
Introduction
to Bayesian

MCMC
Models

Glenn Meyers

Introduction

Bayesian

MCMC

Metropolis
Hastings

Loss Reserves

Stan

Convergence

Boxplots

Choosing

Models

Folk Theorem

The End

Introduction to Bayesian MCMC Models

Glenn Meyers

Presentation to Casualty Loss Reserve Seminar
Austin Texas

September 18, 2019

Glenn Meyers Introduction to Bayesian MCMC Models



Introduction
to Bayesian

MCMC
Models

Glenn Meyers

Introduction

Bayesian

MCMC

Metropolis
Hastings

Loss Reserves

Stan

Convergence

Boxplots

Choosing

Models

Folk Theorem

The End

Outline of Workshop

1 Theory behind Bayesian Markov Chain Monte Carlo
(MCMC) models

2 An Example with the Metropolis Hastings Algorithm
3 The CRoss Classified (CRC) Stochastic Loss Reserve

Model
The “rstan” R package
Model convergence statistics
Graphical model diagnostics
Changing the prior distribution
Model comparison with the “loo” R package

4 The Changing Settlement Rate (CSR) Model
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Attendee Assumptions

Completely new to Bayesian MCMC
Familiarity with R
Familiarity with RStudio - or equivalent 1

Prior to the session, attendees should install the packages,
“rstan”, “loo”, “data.table” and “ChainLadder.”

Installing “rstan” is a little more involved than installing
other packages on CRAN. I suggest going to
https://mc-stan.org and follow the instructions there
to install “rstan.”
The scripts that call Stan will read the file
“Intro comauto pos.csv.” You should code the “setwd”
command accordingly.

One can test the installation by running the “Intro CRC.R”
script included in the Course Materials directory.

1The in-session examples will use RStudio, but one with their own
favorite R editor should be able to run the examples.
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Bayesians vs. Frequentists

Given the model X ∼ f (X |θ)
Given the set of observations x .

Frequentists test the hypothesis θ = θ0.
Bayesians calculate the posterior distribution f (θ|x).

f (θ|x) = f (x |θ) · π(θ)∫
ϑ

f (x |ϑ) · π(ϑ) · dϑ

The issue — What is the prior distribution, π(θ)?
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The Philosophical Issue

Bayesians select π “subjectively” according to prior
opinion.
Frequentists respond by saying that conclusions should be
dictated solely by looking at “the data.”
Some Bayesians respond with “noninformative” priors.

Is there such a thing?
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The Practical Issue — Can we do the calculations?

For most of the 20th century, the frequentists were
winning.

Calculations were easy with quadradic forms needed for the
normal distributions.
The General Linear Model (PROC GLM in SAS).
As computers and numerical analysis progressed we got
the Generalized Linear Model (PROC GENMOD in SAS).

Now the Bayesians are winning - with MCMC.
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The Problem with Bayesian Analysis

Let θ be an n-parameter vector — e.g. development
factors.
Let X be a set of observations — e.g. a loss triangle.

f (θ|x) = f (x |θ) · π(θ)∫
ϑ1

· · ·
∫
ϑn

f (x |ϑ) · π(ϑ) · dϑ

f (X |θ) is the likelihood of X given θ.
π(θ) is the prior distribution of θ.
f (θ|X ) is the posterior distribution of θ.

Calculating the n-dimensional integral is intractable.
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A New World Order

This impasse came to an end in 1990 when a
simulation-based approach to estimating posterior
probabilities was introduced.
Sampling Based Approach to Calculating Marginal
Densities

Alan E. Gelfand and Adrian F.M. Smith
Journal of the American Statistical Association, June 1990
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Markov Chains

Let Ω be a finite state with random events

X1,X2, . . . ,Xt , . . .

A Markov chain P satisfies

Pr(Xt = y |Xt−1 = xt−1, . . . ,X1 = x1) = Pr(Xt = y |Xt−1 = xt−1)

The probability of an event in the chain depends only on
the immediate previous event.
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The Markov Convergence Theorem

There is a branch of probability theory, called Ergodic
Theory, that gives conditions for which there exists a
unique stationary distribution, π, such that

Pr(y |Xt−1) −→ π(y)

as t −→∞
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The Metropolis Hastings Algorithm
A Very Important Markov Chain.

