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Introduction
What is Clustering?

> A cluster is a group of similar objects

> Clustering is an unsupervised learning
technique: No need to define the groups in

advance

> It is essential to assess the usefulness and

meaning of the identified groups

Munich RE =

Hubble Spies Glittering Star Cluster in Nearby Galaxy

Source: https://www.nasa.gov Image Credit: ESA/Hubble & NASA
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Introduction
Publications on Clustering

» Cluster Analysis has
grown rapidly, especially
as computer software has
become more readily
available

CLUSTER
ANALYSIS

MARK S. ALDENDERFER
ROGER K. BLASHFIELD
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Munich RE =
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Handbooks of Modern
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Handbook of
Cluster Analysis
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Introduction Munich RE =
Why Clustering?

> What questions could be answered with cluster analysis?

= Exploratory analysis
= Test the data homogeneity
=  Find a benchmark

> What kind of data can be clustered?

=  Segments, contracts, claims...
= Counties, regions...
= Loss development patterns, loss ratios, severity, frequency, etc.



Introduction
What Does Reserving Data Look Like?

> Text book example

Cluster Analysis of General Liability Claims
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Source: Associates in Data Analytics (AIDA) 181 textbook
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=  One or two dimensions
= No outliers
= Distinct clusters



Introduction

What Does Reserving Data Look Like?

> Real data example

Multidimensional observations

Overlapping clusters

Outliers and noise are present

Paid ATA Loss Development Factors

;;;;;

ATAT?
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Munich RE =

Schedule P Example:

CAS Schedule P data for Loss Reserving [10]
3 lines: CAL, PPAL,WC

20 observations per line

Each observation represents a company

Paid ATA Loss Development Factors

Line 12 24 36 48 60 72

CAL 1.87 132 120 1.04 1.04 1.01
CAL 1.99 142 123 1.08 1.03 1.02

PPAL | 226 121 1.07 1.02 1.01 1.00
PPAL | 1.78 1.20 1.06 1.04 1.02 1.01

WC 222 134 116 1.09 1.06 1.05
WC 247 144 121 110 1.06 1.03




Agenda

>

Visualization of Multidimensional Data

Statistical Challenge
Why it is Important to Visualize Data
Dimension Reduction Techniques
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Visualization Munich RE
Statistical Challenge

> “Ahigh dimensional space is a lonely place”
Bernhard Scholkopf

Randomly generated 100 points in 1D and 2D
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> “...Thus, it is often said, “in high dimensional spaces, distances between points
become relatively uniform.” In such cases, the notion of the nearest neighbor of a
point is meaningless....” [8] .



Visualization Munich RE

Why Is It Important to Visualize Data?

> Choose the most appropriate clustering model for your data
= Are the clusters spherical? (K-means)
= Are the clusters overlapping? (Fuzzy clustering, Gaussian Mixture Models)
= Noise points (Density-based clustering)
= Select the number of clusters

» Explain clusters and communicate results
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Visualization
Why Is It Important to Visualize Data?

» Validate results
Original data

Munich RE

K-means result
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Visualization
Dimension Reduction Techniques

>

Principal Component Analysis (PCA)

Munich RE

13
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PCA Munich RE =
Principal Component Analysis

» PCA stretches and rotates data with the goal to derive the best
possible k-dimensional representation of the Euclidean distance among
objects.

0.0 0.5 1.0

Second principal component

-0.5

-1.0

T T T T T
-1.0 -05 0.0 05 1.0
First principal component

Source: The Elements of Statistical Learning 14
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PCA Munich RE =
Principal Component Analysis

> Think about viewing a galaxy from “above” rather than the side: what angle do
we want in order to get the most understanding of the “shape” of the galaxy?

