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MLE Going the Way of the Buggy Whip
u Used to be gold standard of statistical estimation

u Minimum variance unbiased estimate – estimation and predictive variance

u But even by 1956, Stein’s Paradox was that if you are estimating 3 
or more means, shrinking them all towards overall mean reduces 
variance
u Paradox part was the means don’t have to be related conceptually
u This shrinking ends up with lower variances, but some biased up, some down
u Having lower errors generally better than having bigger unbiased errors
u Method is same as credibility – shrink using within and between variances
u Famous example is estimating year-end batting averages by player from 

early season averages
u In regression or GLM, every fitted value is an estimated mean, so lots of them 



Now Regularization
u Not very informative name for another way of shrinking
u Minimizes negative log likelihood (NLL) plus parameter penalty

u Examples of penalties, with l>0, parameters bi

u Ridge regression: Slbi2 : in 1970 this proved to have lower error than MLE 
for some l, but method of determining l not clear

u Lasso: Sl|bi|: some parameters go to zero, so variable selection as well

u Cauchy mode: Slog(l + bi2). Cauchy is t-distribution with one dof.

u Shrinking parameters tends to shrink estimates towards overall 
mean
u Constant term is not included in parameters that are shrunk
u Typically variables are scaled to have mean zero, variance one by a 

linear transformation, so really shrinking towards mean.
u Coefficients and constant term adjust for the linear scaling

u Takes away size of the variable from influencing the shrinkage



How Much to Shrink: Choosing l 
u Instead of within and between variances, keep a holdout sample
u Measure NLL of the holdout sample for various l’s
u Some shrinkage always better than MLE 
u Typically divide the data into several subsets and leave each out 

in turn, rotating through all of them
u Choose l that best predicts holdout samples 

u In case of a tie, pick one with the most shrinkage

u Best case considered to be leave one out – loo – where every 
point is used as a holdout sample of 1.

u NLL sum of those holdouts a good estimate of NLL of a new sample
u Fitting the population vs. fitting the sample



Bayesian Version
u Give each parameter a prior distribution symmetric around zero. 
u Posteriors are shrunk towards zero. E.g., normal and double 

exponential priors give ridge regression and lasso as posterior 
modes. 

u MCMC estimation simulates a sample of the posteriors – doesn’t 
need to have the form of the posterior – just needs prior and density

u Advantages:
u Loo likelihood for a point well estimated as Pareto-smoothed harmonic 

mean of the point’s likelihood across the sample parameters – more weight 
for worse fits. Fast.

u Parameter uncertainty already there from posterior sample
u Can put a prior on l too – usually fairly small uniform prior works, and gives 

a good posterior sample for l. So don’t need a lot of runs.
u Good software packages available
u Not restricted to distribution choices from GLM – better for runoff ranges
u Makes posterior mean available – frequentist versions like lasso only have 

mode



Posterior Mean vs. Posterior Mode
u Mean uses all parameter sets that could have generated the model, 

weighted by probability of being the right set

u Mode looks at one sample only – the one with the highest probability

u That probability is still quite low

u If the mean is very different from the mode, there is a risk that the mode 
is over-responsive to the particular sample.

u Issue of trying to fit to the population instead of fitting to the sample

u Mode can be computed as a maximization of prior * likelihood, so can 
be done as a frequentist calculation, but where prior is reinterpreted as 
the distribution of the effect being measured, not of the parameter.

u Frequentist regularization like lasso and ridge regression compute 
mode



Easy Application Example – Regression 

u Just shrinks regression coefficients

u Straightforward for estimating pricing factors when 
there are many variables

u Reserving can be set up as a regression too
uPut triangle into a column vector

uUse dummy variables for row and column factors
uUsually make an additive row – column model for log of 

cell means
uDummy variables are 1 for cells in that row or column, 0 

elsewhere



But Shrinkage Complicates This
u Shrinking row and column factors isn’t the same thing as shrinking a 

typical regression coefficient
u Something more like smoothing would be better
u One way to do this is to put the factors on piecewise linear curves

u Then shrink the slope changes between segments – gives a kind of smoothing
u Also can be done with cubic splines across the parameters

u Formally, make parameters for these slope changes, which are 2nd

differences of the row and column factors or log factors
u Factors are cumulative sums of 2nd differences, so still can use dummies
u The dummy for the 2nd difference parameter for row j is:
u dj,k = max(0, 1 + k − j) for a cell from row k. Same for columns. First row 

is row 1.