1 Time t = 1: select a random initial position θ1 in
parameter space.

2 Select a proposal distribution p(θ|θt−1) that we will use to
select proposed random steps away from our current
position in parameter space.

3 Starting at time t = 2: repeat the following until you get
convergence:

At step t, generate a proposal θ∗ ∼ p(θ|θt−1).
Generate U ∼ uniform(0,1)
Calculate

R = f (θ∗|x)
f (θt−1|x) ·

p(θt−1|θ∗)
p(θ∗|θt−1)

If U < R then θt = θ∗. Else, θt = θt−1.
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Dodging the Intractable Integral

R = f (θ∗|x)
f (θt−1|x) ·

p(θt−1|θ∗)
p(θ∗|θt−1)

R =

f (x |θ∗)·π(θ∗)∫
ϑ1

···
∫

ϑn

f (x |ϑ)·π(ϑ)·dϑ

f (x |θt−1)·π(θt−1)∫
ϑ1

···
∫

ϑn

f (x |ϑ)·π(ϑ)·dϑ

· p(θt−1|θ∗)
p(θ∗|θt−1)

The integral
∫
ϑ1

· · ·
∫
ϑn

f (x |ϑ) · π(ϑ) · dϑ cancels out!
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The Metropolis Hastings Algorithm Restated

1 Time t = 1: select a random initial position θ1 in
parameter space.

2 Select a proposal distribution p(θ|θt−1) that we will use to
select proposed random steps away from our current
position in parameter space.

3 Starting at time t = 2: repeat the following until you get
convergence:

At step t, generate a proposal θ∗ ∼ p(θ|θt−1).
Generate U ∼ uniform(0,1)
Calculate

R = f (x |θ∗) · π(θ∗)
f (x |θt−1) · π(θt−1) ·

p(θt−1|θ∗)
p(θ∗|θt−1)

If U < R then θt = θ∗. Else, θt = θt−1.
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The Relevance of the
Metropolis Hastings Algorithm

Defined in terms of the conditional distribution

f (X |θ)

and the prior distribution

π(θ)
The limiting distribution is the posterior distribution!

Code f (X |θ) and π(θ) into a Markov chain and let it run
for a while, and you have a large sample from the posterior
distribution.
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The Relevance of the
Metropolis Hastings Algorithm

The theoretical limiting distribution is the same, no matter
what proposal distribution, p(θ|θt−1), is used.

But as we shall see, a good choice of the proposal
distribution will speed up convergence.
There is no fundamental limit on the number of
parameters in your model!
The practical limit is within range of stochastic loss
reserve models.
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A Short History of MCMC

Originated with the study of nuclear fission.
Enrico Fermi, John von Neumann, Nicolas Metropolis and
Stanislaw Ulam.
Developed the Metropolis algorithm.

Keith Hastings (1970) recognized the potential of the
Metropolis algorithm to solve statistical problems.
Simulations were not readily accepted by the statistical
community at that time.
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A Short History of MCMC

Gelfand and Smith (1990) pulled together the relevant
ideas at a time when simulation was deemed OK.

Seized upon by scientists in other fields.
Used the Gibbs sampler (A one parameter at a time special
case of Metropolis Hastings algorithm).

Statisticians in the UK started the BUGS project to
produce software for MCMC.

Bayesian inference Using the Gibbs Sampler
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Evolution of MCMC Software

WinBUGS (Original — now discontinued)
OpenBUGS (Continuation of WinBUGS)

Designed mainly for the Windows operating system.
JAGS — Just Another Gibbs Sampler

Originated by Martyn Plummer.
Runs on multiple operating systems.
Callable from R (“runjags” package.)

