

Clustering for Reserving Segmentation

John Avitabile Jay Cooke

September 7, 2018

Agenda

- The Need for Segmentation
- Introduction to Clustering
- Clustering with Error Distributions
- Stability Measurement
- Summary and Implementation

Agenda

The Need for Segmentation

- Introduction to Clustering
- Clustering with Error Distributions
- Stability Measurement
- Summary and Implementation

Team of two reserving actuaries

Each actuary has the capacity to do **one reserve analysis**. An analysis can include data from one segment or combined data from multiple segments.

Four segments of business

Collision

Comprehensive

Four segments of business

These four segments of business need to be combined into two groups...but how do we do it?

The Claims department says...

The Pricing department says...

John says...

Reserving history says...

How should we group these segments??

We want a method that is...

Data Driven

Credible

Not prone to biases

Agenda

- The Need for Segmentation
- Introduction to Clustering
- Clustering with Error Distributions
- Stability Measurement
- Summary and Implementation

Uses for Cluster Analysis

Market Research

Grouping customers for targeted marketing and product design

Computer Science

Partitioning a digital image into regions for image recognition

Social Science

Identifying patterns in unsolved crimes

NCCI Hazard Group Mapping for workers' compensation (Robertson, 2007)

Let's take a closer look at our four segments

Segment A

Paid Loss \$ by Age Loss Year 12 48 60 24 36 2013 1,200 2,350 2,620 2,620 2,620 2014 2,810 2,810 1,400 2,550 2015 2,020 2,210 1,000 2016 1,300 2,320 2017 1 000 **Two Important Development Factors** Loss Tear 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 2013 2014 1.82 1.10 1.00 2015 2.02 1.09 2016 1 78 1.00 Selected (Mean) 1.00 1.90 1.10 Selected simple all-year No development average for simplicity beyond 36 months

Segment B

Loss Voar	Paid Loss \$ by Age					
LUSS Teal	12	24	36	48	60	
2013	1,560	2,210	2,740	2,740	2,740	
2014	1,820	2,290	2,890	2,890		
2015	1,300	1,460	1,830			
2016	1,690	2,400				
2017	1,560					

	Age-to-Age				
LUSS Teal	12-24	24-36	36-48	48-60	
2013	1.42	1.24	1.00	1.00	
2014	1.26	1.26	1.00		
2015	1.12	1.25			
2016	1 42				
Selected (Mean)	1.30	1.25	1.00	1.00	

Segment C

Loss Voar	Paid Loss \$ by Age					
LUSS Teal	12	24	36	48	60	
2013	1,120	1,760	2,270	2,270	2,270	
2014	960	1,030	1,310	1,310		
2015	1,040	3,330	4,420			
2016	800	1,080				
2017	960					

	Age-to-Age				
LUSS Teal	12-24	24-36	36-48	48-60	
2013	1.57	1.29	1.00	1.00	
2014	1.07	1.27	1.00		
2015	3.20	1.33			
2016	1.35				
Selected (Mean)	1.80	1.30	1.00	1.00	

Segment D

Loss Voor	Paid Loss \$ by Age				
LUSS Tear	12	24	36	48	60
2013	1,120	1,350	1,420	1,420	1,420
2014	980	1,200	1,420	1,420	
2015	1,200	1,400	1,490		
2016	1,080	1,310			
2017	890				

Loss Voor	Age-to-Age					
LUSS Teal	12-24	24-36	36-48	48-60		
2013	1.21	1.05	1.00	1.00		
2014	1.22	1.18	1.00			
2015	1.17	1.06				
2016	1.21					
Selected (Mean)	1.20	1.10	1.00	1.00		

We have two LDFs for each segment

Segment	12-24 LDF	24-36 LDF
А	1.90	1.10
В	1.30	1.25
С	1.80	1.30
D	1.20	1.10

Now it's time for clustering!

• Let's plot the LDFs on a chart:

*Using hierarchical clustering throughout this presentation. There are other algorithms that could be used as well.

**We're using Euclidean distance, but there are other distance measure that could be used.

• Use the distance measure to find the closest two points:

The two closest points become one cluster!

Now use the distance measure again to find the next smallest distance among both the remaining points and the cluster*.

*There are different ways to measure the distance from a cluster. See appendix for details.

Now we have two clusters!