Loss Reserve Modeling – General 
u Over-parameterization reduces predictive accuracy

u Look up “overfitting” in Wikipedia. One quote from a widely-cited source:
u The essence of overfitting is to have unknowingly extracted some of the 

residual variation (i.e. the noise) as if that variation represented underlying 
model structure.

u Cumulative triangles violate the assumption of independent 
observations. 

u Incremental triangles do not – they are not negatively correlated 
(empirically)

u If you are modeling cumulative triangles, a factor is significant if it 
is two or more standard deviations away from 1.0, not from 0. 



Row – Column Factor Model
u For a cell in row u, column w, the mean is a constant 

times row and column factors
u!",$ = &"'$(

uRow factors A, column factors B, constant C

u Factors for first row and column are both 1.0

u Parameters for us are 2nd differences in logs
uAw = exp(pw), Bu=exp(qu), !",$ = )*+ +" +-$ + .
up1 = 0, p2 = a2 , p3 = 2a2 + a3, p4 = 3a2 + 2a3 + a4, … 
uDR = design matrix row section consists of all these 

coefficients on the a’s, so
u (p1, p2, …)T = DR*(a1, a2, …)T, similar for q and b.
u That is linear model part



Distributions
u Losses in cell j are assumed gamma distribution with mean
µj = ajbj, variance = ajbj

2.
u GLM assumes a is fixed across the cells, but here assume b

is. Then µj = ajb, variance = ajb2 =  bµj. This is like ODP 
assumption – variance proportional to mean

u Assume that the a and b 2nd difference parameters are 
double exponential distributed in s. This implies that:

u Prior mean of aw or bu is zero, with variance a function of s
u Instead of trying a lot of values of s, assumed that log of s is 

uniform on [-5,-0.2]. That lets s go up to 0.8, which was ok.
u Too high an s can give convergence problems



Example, from Wu ̈thrich, Mario V. 
2003. Astin Bulletin 33:2: 331–46.

u Incremental paid losses, 62 data points
u Pretty fast paying – losses  get very small in later columns
u Will start with row-column model



R code to set up Stan run

Assumes triangle is in a column in a file swiss_y.txt and the dummy variables 
are in swiss_x.xlsx
Sets up and runs Stan model in logregrssiongam.stan
Then computes loo



Example Stan 
gamma code

Start with 
defining data, 
parameters

Model has 
priors to use 
then has 
distribution for 
data points yj

Stdev Laplace = sqrt(2)s
Prior allows s up to 0.8 –
more than needed here
On logs prefers lower s



Eliminating Some Parameters
u Shrinking parameters towards zero makes some of them very 

close to zero
u Eliminating those simplifies the model and may improve loo 

measure
u Print and plot functions in rstan run on Stan output gives mean 

and any desired percentiles of the variables – here slope 
changes – and plots posterior distribution of each as a bar

u Look to eliminate parameters near zero with wide ranges
u Try and see if loo improves – even if stays the same, leaving 

them out simplifies the model
u Eliminating a slope changes continues the previous slope so 

results in longer linear segments



Factors from Stan and Regression



Heteroscedasticity in Reserves
u Variance varies across cells – maybe CV does too
u If large losses pay later, later cells have lower count, higher severity
u Variance decreases slower than mean does: severity variance ~ µ2

u A way to address this is to make variance proportional to a power of 
the mean that is estimated – takes two variance parameters instead 
of one across the triangle
u Variancej = s(meanj)k where s and k are estimated

u For any assumed distribution, solve for 2 parameters for cell by matching 
moments. Called k version of that distribution.