Stan (in honor of Stanislaw Ulam)
Stan team led by Andrew Gelman at Columbia University.
Runs on multiple operation systems.
Callable from R (“rstan” package) and other languages,
e.g. Python and Matlab.
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Lognormal Example using Metropolis Hastings

Given the data below, estimate the cost of a 15,000 xs of
10,000 layer.
Find predictive distribution of losses in that layer.
Fit a lognormal distribution with

log(mean) = µ
Prior distribution — µ ∼ normal(8, 1)
log(standard deviation) = 1

484 603 631 1189 1229
1407 1565 1894 2140 2244
2262 2654 2672 4019 4318
5015 5354 5464 5598 6060
6500 6747 9143 12782 18349
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Introductory Example Coded in R

Open the file “MH Intro with Lognormal.R” in RStudio
Exploratory runs

“Tune” the proposal distribution”
Test convergence by running two chains and comparing
results
“Thinning” the chains can guarantee convergence.

Translate the posterior distribution of parameters into
statistics of interest to actuaries.
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Takeaways from Introductory Example

We need to run multiple chains to test convergence.
Adaptation — we need to scale the proposal distribution to
get a representative sample in as few iterations as possible.
Thinning — When adaption does not work well, take
every nth iteration.

Visual inspection works fairly well with one-parameter
models. Our next model will have 29 parameters. What
do we do then?
MCMC software — e.g. Stan.
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Loss Triangle for Example — From Schedule P

Illustrative Insurer Net Written Premium

AY 1 2 3 4 5 6 7 8 9 10
Premium 5812 4908 5454 5165 5214 5230 4992 5466 5226 4962

Illustrative Insurer Paid Losses Net of Reinsurance

AY \ Lag 1 2 3 4 5 6 7 8 9 10
1988 952 1529 2813 3647 3724 3832 3899 3907 3911 3912
1989 849 1564 2202 2432 2468 2487 2513 2526 2531
1990 983 2211 2830 3832 4039 4065 4102 4155
1991 1657 2685 3169 3600 3900 4320 4332
1992 932 1940 2626 3332 3368 3491
1993 1162 2402 2799 2996 3034
1994 1478 2980 3945 4714
1995 1240 2080 2607
1996 1326 2412
1997 1413

Insurer 353 - Commercial AutoGlenn Meyers Introduction to Bayesian MCMC Models
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The CRoss Classified (CRC) Model

For Accident Year w , Development Year d
and cumulative loss Cwd :

1 logelr ∼ normal(-0.4,
√

10).
2 αw ∼ normal(0,

√
10) for w = 2, . . . , 10. Set α1 = 0.

3 βd ∼ normal(0,
√

10) for d = 1, . . . , 9. Set β10 = 0.
4 ai ∼ uniform(0, 1) for i = 1, . . . , 10.
5 Set σ2

d =
∑10

i=d ai for d = 1, . . . , 10.

Note that this forces σ2
1 > . . . > σ2

10.

6 Set µwd = log(Premiumw ) + logelr + αw + βd .
7 Then Cwd ∼ lognormal(µwd , σd ).

Glenn Meyers Introduction to Bayesian MCMC Models
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Actuarially Interesting Output

Open “Intro CRC.R” and run the script.
The MCMC output, which is of secondary interest, is a
sample of the posterior distribution parameters2.

{logelr}, {αw}, {βd} and {σd}

Of greater interest is a sample from the predictive
distribution of ultimate losses, {Uw} and
{UTot} =

∑10
w=1{Uw} where:

Uw = exp(µw ,10 + σ2
10/2)

Accident year exhibit
Predictive Distribution of the Loss Reserve
Of greatest interest — decisions (e.g. risk margin)

2The brackets {·} denote a sample of size 10,000 from the posterior
distribution, Glenn Meyers Introduction to Bayesian MCMC Models
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Taking a Sample From the Posterior Distribution

Stan — A separate software package called into R with
the “rstan” package.
The Stan script in a long character string in R.

Required block - “data”

Required block - “parameters”
Optional block - “transformed parameters”
Required block - “model”
Optional block - “generated quantities”
Need to specify output that goes back to R

The “Intro CRC.R” implementation runs 4 chains in
parallel.

Glenn Meyers Introduction to Bayesian MCMC Models
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Taking a Sample From the Posterior Distribution

Stan — A separate software package called into R with
the “rstan” package.
The Stan script in a long character string in R.

