up as a regression too
 - Put triangle into a column vector
 - Use dummy variables for row and column factors
 - Usually make an additive row column model for log of cell means
 - Dummy variables are 1 for cells in that row or column, 0 elsewhere

But Shrinkage Complicates This

- Shrinking row and column factors isn't the same thing as shrinking a typical regression coefficient
- Something more like smoothing would be better
- One way to do this is to put the factors on piecewise linear curves
 - Then shrink the slope changes between segments gives a kind of smoothing
 - Also can be done with cubic splines across the parameters
- Formally, make parameters for these slope changes, which are 2nd differences of the row and column factors or log factors
- ► Factors are cumulative sums of 2nd differences, so still can use dummies
- The dummy for the 2^{nd} difference parameter for row j is:
- dj,k = max(0, 1 + k j) for a cell from row k. Same for columns. First row is row 1.

Loss Reserve Modeling – General

Over-parameterization reduces predictive accuracy

- Look up "overfitting" in Wikipedia. One quote from a widely-cited source:
- The essence of overfitting is to have unknowingly extracted some of the residual variation (i.e. the noise) as if that variation represented underlying model structure.
- Cumulative triangles violate the assumption of independent observations.
- Incremental triangles do not they are not negatively correlated (empirically)
- If you are modeling cumulative triangles, a factor is significant if it is two or more standard deviations away from 1.0, not from 0.

Row – Column Factor Model

For a cell in row u, column w, the mean is a constant times row and column factors

$$\blacktriangleright \mu_{w,u} = A_w B_u C$$

Row factors A, column factors B, constant C

Factors for first row and column are both 1.0

Parameters for us are 2nd differences in logs

Aw = exp(pw), Bu=exp(qu), $\mu_{w,u} = exp(p_w + q_u + c)$

 $p_1 = 0$, $p_2 = a_2$, $p_3 = 2a_2 + a_3$, $p_4 = 3a_2 + 2a_3 + a_4$, ...

DR = design matrix row section consists of all these coefficients on the a's, so

 $(p_1, p_2, ...)^T = D_R^*(a_1, a_2, ...)^T$, similar for q and b.

That is linear model part

Distributions

- Losses in cell j are assumed gamma distribution with mean $\mu_j = \alpha_j \beta_j$, variance = $\alpha_j \beta_j^2$.
- GLM assumes α is fixed across the cells, but here assume β is. Then $\mu_j = \alpha_j \beta$, variance $= \alpha_j \beta^2 = \beta \mu_j$. This is like ODP assumption variance proportional to mean
- Assume that the a and b 2nd difference parameters are double exponential distributed in s. This implies that:
- > Prior mean of a_w or b_u is zero, with variance a function of s
- Instead of trying a lot of values of s, assumed that log of s is uniform on [-5,-0.2]. That lets s go up to 0.8, which was ok.
- Too high an s can give convergence problems

Example, from Wuithrich, Mario V. 2003. Astin Bulletin 33:2: 331–46.

AY	Lag: 0	1	2	3	4	5	6	7	8	9
0	157.95	65.89	7.93	3.61	1.83	0.55	0.14	0.22	0.01	0.14
1	176.86	60.31	8.53	1.41	0.63	0.34	0.49	1.01	0.38	0.23
2	189.67	60.03	10.44	2.65	1.54	0.66	0.54	0.09	0.19	0
3	189.15	57.71	7.77	3.03	1.43	0.95	0.27	0.61	0	0
4	184.53	58.44	6.96	2.91	3.46	1.12	1.17	0	0	0
5	185.62	56.59	5.73	2.45	1.05	0.93	0	0	0	0
6	181.03	62.35	5.54	2.43	3.66	0	0	0	0	0
7	179.96	55.36	5.99	2.74	0	0	0	0	0	0
8	188.01	55.86	5.46	0	0	0	0	0	0	0

Incremental paid losses, 62 data points

Pretty fast paying – losses get very small in later columns

Will start with row-column model

R code to set up Stan run

```
1
    setwd("/Users/yada/yada/yada")
    library(rstan)
 2
    rstan_options(auto_write = TRUE)
 3
    options(mc.cores = parallel::detectCores())
 4
    library("loo")
 5
6
7
    y = scan('swiss_y.txt') #scan reads a txt file into a vector
    library(readxl) #helps in reading Excel files
8
    x1 = as.matrix(read_excel("swiss_x.xlsx"))
9
10
    U = ncol(x1)
11
    N = length(y)
12
13
    fit2 = stan(file = 'logregressiongam.stan', verbose = FALSE, chains = 4, iter = 2000)
14
    log_LL <- extract_log_lik(fit2)</pre>
15
    loo(log_LL)
16
```