Source: https://www.nasa.gov/feature/goddard/2017/a-new-angle-on-two-spiral-galaxies-for-hubbles-27th-birthday;
Credits: NASA, ESA, and M. Mutchler (STScl)




PCA
Schedule P example: Visualization

PCA ATA: 24-72

7] .
21 ®
®
™
31
§ ® % S o*
g R U Y4
-
* * -0' f!.
1 &
.
® s @

PC1 (B7%)

Munich RE =




PCA

Schedule P example: Visualization - LOB

PCA ATA: 24-72
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® caAL
® PrPAL
WC
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PCA
Interpretation

» PCA provides an opportunity for interpretation

Percent of Ultimate
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PC1 captures the mean loss development

PC2 indicates a change in the loss curve shape
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Munich RE =

Second Principal Component

Flatter
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PCA

PC1 Interpretation
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PCA ATA: 24-72
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Munich RE =

PC1 Interpretention
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PCA
PC2 Interpretation

PCA ATA: 24-72
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Visualization
Dimension Reduction Techniques

>

Data Transformation (Curve Fitting)

Munich RE

21
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Data Transformation Munich RE =
Sherman Curve

> Sherman proposed a curve that fits to the typical LDF pattern

Shape
Scale
t+c
Sherman Curve Fitted LDFs Sherman Curve Parameters
1.98 M 56
\
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1.58 5
)
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M 48
1.38 Shape = 49 5
Scale =5.4 48
1.18 4.4
_____ 4.2
0.98
24 36 48 80 72 4
30 35 40 45 50 55

—MedMal = —MedMal-Fit
Scale
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Data Transformation Munich RE
How to Estimate the Parameters?

» Sherman recommends estimating the parameters by using log-linear regression
= All actual age-to-age factors must be strictly greater than 1
= Fitting a logged value rather than actual amounts

» GLM to the rescue!

= Apply GLM with log-link on actual data

23
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Shape

Data Transformation
Schedule P example

Sherman fit on LDFs for ages 24-72

0.0 05 1.0
Scale
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Data Transformation Munich RE
Pros & Cons

> Allows comparison of loss development patterns of different sizes

> Does not work well for flat curves

» The focus is on the fit, not on maintaining the distances between points

25



Data Transformation Munich RE
Another Schedule P Example

Reported ATA Reported ATA
24 36 48 60 72

1.35

1989 1.27 114 1.05 1.03 0.97
1990 1.35 1.14 1.06 1.01 099 **
1991 1.48 111 1.04 1.02 1.01| s
1992 1.23 111 1.02 100 101]|
1993 1.18 1.06 1.02 1.01 1.03 e ———

1994 1.14 1.06 1.03 1.02 R as 0 ”
1995 1.13 1.08 1.02 1989 == 1990 1991 1992 1993 1994 1995

Source: CAS Schedule P Reported LDF — CAL
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Shape
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Data Transformation Munich RE
Another Schedule P Example

Sherman fit on LDFs for ages 24-72

19918 Reported ATA
1992--41990 @
N 1939% 135
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Scale
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Agenda Munich RE =

»  Clustering Methods Applied to Overlapping Groups

= K-means
= Fuzzy Clustering
= (Gaussian Models

28



Clustering Methods Applied to Overlapping Groups Munich RE =
K-means
Iteration 1
» K-means is simple, fast and efficient °’ o,

> How does K-means work?
= [nitiate the centroids
= Assign points to the closest centroid

= Recalculate new centroid

= lterate until no point left to be reassigned | L e, 3

> In R, use kmeans() from package “stats”

®



Clustering Methods Applied to Overlapping Groups

K-means

> K-means does not perform well when:

= There are no natural distinct clusters =

= Clusters are of different size

= Clusters are not roughly spherical

= Qutliers exist

PC2 (15%)

74

PCA ATA: 24-72

Munich RE =

®

2
PC1 (87%)
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Clustering Methods Applied to Overlapping Groups Munich RE
Fuzzy Clustering: Schedule P Example

