CAS Casualty Loss Reserves Seminar
September, 2019
Beyond Numerology- Practical LDF
Interpolation

Dr. Ira Robbin
Southern Connecticut State University
2. WSouthern Connecticut State University

2

CAS Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conaucted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding - expressed or implied - that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.
\% IV Southern Comecticut State University
3

Disclaimers

- Nothing in this presentation should be taken as a statement of the opinion of current or prior clients or employers.
- No liability whatsoever is assumed for any damages, either direct or indirect, that may be attributed to use of the methods discussed in this presentation.

CLRS LDF Interpolation

Quarterly LDF Interpolation - Agenda

- Introduction: Numerology vs Actuarial Utility
- From Quarterly LDF to Quarterly IBNR
- Prior AY - IBNR Survival Factors
- Current AY - BF IBNR
- Exercises deriving IBNR
- Why Interpolate LDF?
- Alternative: derive LDF by Q from Qtrly triangles
- Interpolation Properties
- Inherited Monotonicity
- Equilibrium IBNR Stability
- Monotonic IBNR Run-off Property

5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6

LDF Interpolation: Annual to Qtrly \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
(2) So Southern Connectient State University

7

CLRS LDF Interpolation

8

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

10

CLRS LDF Interpolation

- Need quarterly IBNR to generate quarterly results.
- Quarterly projection of IBNR needed for planning
- Need to start with year-end AY IBNR for all prior AY
- Quarterly LDF can be used to derive Quarterly IBNR

11

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

CLRS LDF Interpolation

 Ira RobbinChange in IBNR by Quarter

	Age			Change in IBNR by Quarter				
AY			Year End	Q1	Q2	Q3	Q4	Q5
2019				235	207	186	173	(81)
2018	12			(81)	(79)	(74)	(66)	(115)
2017	24			(69)	(56)	(43)	(32)	(36)
2016	36			(71)	(48)	(31)	(50)	0
2015	48			0	0	0	0	0
Current AY Change in IBNR Prior AY Change in IBNR			-	235	207	186	173	(81)
			.	(221)	(183)	(148)	(148)	(151)
All AY Total C		Change in IBNR	-	13	24	38	25	(231)

8) Wouthern Comnecticut State University

14

\qquad
\qquad
\qquad
15

Derivation from Quarterly Triangles

- Quarterly data leads directly to quarterly LDF
- More oscillations - greater need for smoothing
- Four times as many selections to be made
- Each cell has $1 / 2$ the volume of incremental loss on average
- Each cell is less credible
- No need to interpolate
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Perspective on Interpolation

- Interpolated Quarterly LDF from Annual triangles are useful to have even if only as a standard of comparison.
- Interpolates should obey reasonable properties.
- Aesthetic appeal of interpolation formulas is not enough.
- Big Idea: Defining desirable properties of LDF Interpolation Methods by examining behavior of the resulting IBNR.

17

\qquad

Prior AY IBNR Derivation

- Start with separate AY IBNR at year end. \qquad
- Survival Factor Method
- Apply Qtrly Survival Factors to compute how much IBNR "survives" by qtr.
- Use LDF to derive Qtrly IBNR Survival Factors
\qquad
\qquad
\qquad
\qquad

Quarterly IBNR Survival Factor Formula

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 20

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
21

LDF INTERPOLATE EXAMPLES

- Linear
- Geometric
- Inverse Power
- Linear on PCT of ULT \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 24

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
26

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 27

ATU LDF and PCT ULT for Exercise 3

\qquad

CLRS LDF Interpolation

Tail \%	Age	Tail\%	Tail \% Quarterly Interpolates							
AY	as of	12/31/2018	01	02	03	04	05			
2019					as	Q4	as	,	a7	8
2018	12	80.00\%	71.91\%	64.00\%	56.64\%	50.00\%	38.52\%	29.20\%	22.03\%	16.67\%
2017	24	50.00\%	38.52\%	29.20\%	22.03\%	16.67\%	7.95\%	4.50\%	1.93\%	0.00\%
2016	36	16.67\%	7.95\%	4.50\%	1.93\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
2015	48	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculation WalkThru