Required block - “data”
Required block - “parameters”
Optional block - “transformed parameters”
Required block - “model”
Optional block - “generated quantities”
Need to specify output that goes back to R

The “Intro CRC.R” implementation runs 4 chains in
parallel.
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the “rstan” package.
The Stan script in a long character string in R.
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Optional block - “transformed parameters”
Required block - “model”
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Remaining Questions

1 Testing convergence of the model
The “traceplot()” command
The R-Hat statistic

2 Diagnostic Plots
Standardized Residual Boxplots

3 Comparing different models for the same data
The êlpd loo statistic.
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Testing for Convergence of the Markov Chain

Trace plots of parameters show rapid convergence.
Gelman-Rubin Convergence Diagnostic

Run at least 4 chains
Let Ŵ = Within Chain Variance
Let B̂ = Between Chain Variance
Define “Potential Scale Reduction Factor” (PSRF) or
R-Hat by: √

R̂ =

√
Ŵ + B̂

Ŵ
−→ 1

Gelman and Rubin suggest that we should accept
convergence if R-Hat < 1.1

All R-Hat statistics are less than 1.01 for “Intro CRC.R”
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Standardized Residual Boxplots

The models in this paper all assume a lognormal
distribution with the parameters µwd and σd . Thus we
expect that

log(Cwd )− {µwd}
{σd}

will have a normal(0,1) distribution.
To test this graphically we split the residuals, in turn by
accident year, development year and calendar year and
plot a sample of size 200 in each “year” with the R
“boxplot” function.
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Expected Results with the R “boxplot” Function

The gray bars correspond to the interquartile range.
Ideally the bars should be centered on 0. The endpoints of
those bars should be touching the black lines representing
the interquartile range of the standard normal distribution.
Most of the remaining residuals should be between ± 2. A
few could be in the (-3,-2) or the (2,3) ranges. Very few
should be outside the ± 3 range.
Now look at the Boxplot in the current MCMC output.
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Model Selection With the “loo” Package”

Given two different models for the same data, how do you
select the “better” model?
“loo” stands for Leave One Out.
Maintained by members of the stan development team.
Vehtari, A., Gelman, A., and Gabry, J. (2015). “Efficient
implementation of leave-one-out cross validation and
WAIC for evaluating fitted Bayesian models.”
See the documentation of the “loo” package for the latest
version of the paper.
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Selecting Models Fit By Maximum Likelihood

If we fit a model, f (x |θ), by maximum likelihood, define

AIC = 2 · p − 2 · L(x |θ̂)

Where:
p is the number of parameters in the model.
L(x |θ̂) is the maximum log-likelihood of the model
specified by f .

Lower AIC indicates a better fit.
Encourages a larger log-likelihood.
Penalizes an increase in the number of parameters.
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Selecting Bayesian MCMC Models
with the LOOIC Statistic

Given an MCMC model with parameters {θi}10,000
i=1 , define

LOOIC = 2 · p̂LOOIC − 2 · {L(x |θi )}
10,000
i=1

Where
p̂LOOIC is the effective number of parameters.

p̂LOOIC = {L(x |θi )}
10,000
i=1 −

N∑
n=1
{L(xn|x(−n), θi )}

10,000
i=1

x(−n) = x1, . . . , xn−1, xn+1, . . . , xN
L(xn|x(−n), θi ) is the log-likelihood of xn from a model fit
using all data except xn.
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The ̂elpd loo Statistic

After some algebra we can see that

LOOIC = −2 ·
N∑

n=1
{L(xn|x(−n), θi )}

10,000
i=1

which we like as it favors the model with the largest
likelihood, and the smallest LOOIC, on the “holdout” data.

Some “loo” package features.∑N
n=1 {L(xn|x(−n), θi )}

10,000
i=1 ≡ êlpd loo (my preference).

“loo” does not calculate each summand in êlpd loo by
MCMC. Instead it approximates the sum using a
10,000 x N matrix of log-likelihoods.

Let’s examine the script of “Intro CRC.R”
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Some “loo” package features.∑N

n=1 {L(xn|x(−n), θi )}
10,000
i=1 ≡ êlpd loo (my preference).

“loo” does not calculate each summand in êlpd loo by
MCMC. Instead it approximates the sum using a
10,000 x N matrix of log-likelihoods.