LOB

Fuzzy 1 Fuzzy 2 Fuzzy 3

> Soft (a.k.a. fuzzy) clustering allows CAL 18% 14%,
each data point to belong to more CAL 27% 6%
than one cluster CAL 37% 14%

o o

» Membership grades are assigned CAL| 31% o%

to each data point PPAL| 2% 1%
PPAL 9% 3%

> Results are obtained using R PPALl 4% 20/,

function fanny() from the package PPAL| 2% 1%

cluster 2%
3%
4%

4%
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Clustering Methods Applied to Overlapping Groups Munich RE =

Gaussian Mixture Models: Motivation

>

Probabilistic clustering:

Each cluster is represented by a distribution

All observations are described by a mixture of these distributions

Well defined mathematical structure allows for:

o Probabilistic assignments to clusters (soft clustering)

o Generation of new points from a given cluster

o Hypothesis testing

Allows for overlapping, non-spherical clusters, and clusters with varying size

Danger of overfitting and inappropriate distribution selection

32
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Clustering Methods Applied to Overlapping Groups Munich RE
Gaussian Mixture Models: PC1 Density

» One dimensional example: using PC1 of our Schedule P example

» Fit a Gaussian distribution for each cluster

First Principal Component
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Clustering Methods Applied to Overlapping Groups Munich RE
Gaussian Mixture Models: Schedule P Example

> GMM work well for overlapping, non-spherical
clusters, and clusters with varying size

> Results were obtained using R package
“Mclust”. Multiple other options are possible
(ex: mixtools, Rmixmod...)

> Bayesian Information Criterion is used to
determine the number of clusters.
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Agenda Munich RE =

Outliers and Noise

= Recognizing outliers and noise points

= Dealing with outliers and noise points

35



Qutliers and Noise Points
Recognizing Outliers and Noise points

> Types of outliers / noise
= Points that are very different from the rest
= Points that are too small
= Erroneous points

> Recognising Outliers and Noise points:
= Visualization of the data

®
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Outliers and Noise Points
ISO Example

Munich RE

» ISO Commercial Auto patterns by ]
State (51 obs. incl. Puerto Rico)

» Reported Loss and ALAE for AYs
2013-2017

» Percentage of Ultimate Loss — ;';E
centered and standardized -

How many clusters are there and
what is the Explanatory Variable?

-5.0

This slide includes copyrighted material of Insurance Services Office, Inc. with its permissions

-25

D.IU
PC1 (74%)

25
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Outliers and Noise Points Munich RE =
ISO Example
> 2-3 clusters i

N

» One with slower pattern than the other
» One more spread than the other

Percent Reported Loss and ALAE

=

o
0.95 g

a 07
0.85
0.75
0.65 ]
0.55

0.45 (i)
1st 2nd 3rd Ath Sth
! ' Faster Slower
e[| o \\\/

This slide includes copyrighted material of Insurance Services Office, Inc. with its permissions 38



Outliers and Noise Points Munich RE =
ISO Example

PCA

» Noticeable differences in the patterns |®
of the states that have adopted No-
Fault auto insurance laws

» Most “No-Fault’ states have slower
patterns

clust

@ roFaut
QO 1ot

PC2 (13%)

Faster Slower

This slide includes copyrighted material of Insurance Services Office, Inc. with its permissions
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Outliers and Noise Points Munich RE =
ISO Example —\Weights

PCA

» The weight for each state is based o

on the rank of the average ultimate
loss for AYs 2013-2017

» Natural clusters become even 1
more clear

PC2 (13%)

-5.0 —2I.5 U.IU 2.I5 E.IEI
PC1 (74%)

This slide includes copyrighted material of Insurance Services Office, Inc. with its permissions e



Qutliers and Noise Points Munich RE =
Recognizing Outliers and Noise points

> Recognising Outliers and Noise points:

= Increase the number of groups to detect and isolate small clusters

= Fuzzy clustering: outliers are “equally remote” to all clusters. They will have
similar membership to all clusters

41
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Outliers and Noise Points Munich RE
How to deal with them?