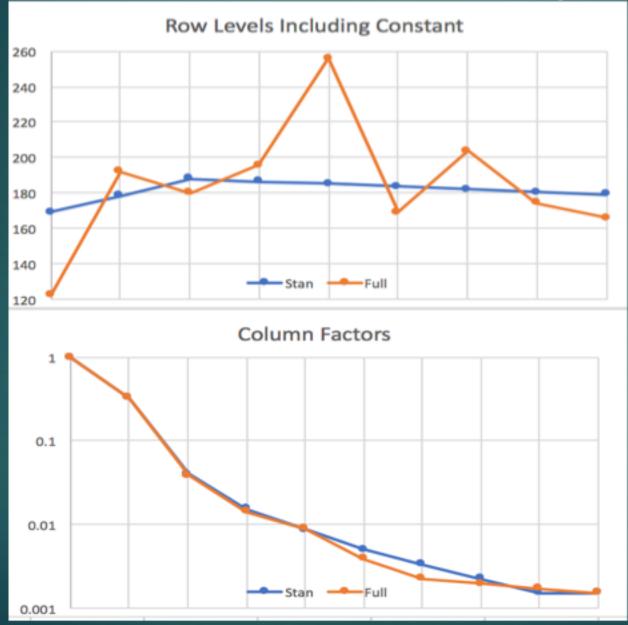
Assumes triangle is in a column in a file swiss_y.txt and the dummy variables are in swiss_x.xlsx Sets up and runs Stan model in logregrssiongam.stan Then computes loo

```
1 - data {
                                                         Stdev Laplace = sqrt(2)s
                      //number of observations
      int N:
 2
                                                         Prior allows s up to 0.8 –
 3
     int U:
                     //number of variables
                                                          more than needed here
     vector[N] y; //the triangle in a column
 4
 5
      matrix[N,U] x1; //design matrix with U columns
                                                          On logs prefers lower s
6
    parameters { // all except v will get uniform r for, which is default
7 -
                                                                                         Example Stan
                                      constant term, starting in known range
 8
     real<lower=-4, upper=16> cn;
                                                                                         gamma code
 9
     vector[U] v;
                                          //the parameters
10
     real<lower=-5, upper = -0.2> logs; //log of s, related to lambda, not too high
11
     real<lower=-20, upper = 20> logbeta; //log of gamma b parameter
                                                                                         Start with
12
    transformed parameters {
13 -
                                                                                         defining data,
14
     real beta;
15
     real s:
                                    //shrinkage parameter, like lambda
                                                                                         parameters
16
                                    //fitted means
     vector[N] alpha;
17
     beta = exp(logbeta); //for positive parameter, uniform on log is like 1/X
                                                                                         Model has
     s = exp(logs); // Gives more weight to lower values, which is good if X not big
18
     alpha = exp(x1*v+cn)*beta; //vector of gamma a parameters
19
                                                                                         priors to use
20
                                                                                        then has
21 -
    model { // gives priors for those not assumed uniform. Choose this one for lasso.
22
       for (i in 1:U) v[i] ~ double_exponential(0, s);
                                                                                         distribution for
    for (j in 1:N) y[j] ~ gamma(alpha[j], beta); //Stan gamma mean is a/b
23
                                                                                         data points y
24
    generated quantities { //outputs log likelihood for looic
25 -
      vector[N] log_lik;
26
    for (j in 1:N) log_lik[j] = gamma_lpdf(y[j] | alpha[j],beta);
27
28
```

Eliminating Some Parameters

- Shrinking parameters towards zero makes some of them very close to zero
- Eliminating those simplifies the model and may improve loo measure
- Print and plot functions in rstan run on Stan output gives mean and any desired percentiles of the variables – here slope changes – and plots posterior distribution of each as a bar
- Look to eliminate parameters near zero with wide ranges
- Try and see if loo improves even if stays the same, leaving them out simplifies the model
- Eliminating a slope changes continues the previous slope so results in longer linear segments

Factors from Stan and Regression



Heteroscedasticity in Reserves

- Variance varies across cells maybe CV does too
- If large losses pay later, later cells have lower count, higher severity
- > Variance decreases slower than mean does: severity variance ~ μ^2
- A way to address this is to make variance proportional to a power of the mean that is estimated – takes two variance parameters instead of one across the triangle
 - Variancej = s(meanj)^k where s and k are estimated
 - For any assumed distribution, solve for 2 parameters for cell by matching moments. Called k version of that distribution.
- For gamma distribution with mean $\mu_j = \alpha_j \beta_j$, variance = $\alpha_j \beta_j^2$, fixing α across cells makes k = 2, fixing β makes k = 1, but with any estimated k can solve for α and β separately for every cell
- Can do that for any distribution select which one by skewness, other shape characteristics – using goodness of fit measures

Distribution Fits Compared by Loo

Triangle Model Fits

- Distribution looic NLL Penalty
- Normal-k 111.2 98.9 12.3
- ► GiG 106.2 94.7 11.5
- **Gamma** 103.6 93.8 9.8
- **Weibull-k** 101.8 92.3 9.5
 - Looic is NLL + parameter penalty
 - Distribution with s, k fit by cell called the k form
 - GIG is weighted average of Gaussian and Inverse Gaussian, weight a parameter
 - **Gamma k parameter near 1.0, so just made** β constant, saving a parameter
 - Weibull best skewness varies across cells more than gamma, but still increases with CV. Sometimes better, sometimes not