The clustering algorithm has a given us a recommended segmentation:

Graphing of LDFs

Graphing the development factors by age shows that intuitively our result makes sense

We can use a dendrogram to display the clustering results

Allowable Distance between elements of a cluster

Start with our four points again

0

Allowable Distance between elements of a cluster

Draw a radius of allowable distance around each point

Allowable Distance between elements of a cluster

Now increase the allowable distance

We can use a dendrogram to display the clustering results

Allowable Distance between elements of a cluster

Results – we're done now, right?

Agenda

- The Need for Segmentation
- Introduction to Clustering

Clustering with Error Distributions

- Stability Measurement
- Summary and Implementation

Clustering can be adapted to apply to development factors and the error distributions around them

Why is it important to consider error distributions?

Error-based clustering extends the clustering algorithm to use the error associated with the data

4 -3. \$2-1 0 0.0 2.5 5.0 7.5 V1 In practice, the error structure can be more St complex than shown in this example

Scale each measurement according to its standard error, perform a new clustering

Let's take an even closer look at our four segments

Segment A

Segment B

				o-Age		
LUSS Teal	12	-24	24	-36	36-48	48-60
2013		1.42		1.24	1.00	1.00
2014		1.26		1.26	1.00	
2015		1.12		1.25		
2016		1.42				
Selected (Mean)		1.30		1.25	1.00	1.00

Segment C

			Ag	Age-to-Age			
LUSS Teal	12-24	4 2	24-36	5	36-48	48-60	
2013	1	.57	1.	.29	1.00	1.00	
2014	1	.07	1.	.27	1.00		
2015	3	.20	1.	.33			
2016	1	.35					
Selected (Mean)	1	.80	1.	.30	1.00	1.00	

Segment D

		Age	-to-Age	o-Age			
LUSS Teal	12-24	24-36	36-48	48-60			
2013	1.2	1 1.0	1.00	1.00			
2014	1.2	2 1.1	8 1.00				
2015	1.1	7 1.0)6				
2016	1.2	1					
Selected (Mean)	1.2	0 1.1	0 1.00	1.00			

Is it still obvious how we should group these segments?

Standard Clustering

Under our standard clustering algorithm, the development patterns cluster into two bins:

(A C) and (B D)

-0.2

Error-based Clustering – Scenario 1

Error-based clustering

Same means

The patterns cluster into the same two bins:

(B D), (A, C)

Error-based Clustering – Scenario 2

Error-based clustering

Same means

Increased error on B, less error on A

the patterns cluster into a new binning:

(A), (B C D)

Error-based Clustering – Scenario 3

Error-based clustering Same means Increased error on C, less error on D the patterns cluster into a new binning: (A, B, C) (D)

Considering the error distribution may give us a new recommendation

We're done now, right?

Agenda

- The Need for Segmentation
- Introduction to Clustering
- Clustering with Error Distributions
- Stability Measurement
- Summary and Implementation

Are we confident in the recommended segmentation?

- Do we trust the results of our clustering approach?
- Can we incorporate stochastic simulations?

Let's look at our segments one more time

Segment A

A

Loss Voar	Age-to-Age						
LUSS Teat	12-24	24-36	36-48	48-60			
2013	1.96	1.11	1.00	1.00			
2014	1.82	1.10	1.00				
2015	2.02	1.09					
2016	1.78						
Selected (Mean)	1.90	1.10	1.00	1.00			

We can use **bootstrapping** to simulate more triangles for segment A

	Iteration 1		_				
Loss Year	Loss Year	Iteration 2	Iteration 3				
2014 2015	2013	1 Loss Year		Iterat	ion 4		
2016	2014	2013	Loss Year	12-24	24-36	36-48	48-60
	2015	2014	2013	1.93	1.13	1.00	1.00
		2015	2014	1.92	1.07	1.00	
		2016	2015	2.12	1.08		
			2016	1.67			

Repeat for segments B-D

Iteration	Α	В	С	D
1	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.09 1.10 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.10 1.00 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 2.02 1.09 1.78 1.00 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 2.02 1.09 1.78 1.10 1.00
2	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.10 1.00 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.10 1.00 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.10 1.00 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 2.02 1.09 1.78 1.90 1.10 1.00 1.00
3	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 2.02 1.09 1.78 1.90 1.10 1.00 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.90 1.10 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.90 1.10 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.90 1.10 1.00
4	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.80 1.10 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.10 1.00 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.10 1.00 1.00	Age-to-Age 12-24 24-36 36-48 48-60 1.96 1.11 1.00 1.00 1.82 1.10 1.00 2.02 1.78 1.90 1.10 1.00

Run the clustering algorithm on the first simulated group of triangles

Repeat for other iterations

	Cluster	Stability Score	\sim	
Proposed	BCD	0.75		Stability Score = probability of a
segmentation	Α	0.75		cluster appearing
	BD	0.25	 _ เ	
	AC	0.25		

After many hundred iterations...