- AY 2018 Q2: IBNR= IBNR YE * Survival factor=
$=800 * 80 \%=640$
- AY 2019 Q2: IBNR = Ult Loss * (Earned Exposure PCT- Loss PCT ULT) \qquad $=1200 *(50.0 \%-5.9 \%)=529$ \qquad
\qquad
\qquad
\qquad

CLRS LDF Interpolation Ira Robbin

32

\qquad

33

Review of Example

- IVP Method:
- Is the spike up in IBNR runoff each $1^{\text {st }}$ quarter versus the $4^{\text {th }}$ quarter of the
prior year a concern?
- A possible example of algorithmic induced seasonality
- PCT ULT linear interpolation
- Large jumps each year
- Always decreasing runoff.

CLRS LDF Interpolation

\qquad
\qquad

35

Inherited Monotonicity of ATA LDF

- Interpolated Quarterly ATA LDF do not violate the property of inherited montonicity if they don't oscillate any more often than the original Annual Evaluation ATA LDF. \qquad
- "No extra bumps!" rule.

Inherited Monotonicity Violation

Annual Evaluation ATA LDF							
12-24				24-36			
1.5000				1.2000			
Quarterly Evaluation ATA LDF							
12-15	15-18	18-21	21-24	24-27	27-30	30-33	33-36
1.1855	1.1200	1.0800	1.0460	1.0700	1.0500	1.0400	1.0270

\qquad

CLRS LDF Interpolation Ira Robbin

Inherited Monotonicity Violation

ใ2. Wiv Iill Southern Comecticut State University ${ }^{38}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 38

Equilibrium IBNR Stability

- Once in equilibrium, a book of business with same loss ratio and same earned premium each Quarter should have stable IBNR.
- No reason for bouncing around in equilibrium.
- Violation produces algorithmic-induced seasonality.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Violation of Equilibrium IBNR Stability

IBNR by Qtr in Equilibrium					
Evaluation	$12 / 31 / \mathrm{y}-1$	$3 / 31 / \mathrm{y}$	$6 / 30 / \mathrm{y}$	$9 / 30 / \mathrm{y}$	$12 / 31 / \mathrm{y}$
Current AY	-	180	500	600	700
Prior AY	1,000	800	560	360	300
All AY Total	1,000	980	1,060	960	1,000

\qquad
\qquad
\qquad
\qquad
\qquad

CLRS LDF Interpolation

Violation of Equilibrium IBNR Stability
 41

Monotonic Declining Prior AY Equilibrium IBNR Runoff

- Once in equilibrium, prior AY IBNR Run-off should decline each quarter
- Assumes LDF pattern with no expected negative development.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
42

Violation of Monotonically Declining Prior AY Equilibrium IBNR Run-off

IBNR by Qtr in Equilibrium					
Evaluation	$12 / 31 / y-1$	$3 / 31 / y$	$6 / 30 / y$	$9 / 30 / y$	$12 / 31 / y$
IBNR - Prior AY	1,000	800	560	360	300
Prior AY IBNR Runoff		200	240	200	60

(28) Southern Connectiant State University

43

CLRS LDF Interpolation

Violation of Montonically Declining Prior AY Equilibrium IBNR Run-off

Southern Connecticut State University
44

Conclusions and Questions

- For actuarial purposes, the merit of an interpolation method should be judged on whether it leads to well-behaved IBNR.
- Interpolation Algorithms can give rise to algorithmic induced seasonality.
- Acceptable interpolation methods should satisfy the three properties - Inherited Montonicity
- Equilibrium IBNR Stability
- Montonically Declining Equilibrium IBNR Runoff
- Deriving interpolates for each year separately and ignore neighboring blocks is generally not sufficient.