Issues with Weibull – Method of Moments Not Closed Form, Also Slow Fitting

- Using notation n! = Γ(1+n), Weibull with F(x) = 1 exp[(x/c)^{1/h}] has mean = ch! Var = c²[(2h)! - (h!)²]. Then:
- ▶ $1+CV^2 = (2h)! / (h!)^2 = 1 + s^*mean^{k-2}$. Solve for h as function of s, k.
- Solve in logs, using Stan's finicky solver vector system functions { vector system(vector h, vector Q, real[] x_r, int[] x_i){ ▶ 118 data points here vector[118] z; z = lgamma(1+2*h) - 2*lgamma(1+h) - Q;x_r, x_i: 0-dimensional return z; }} Empty but required $V[j] = (s*mu[j]^k);$ //variance as a function of the mean $Q[j] = log(1+mu[j]^2/V[j]);$ // gamma mean = a/b and var=a/b^2, so mu^2/V = a $h = algebra_solver(system, start, Q, x_r, x_i);$ for (j in 1:N) { c[j] = mu[j]/tgamma(1+h[j]);h[j] = 1/h[j]; } //Stan uses 1/h as parameter} for (j in 1:N) y[j] ~ weibull(h[j], c[j]); }

Going Beyond Row-Column Model

- Müller in 2016 Variance suggests adding an exposure adjustment
- Each row has the annual exposure, each column has a factor for how much of the exposure to use for that column
- Idea is that some emerging losses are a % of exposure, not of losses emerged so far
- For a cell in row w=1,2,.., column u = 1,2,.., fitted parameter:
- ► $\mu_{w,u} = A_w B_u C + D_u E_w$, with E_w the known exposure and D_v the column % of exposure factor to be estimated

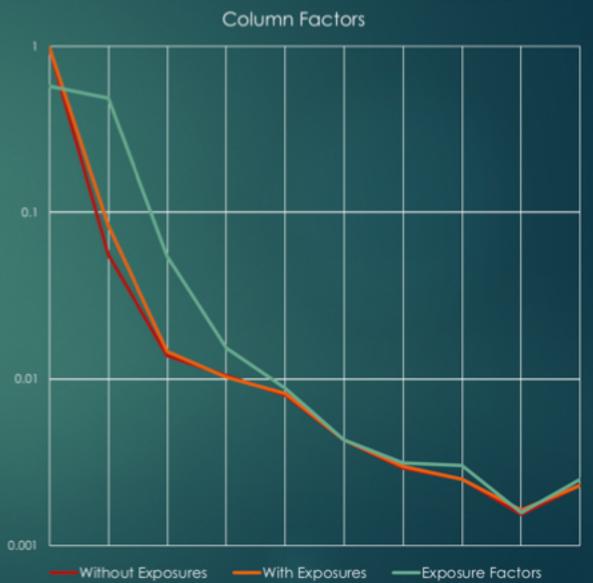
 $\blacktriangleright \mu$ could be cell mean, or a parameter proportional to the mean, ...

Fitting $\mu_{w,u} = A_w B_u C + D_u E_w$

- ► Still use piecewise linear curve across columns for D_u
- Make a separate design matrix for the slope change parameters
- Design matrix times vector of fitted parameters is D₀ for each element of the triangle when it is strung out in a single vector
- All cells from the same column will get the same D
- Need E_w also in a vector for the strung out data will be constant for all elements from the same row
- Then dot product of those two vectors gives D₀E_w as a vector
- Add that to vector of row*column*C means to get new mean for each cell – can be done in same line of Stan code
- Multiply that by beta to get the gamma alpha parameter by cell

Gamma Model Both Ways

- Swiss data had exposures by row
- Model Iooic NLL Penalty
- **Row-Column** 103.6 93.8 9.8
- With Exposure 99.9 90.1 9.8
- Extra parameters did not increase penalty as they helped with prediction
- Usually including exposure term improves model fit and predictions
- Exposure factors don't have to start at 1
- Assuming exposure = 1 often enough, especially in loss ratio triangles



Summary

- Parameter shrinkage reduces estimation and prediction variances
- Similar to credibility in shrinking fitted values towards overall mean
- Bayesian version more flexible, easier to determine how much to shrink, provides parameter distributions
- Not hard to implement in Stan package
- Can be very fast, depending on distributions, size of triangle
- One way to implement for reserving is to make the parameters to shrink the slope changes of piecewise linear fits to the row and column factors

- Mean variance relationship across cells of triangle can be more complicated than GLM allows
- Can make variance proportional to any power of the mean with just one more parameter – then choice of distribution gives shape features, like skewness
- Simple but useful distribution is gamma with beta parameter fixed across the cells, which makes the variance proportional to the mean, as in ODP
- Including an additive term by column can and usually does improve fit