> Remove outliers before clustering

> Partial clustering algorithms that leave noise/outlier points outside the clusters
(DBSCAN)

> Some methods are more robust than others when outliers are present (ex: K-
medoids)

> Clustering with weights

42
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Outlier and Noise Points Munich RE
K-Medoids

> Similar to K-means but uses real data points as centroids for the clusters

» K-medoids is minimizing the distance to the “median” of the cluster and this

makes it more robust.
> Its robustness is unlikely to work for:
> Multi-dimensional space

» Many outliers points

43
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Outliers and Noise Points Munich RE =
Clustering with Weights

» Easy way to introduce weights in the clustering model is to repeat several times
the more important points

> 1SO example: Repeat the observation based on the rank of their premium or
ultimate values

= TX s the largest of 51 observations
=>repeat TX values 51 times

= PR is the smallest
=>PR will be in the data only once

a4



Outlier and Noise Points Munich RE =
Clustering with Weights

Kmeans with repetitions

Kmeans
FR ER
24
1 o
=
5
a 27
" ®
5.0 25 0.0 25 5.0 -5.0 2.5 0.0 2.5 5.0
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This slide includes copyrighted material of Insurance Services Office, Inc. with its permissions
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Agenda Munich RE =

Practical Considerations

n Correlations between LOB

46



Practical Considerations Munich RE
Correlations Between Lines of Business

» Compare the first principal component for two different lines, written by the same
company

> Schedule P data for loss reserving posted on the CAS website
= 54 companies with CAL and GL lines
= 20 companies with WC and GL lines
= Data is from 1988 to 1997

> Check if historical dependency is preserved in more recent years

47
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Practical Considerations
First Principal Component for WC/GL

> PCA on Reported loss
1988 - 1997

@2@

(9 FL%; 04
=

General Liability
General Liability

Munich RE =

1998 - 2007
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Note: bubble size corresponds to a company’s average yearly premium volume
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Workers Compensation
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Practical Considerations Munich RE
First Principal Component for CAL/GL

> PCA on Reported loss
1988 - 1997 1998 - 2007

05—

General Liability
General Liability

1- .
Commercial Auto Liability Commercial Auto Liability

Note: bubble size corresponds to a company’s average yearly premium volume
49
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Agenda Munich RE =

Practical Considerations

= |dentifying drivers of loss development

50



Practical Considerations
Visualization: Finding the Right Variables

» Schedule P & SNL company
profile

> GL paid development
= 15 Farm bureaus
= 14 Specialty
= 37 Regional

> Loss data is from 2009 to
2019

Second Principal Component

Munich RE
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Practical Considerations Munich RE
Visualization: Finding the Right Variables

100% 100%
90% %0%
80% 80%
70% 70%
60% 60%
—Farm Bureau = Farm fureau
o —Regional o ::pgut:,
40% —Specialty 40%
30% 7 / 30%
20% 20%
10% 10%

12 24 36 48 60 72 84 96 108 120

0%
12 24 36 48 60 72 84 96 108 120
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Conclusion Munich RE

®

Key Takeaways

>

Clustering techniques help us obtain a better understanding of the loss
development:

= Explore the structure of data
= Go beyond “just” practical grouping of data
= |dentify variables impacting the development

Each method has strengths and weaknesses

= Look for robustness between methods

53
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Cluster Analysis Munich RE
K-means Algorithm

> K-means partitions the data in a user-specified number of clusters (K), in which
each observation belongs to the cluster with the nearest mean

200
1

> No definitive answer for selecting K

= Scree plot: locate the sharpest
drop in within-cluster sum of
squares

150
1

100
|
o
o

Total within-clusters sum of squares

/

O—___'O
—_
T oo ——

T T T T T
2 4 6 8 10

Number of Clusters
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PCA
How to perform a PCA?