Let’s examine the script of “Intro CRC.R”
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Adjusting the Prior Distribution

When fitting Bayesian models I initially use wide, but
proper, prior distributions. By “wide” I mean wider than I
really believe, but not outlandishly so. I like to leave room
for surprises.
Let’s look at “Intro CRC.R” and adjust the prior for the α
parameters.

Let’s discuss the “Cape Cod” model.
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Adjusting the Prior Distribution

When fitting Bayesian models I initially use wide, but
proper, prior distributions. By “wide” I mean wider than I
really believe, but not outlandishly so. I like to leave room
for surprises.
Let’s look at “Intro CRC.R” and adjust the prior for the α
parameters.
Let’s discuss the “Cape Cod” model.
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The Changing Settlement Rate (CSR) Model

The red text denotes the changes from the CRC model.

1 logelr ∼ normal(-0.4,
√

10).
2 αw ∼ normal(0,

√
10) for w = 2, . . . , 10. Set α1 = 0.

3 βd ∼ normal(0,
√

10) for d = 1, . . . , 9. Set β10 = 0.
4 γ ∼ normal(0, 0.05)
5 ai ∼ uniform(0, 1) for i = 1, . . . , 10.
6 Set σ2

d =
∑10

i=d ai for d = 1, . . . , 10.
7 Set µwd = log(Premiumw ) + logelr +αw +βd · (1− γ)w−1.
8 Then Cwd ∼ lognormal(µwd , σd ).

If γ > 0 the development “factor” is squeezed toward zero
which indicates a speed up in claim settlement. Similarly,
γ < 0 indicates a slowdown in claim settlement.
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The Changing Settlement Rate (CSR) Model

The red text denotes the changes from the CRC model.

1 logelr ∼ normal(-0.4,
√

10).
2 αw ∼ normal(0,

√
10) for w = 2, . . . , 10. Set α1 = 0.
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d =
∑10

i=d ai for d = 1, . . . , 10.
7 Set µwd = log(Premiumw ) + logelr +αw +βd · (1− γ)w−1.
8 Then Cwd ∼ lognormal(µwd , σd ).

If γ > 0 the development “factor” is squeezed toward zero
which indicates a speed up in claim settlement. Similarly,
γ < 0 indicates a slowdown in claim settlement.
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Running the CSR Model

Open “Intro CSR.R” and run it.
Let’s compare the CSR to the CRC model.
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Bad CRoss Classified (CRC) Models

For Accident Year w , Development Year d
and cumulative loss Cwd :

1 logelr ∼ normal(-0.4,
√

10).
2 αw ∼ normal(0,

√
10) for w = 2, . . . , 10. ////Set//////////α1 = 0.

3 βd ∼ normal(0,
√

10) for d = 1, . . . , 9. ////Set///////////β10 = 0.
4 ai ∼ uniform(0, 1) for i = 1, . . . , 10.
5 Set σ2

d =
∑10

i=d ai for d = 1, . . . , 10.
6 Set µwd = log(Premiumw ) + logelr + αw + βd .
7 Then Cwd ∼ lognormal(µwd , σd ).
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The Folk Theorem of Statistical Computing

When you and your computer have some spare time, run
the following models.

“Intro Bad CRC.R” - Drops the requirement that α1 ≡ 0.
“Intro Really Bad CRC.R” - In addition, it drops the
requirement that β10 ≡ 0.
You will find that these models take considerably longer to
run. But

They get good results!
A warning — The Folk Theorem of Statistical Computing
(A. Gelman 2008) says that “When you have
computational problems, often there’s a problem with your
model.”
Be wary of “Divergent Transitions.” Always investigate. A
few may be OK, but if you get a lot of them — something
is wrong.
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Three Objectives of This Session

1 Provide a high-level explanation of Bayesian MCMC using
the Metropolis Hastings algorithm.

2 Provide some hands-on experience using what I currently
consider to be the best Bayesian MCMC software.

3 Stan makes model building easy. — But as actuaries we
need to focus on model formulation and evaluation. My
objective was to get you started on those tasks.
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More MCMC

Stochastic Loss Reserving Using Bayesian MCMC Models
First Edition — January 2015
Second Edition — September 2019

Case Study - Session AR-3, Today at 11:15 AM in the
Verbena Room
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