u For gamma distribution with mean µj = ajbj, variance = ajbj2, fixing a
across cells makes k = 2, fixing b makes k = 1, but with any estimated 
k can solve for a and b separately for every cell

u Can do that for any distribution – select which one by skewness, 
other shape characteristics – using goodness of fit measures



Distribution Fits Compared by Loo
u Triangle Model Fits
u Distribution    looic   NLL   Penalty
u Normal-k       111.2   98.9   12.3
u GiG 106.2   94.7   11.5
u Gamma         103.6   93.8    9.8
u Weibull-k       101.8   92.3    9.5

u Looic is NLL + parameter penalty
u Distribution with s, k fit by cell called the k form
u GIG is weighted average of Gaussian and Inverse Gaussian, weight a 

parameter
u Gamma k parameter near 1.0, so just made b constant, saving a parameter
u Weibull best – skewness varies across cells more than gamma, but still 

increases with CV. Sometimes better, sometimes not



Issues with Weibull – Method of Moments 
Not Closed Form, Also Slow Fitting

u Using notation n! = G(1+n), Weibull with F(x) = 1 – exp[(x/c)1/h] has 
mean = ch! Var =  c2[(2h)! – (h!)2]. Then:

u 1+CV2 = (2h)! / (h!)2 = 1 + s*meank–2. Solve for h as function of s, k.

u Solve in logs, using Stan’s finicky solver vector system

u 118 data points here

u x_r, x_i: 0-dimensional

u Empty but required



Going Beyond Row-Column Model
u Müller in 2016 Variance suggests adding an exposure 

adjustment 

u Each row has the annual exposure, each column has a 
factor for how much of the exposure to use for that column

u Idea is that some emerging losses are a % of exposure, not 
of losses emerged so far

u For a cell in row w=1,2,.., column u =1,2,..,, fitted parameter:
u !",$ = &"'$(+*$+", with Ew the known exposure and Du

the column % of exposure factor to be estimated
uµ could be cell mean, or a parameter proportional to the mean, …



Fitting !",$ = &"'$( +*$+"
u Still use piecewise linear curve across columns for Du

u Make a separate design matrix for the slope change parameters
u Design matrix times vector of fitted parameters is Du for each 

element of the triangle when it is strung out in a single vector
u All cells from the same column will get the same D
u Need Ew also in a vector for the strung out data – will be constant 

for all elements from the same row
u Then dot product of those two vectors gives DuEw as a vector
u Add that to vector of row*column*C means to get new mean for 

each cell – can be done in same line of Stan code
u Multiply that by beta to get the gamma alpha parameter by cell



Gamma Model Both Ways
u Swiss data had exposures by row
u Model                    looic   NLL   Penalty
u Row-Column         103.6   93.8    9.8

u With Exposure       99.9   90.1    9.8
u Extra parameters did not increase 

penalty as they helped with prediction
u Usually including exposure term 

improves model fit and predictions

u Exposure factors don’t have to start at 1
u Assuming exposure = 1 often enough, 

especially in loss ratio triangles



Summary
u Parameter shrinkage reduces estimation 

and prediction variances
u Similar to credibility in shrinking fitted 

values towards overall mean
u Bayesian version more flexible, easier to 

determine how much to shrink, provides 
parameter distributions

u Not hard to implement in Stan package
u Can be very fast, depending on 

distributions, size of triangle
u One way to implement for reserving is to 

make the parameters to shrink the slope 
changes of piecewise linear fits to the 
row and column factors

u Mean – variance relationship across cells 
of triangle can be more complicated than 
GLM allows

u Can make variance proportional to any 
power of the mean with just one more 
parameter – then choice of distribution 
gives shape features, like skewness

u Simple but useful distribution is gamma 
with beta parameter fixed across the cells, 
which makes the variance proportional to 
the mean, as in ODP

u Including an additive term by column can 
and usually does improve fit