Data
(scaled and centered)

Munich RE

J

Correlation
matrix

J 1

Eigenvalues &
Eigenvectors

Data
(scaled and centered)

] X [ Eigenvectors ] =

Principal

Components

57
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Clustering Methods Applied to Overlapping Groups Munich RE =
Fuzzy Clustering

> Fuzzy clustering is an iterative process that optimizes a cost function (similar to K-

means) and at each iteration recalculates a membership function.

> Fuzzy: min: Y, Y5e_ ultdi  where uyj = ——p
ZC d_m
k=1%k

> K-means: min: Y, Y¢_,d2
> dZ.: squared Euclidean distance
> m.: controls the fuzziness (m>1, m—1 increases the crispiness of the cluster)

> U;,. membership degree of the i-th object to the k-th cluster

58
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Clustering Methods Applied to Overlapping Groups Munich RE =
Gaussian Mixture Models: The Theory

> Assume that the density of the data (y) is described by a mixture of number (g) of
component densities f(y) in some unknown proportions ().

pdf = i m; f,(¥) Zﬂx

i=1 |
> For clustering, g will be the number of clusters < E. —— )

> Calculate the posterior probability (Bayes Theorem) that an observatlon Y belongs to
the i-th component of the mixture:
mifi(¥})
W) = T
> If we assume that the data in the clusters is independent and normally distributed,
we can use a Gaussian Mixture Model (GMM).

59
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Outliers and Noise Points Munich RE =
Recognising Outliers: Large Number of Clusters
3 Clusters 6 Clusters
Kmeans Kmeans
& L]
2 2
(8] @
11 11
% e
& S .90
11 1 O
-5.0 —2I.5 U.I i 2.I5 5 .IU -5.0 —2I.5 2.I5 5.IU
PC1 (T4%) .

PC1 (74%)
This slide includes copyrighted material of Insurance Services Office, Inc. with its permissions



Outlier and Noise Points Munich RE =

Recognising Outliers: Fuzzy Clustering
PCA

> Outliers are “equally remote” to all P
clusters.

m=2 | Fuzzy1 Fuzzy2 Fuzzy3
PR | 34% 45% 21%
ND | 29% 27% 44%
PA 12% 10% 77%

\\fz (13%)

-5.0 -EI.E D.IU 25
PC1 (74%) .

This slide includes copyrighted material of Insurance Services Office, Inc. with its permissions



Practical Considerations Munich RE =
What Are the Drivers of Loss Development?

> ldentify potential predictors
= Business focus (Commercial, Personal, Reinsurance)
= QOwnership (Stock, Mutual, Others)
= Distribution channel (Broker vs Non-Broker)
= Geography (Regional vs National)

> Schedule P GL data & SNL company profile
= Top 100 insurers by market share
= Loss data is from 2008 to 2017

®



Practical Considerations

Visualization: Are the Explanatory Variables Logical?

PCA on GL reporting lag
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Practical Considerations

Visualization: Are the Explanatory Variables Logical?

PCA on GL reporting lag

PC2 (15.9%) ,
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Munich RE
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Practical Considerations
Visualization: Are the Explanatory Variables Logical?

PCA on GL reporting lag Faster than average
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Practical Considerations
Visualization: Are the Explanatory Variables Logical?

PCA on GL reporting lag Faster than average
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R Packages Munich RE

Important R packages:

Package “stats” (kmeans, prcomp,...) - https://stat.ethz.ch/R-manual/R-devel/library/stats/html/00Index.html

Package “cluster” (pam, fanny,...) - https://cran.r-project.org/web/packages/cluster/cluster.pdf

Package “factoextra” (get_eigenvalue, fviz_cluster,...) - https://cran.r-project.org/web/packages/factoextra/factoextra.pdf
Package “ggplot2” - https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf

Package “mclust’(mclust) - https://cran.r-project.org/web/packages/mclust/mclust.pdf

YV VVVYY
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