

Mack Model

Li Milliman

age and age-to-ultimate factors

Page II.2

Page 1 of 11

- Compute the weighted variances for age 1 for the factors in the exercise triangle
- Bonus: Calculate weighted averages and variances for age 1 in the complete Mack data triangle

Page II.6

🕻 Milliman

Answer (Variance of Column 1)							
Computation of σ_l^2 for Development Age 1							
	Accident				Weighted		
	Year (w)	c (w,1)	F(w,1)	F(w,1) - F(1)]	Deviation		
	(1)	(2)	(3)	(4)	(5)		
				$[(3) - 2.334]^2$	(2) x (4)		
-	1981	5,012	1.650	0.47	2,345.0		
	1982	106	40.425	1,450.90	153,795.4		
	1983	3,410	2.637	0.09	313.3		
	1984	5,655	2.043	0.08	477.3		
, ,	Weighted Aver	age [F(1)]	2.334	$\Sigma(5) =$	156,930.9		
L' Millin	nan		$\sigma_1^2 = \Sigma$	C(5) / (N-d-1) =	52,310.3	75	

Variance of Ultimates

- We want variance of future payments or future incurred loss changes
- MSE[c(w,n)] = E[{c(w,n) E[c(w,n)]}² |D] where D is data
- Iterative rule of expectations
- MSE[c(w,n)] = Var[c(w,n)|D]+ {E[c(w,n)|D] E[c(w,n)]}²
- Mean squared error = process variance of Ultimate + Parameter variance of estimate of ultimate

Page II.8

 Does not take into account changes in underlyin model in the future.

Li Milliman

Variance of Ultimates

• Iterative computation to get variance of ultimate

```
Var[c(w,n)] = E[c(w,n-1)]\sigma_{n-1}^{2} + E[c(w,n-1)]^{2}F(n-1)^{2} = c(w,n-k+1)F(n-k+1)...F(n-2)\sigma_{n-1}^{2} + c(w,n-k+1)F(n-k+1)...F(n-2)\sigma_{n-1}^{2} + c(w,n-k+1)F(n-k+1)...F(n-k+1)F(n-k+1)...F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1)F(n-k+1
```

```
\{E[c(w,n-2)]^2 F(n-2)^2 F(n-1)^2 + E[c(w,n-2)]F(n-1)^2 \sigma_{n-2}^2\}
```

Variance of unpaid = variance of ultimate

Page II.9

🖬 Milliman

CAS

CAS

Ex	an	nple					
		Computation	on of Standard	Error of Ultim	ate for AY 1985		- 2
			Sigma d ²			1 1	Sigma d
d F((d)	Sigma d ²	$F(d)^2$	E[c(1,d)]	SUM[c(j,d)]	E[c(1,d)] SU	$M = F(d)^2$
(1) (2	2)	(3)	(4)	(5)	(6)	(7)	(8)
			(3)/(2)^2			1/(5) + 1/(6)	(4) x (7)
4	1.147	161.2	122.6	4,920	11,805	0.000288	
3 2	1.378	2,887.3	1,519.8	3,569	16,303	0.000341	
2	1.401	161.2	82.2	2,549	21,546	0.000438	
1	2.334	52,310.3	9,603.8	1,092	14,183	0.000986	
			U(w) =	5,642		Sum	
				Var[R(w,d)]	$[2] = U(w)^2 \times Sum$	= 320,349,084	
						SE	= 17,898
L Milliman			Pag	je II. 11			crs

Page 4 of 11

C

CAS

Calculation Pointers

- It is easiest to set up a set of triangles to perform the calculations
 - First create a row of column sums of cumulative losses x the last observation
 - Create a triangle of weighted squared deviations of development factors from their mean
 - Create a projected runoff triangle that computes each estimate of cumulative losses, E[c(w,d)], for all future periods
 - periods
 Create a triangle of inverses of projected runoff plus inverse of sum of cumulative losses
 - inverse of sum of cumulative losses - A spreadsheet showing the calculation for the Mack data is provided

Page II.16

Milliman

Using Mack Parameters

- We have a mean and a variance for unpaid (or IBNR) amounts. Now what?
- To get confidence intervals or probability distribution, assumptions must be made
- Assume unpaid (or IBNR) amounts follow a probability distribution, say the Gamma
- Use mean and variance of unpaid (or IBNR) amounts to derive parameters for distribution
- Use this distribution to estimate percentiles and other statistics for unpaid (or IBNR) amounts

Page II.17

Li Milliman

Group Exercise

- Compute the variance of the total reserve amount using the Mack data
- Assume total reserve amount follows a lognormal (or Gamma) distribution and compute the parameters μ & σ. Compute the 75th percentile of the reserve (IBNR) amount.

Refer to Mack Model workbook for results

Page II.18

Li Milliman

Testing Assumption 3

2,000

400 300 200

-100

Li Milliman

Weighted Residuals

3,000 4,000

Conclusion?

Page II.26

6,000

CAS

5,000

Page 9 of 11

Page 10 of 11

Questic	ons on Mack N	/lodel?
	Ť	
C Milliman	Page II.31	crs

Page 11 of 11