Cluster	Stability Score
BCD	0.81
Α	0.81
BD	0.17
AC	0.17
other clusters	small

Rule of thumb:

- Stability score < 0.6: Unstable</p>
- Stability score > 0.85: Highly stable

Fairly confident in our proposed segmentation, and very confident that B & D belong together

Agenda

- The Need for Segmentation
- Introduction to Clustering
- Clustering with Error Distributions
- Stability Measurement

Summary and Implementation

Project Summary

Development Factors

 Development factors and error ranges computed using actuarial techniques

Error distributions quantify uncertainty in development

Clustering Algorithm

- Clustering with consideration for error distribution
- Stability score indicates confidence in recommendation and guidance into optimal number of clusters

	- MMU, GL, OTH XCD - Loss
	MHU, CMPL, OTH - Loss
	1 - MMU, CMPL, PRD - Loss
	1 - MINU, GL, PROMCD - Loss
	S - MMU, SL, PRD-XCD - ALAE
	0 - MMU, SMPL, PRD ALAE

Dendrogram displays clustering output

Implementation

What we discussed today was a very simplified example of how this process works...in reality there are <u>a lot of moving parts</u>:

• We built a flexible **R Shiny** tool to accommodate all these varying inputs

References

- Kumar, Mahesh and Patel, Nitin R., "Clustering Data With Measurement Error". Rutcor Research Report 12-2005
- Zumel, Nina and Mount, John. Practical Data Science with R. March 2014.

Thank You!

- Yue Hu
- Dan Stering
- Emily Allen
- Michaela Porter

Questions?

Appendix

Clustering – Distance Measurement and Linkage Criteria

- Distance measures Metric used to determine pairwise distances
 - Euclidean (almost always)
 - Manhattan or City Block
 - Mahalanobis
- Linkage Criterion used to determine distance between sets of observations

Linkage example

Distance between points

Using Euclidean metric

	1	2	3
2	11.5		
3	16.7	18.2	
4	9.5	20.5	16

- Clearly points 1 and 4 form the first cluster, since they are the closest two points
- Now we consider various options for finding distance between these points (1 and 4) and the remaining ones (2 and 3)

Linkage example – Complete (max)

Distance between points

	1	2	3
2	11.5		
3	16.7	18.2	
4	9.5	20.5	16

- For the Complete linkage we find the maximum distance between the cluster and the candidate point
- Point 3 is selected, since it is closest under this criteria

	Distance from 1	Distance from 4	
Point 2	11.5	20.5	20.5
Point 3	16.7	16	16.7

Linkage example – Single (min)

Distance between points

	1	2	3
2	11.5		
3	16.7	18.2	
4	9.5	20.5	16

- For the Single linkage we find the minumum distance between the cluster and the candidate point
- Point 2 is selected, since it is closest under this criteria

	Distance from 1	Distance from 4	
Point 2	11.5	20.5	11.5
Point 3	16.7	16	16
Linkage example – Average

Distance between points

	1	2	3
2	11.5		
3	16.7	18.2	
4	9.5	20.5	16

- For the Average linkage we find the mean distance between the cluster and the candidate point
- Point 2 is selected, since it is closest under this criteria

	Distance from 1	Distance from 4	
Point 2	11.5	20.5	16
Point 3	16.7	16	16.35

Dendograms

- Depending on the metric used to measure distance between clusters (Euclidean, etc.) and a linkage metric used (simple, etc.), the height of a branch indicates those observations linked by the branch have a distance from each other less than or equal to the height of the branch.
- Euclidean distance between members no greater than height of branch, using complete linkage
- Can 'cut' the tree at any given height based on how close we require the members to be.
- If we have our clustering based on Euclidean distance, using a complete (max) linkage, and we cut at a given height, we can say that the maximum Euclidean distance to all other members of the cluster is less than the cut point.
- The longer this distance is between changes in clusters, the more distinct the groupings

Error-based clustering

- Error-based clustering is equivalent to standard clustering (Euclidean) if the errors associated with all data points are the same, and if the errors of variables of a data point are the same and uncorrelated.
- Mahalanobis distance
 - Used to find distance from a distribution to a point
 - Transform variables into uncorrelated variables
 - Set their variances equal to 1
 - Calculate simple Euclidean distance
 - Tie in with Principal Components

- Can be extended to distance between two clusters - sum of Sigmas