Mack Model

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mack Model

Mack Mean

- Under these assumptions, the best estimate of the age-to-age factor is a weighted average
$E[F(d)]=\sum_{w} \frac{c(w, d)}{\sum_{w}^{c(w, d)} \times \frac{c(w, d+1)}{c(w, d)}=\frac{\sum_{w} c(w, d+1)}{\sum_{w} c(w, d)}, ~\left(\frac{1}{2}\right.}$
- The Ultimate estimate is:
$E[c(w, n) D]=c(w, d) \times F(d) \times F(d+1) \times \ldots \times F(n-1)$
where D is known data
L'milliman
Page II. 4

Exercises using Mack Data

Compute the weighted average age-toaverage factors for each column

- Compute the weighted variances for age 1 for the factors in the exercise triangle
- Bonus: Calculate weighted averages and variances for age 1 in the complete Mack data triangle

Б'milliman
Page 1.6

Mack Variance

- Since the mean is weighted, the variance is also weighted.
- Variance associated with one age-to-age factor or column of losses, $\sigma_{d}{ }^{2}$:

$$
\sigma_{d}^{2}=\frac{1}{N-d-1} \sum_{j=1}^{N-d} c(j, d)\left(\frac{c(j, d+1)}{c(j, d)}-F(d)\right)^{2}
$$

L'Milliman
Page 11.5

Exercises using Mack Data
- Compute the weighted average age-to-
average factors for each column
- Compute the weighted variances for age 1
for the factors in the exercise triangle
- Bonus: Calculate weighted averages and
variances for age 1 in the complete Mack data triangle Linlliman

\qquad

Mack Model

(Variance of Column 1)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Variance of Ultimates

\qquad

- We want variance of future payments or future \qquad incurred loss changes
- MSE[c(w,n)] = E[\{c(w,n) - E[c(w,n)]\} $\left.{ }^{2} \mid D\right]$ where D is \qquad data
\qquad
- $\operatorname{MSE}[c(w, n)]=\operatorname{Var}[c(w, n) \mid D]+\{E[c(w, n) \mid D]-$
\qquad $\mathrm{E}[\mathrm{c}(\mathrm{w}, \mathrm{n})]\}^{2}$
- Mean squared error = process variance of Ultimate \qquad + Parameter variance of estimate of ultimate
- Does not take into account changes in underlyinc model in the future. \qquad
[iMilliman
Page 1.8 \qquad

Variance of Ultimates
- Iterative computation to get variance of
ultimate
$\operatorname{Var[c(w,n)]=E[c(w,n-1)]\sigma _{n-1}^{2}+E[c(w,n-1)]^{2}F(n-1)^{2}=}$ $c(w, n-k+1) F(n-k+1) \ldots F(n-2) \sigma_{n-1}^{2}+$ $\left\{E[c(w, n-2)]^{2} F(n-2)^{2} F(n-1)^{2}+E[c(w, n-2)] F(n-1)^{2} \sigma_{n-2}^{2}\right\}$ - Variance of unpaid = variance of ultimate L. milliman

Mack Model

- The Mack formula for the variance of the reserve estimate for accident year w is:

Parameter Variance (variance of the column of (variance of the calculated weighted average Page II. 10
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mack Model

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
$\left.\begin{array}{|l|}\hline \text { Mack Total Variance } \\ \text { - The Mack formula for the Variance of the } \\ \text { total unpaid estimate is: } \\ S E\left(R_{w t}\right)^{2}=\sum_{w=2}^{N}\left\{S E\left(R_{w}\right)^{2}+U(w)\left(\sum_{i=w+1}^{N} c(i, n)\right) \sum_{d=n+1-w}^{n-1}\left(\frac{2 \sigma_{d}^{2} / F(d)^{2}}{\sum_{j=1}^{N-d} c(j, d)}\right)\right.\end{array}\right\}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mack Model

\qquad
\qquad
\qquad

Using Mack Parameters \qquad

- We have a mean and a variance for unpaid (or IBNR) amounts. Now what?
- To get confidence intervals or probability distribution, assumptions must be made
- Assume unpaid (or IBNR) amounts follow a probability distribution, say the Gamma
\qquad
- Use mean and variance of unpaid (or IBNR) amounts to derive parameters for distribution \qquad
- Use this distribution to estimate percentiles and other statistics for unpaid (or IBNR) amounts

L'Milliman
Page II. 17

Group Exercise

\qquad

- Compute the variance of the total reserve \qquad amount using the Mack data
- Assume total reserve amount follows a \qquad lognormal (or Gamma) distribution and compute the parameters $\mu \& \sigma$. Compute \qquad the $75^{\text {th }}$ percentile of the reserve (IBNR) amount. \qquad
Refer to Mack Model workbook for results \qquad
L'Milliman
Page 11.18 \qquad

Mack Model

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Open issues

\qquad

- Covariance term for the oldest year \qquad
- Multiply ultimate for year by

1. Sum of ultimates for all subsequent years
2. Times the factor variance (σ_{d}^{2}) for last age-to-age factor 3. Divide by square of last age-to-age factor

- For Other years, need a sum of the ratio computed in 2 and 3
- Tail Factors? Recursion formula is useful
- Assumption testing \qquad
L̈Milliman
Page 1.20 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mack Model

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mack Model

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Some Tail Factor Methods

\qquad
\qquad

Mack Model

\qquad
\qquad

Tail Variances \qquad

- Plot $\ln ($ Sigma² $)$ vs. development age \qquad
- If relationship looks linear, fit regression to get variances in tail \qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mack Model

Page 11 of 11

