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Monographs

Stochastic Loss Reserving Using Bayesian MCMC Models

First Edition — January 2015
Second Edition — September 2019

MCMC — Markov Chain Monte Carlo

Given data and a model, MCMC extracts a sample
(10,000) from the posterior distribution of parameters.
From the posterior sample of parameters, it produces a
posterior distribution of loss reserves.

Selected Topics Covered Here

Focus on the Changing Settlement Rate (CSR) model.
For 200 loss triangles, calculate the percentile of the
holdout (lower triangle) outcome.
The percentiles are uniformly distributed — establishing
the “reputation” of the CSR model.
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The Wolf-Miller Triangles

At the 2018 annual meeting of the Casualty Actuarial
Society, Bob Wolf and Mary Frances Miller presented a
loss reserve analysis1 on real data (scaled to maintain
anonymity). These data consisted of 16 x 16 paid and
incurred loss triangles. Features of the data included.

Rapid premium growth
Change in claims philosophy?
Underestimates of outstanding liability in previous years

The Meyers monograph triangles were selected from
Schedule P (10x10) triangles.

Triangles that reflected “obvious” operational changes
were eliminated from the set of 200 triangles.

My question — How well do the models in Meyers (2019)
work for these datasets?

1Session C-24 - Learning Lounge Case Study: Material Adverse Reserve
Development? When is it just that stuff happens?
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Stochastic Loss Reserve Models

Start with the model framework in Meyers (2019).

Cwd ∼ lognormal(µwd , σd)

where:

w =Accident Year (AY), w = 1, . . . ,W
d =Development Year (DY), d = 1, . . . ,D
Also, let c =Calendar Year (CY), c = w + d − 1

This talk will initially examine models where:

µwd = log(Premiumw ) + logelr + αw + βd · Sp(t)

The model specification for the σd parameters and the
prior distributions are the same as given in Meyers (2019).
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Stochastic Loss Reserve Models - Continued

Start with the model framework in Meyers (2019).

Cwd ∼ lognormal(µwd , σd)

This talk will initially examine models where:

µwd = log(Premiumw ) + logelr + αw + βd · Sp(t)

The Sp(t), i.e. the “Speedup”, function specifies how the
“development factors” change over the time, t, where t
could be measured by accident year, or calendar year.

This talk explores alternative Sp(t) functions in an effort
to find a model that makes better predictions of the
ultimate losses.
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Interpreting the Model Parameters

To prevent overdetermining the model, set:

α1 ≡ 0 and βD ≡ 0

Thus the expected ultimate loss, Uw for accident year w ,
is the mean of a lognormal distribution, i.e.

Uw ≡ Premiumw · exp(logelr + αw + σ2D/2) (1)

If the reported losses are near ultimate, the parameter σD
will be very small. Thus for w = 1 the ultimate loss is
approximately equal to Premium1 times the expected loss
ratio, exp(logelr). The αw parameters account for
accident year differences in the loss ratio.
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Interpreting the Speedup Function, Sp(t)

What will distinguish the models in this talk is the choice
of the Sp(t) function. Let’s discuss its meaning.

Recall that βD = 0. If Sp(1) > Sp(2) > · · · , then the
product βd · Sp(t) is moving closer to 0 as t increases.

For paid losses, this means losses are being settled more
quickly over time.

For incurred losses, this means that losses are being
recognized more quickly over time.

The reverse is true if Sp(1) < Sp(2) < · · · . That is, paid
losses are being settled more slowly over time, and
incurred losses are being recognized more slowly over time.
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Models Considered in This Talk

The CRC Model — Sp(w) ≡ 1

This model most closely resembles the standard actuarial
models that do not allow the development patterns to
change over time.

The CSR-w Model — Sp(w) = (1− γ)w−1

γ > 0 gives us a decreasing Sp(w) as the accident year, w
increases from 1 to W . γ < 0 gives us an increasing
Sp(w).

The CSR-c Model — Sp(c) = (1 + γ)C−c

γ < 0 gives us a increasing Sp(c) as the calendar year, c ,
increases from 1 to C − 1. γ > 0 gives us a decreasing
Sp(c)

We refer to the γ parameter as the speedup rate. We call
a negative speedup rate a slowdown.
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Models Considered in This Talk - Continued

The CSR-vc Model —

Sp(C ) = 1

Sp(C − i) = Sp(C − i + 1) · (1 + γC−i )

for i = 1, · · · ,C − 1

This model allows the speedup rate to vary by calendar
year.

The first two models are described in Meyers (2019). The
next two were developed during the research that led to
this talk. As we shall see, analyses of the shortcomings of
these models point to another model, the POS-vc model
that I will describe below.

The “Case Study CLRS Dist” zip folder has the R scripts
for these models.

Glenn Meyers A Case Study

https://www.casact.org/pubs/index.cfm?fa=monographs


A Case Study

Glenn Meyers

Introduction

Models

MCMC

Fit Evaluation
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The Run ID

The various model runs in this talk will be fit on a given
set of calendar years of either the paid or incurred loss
triangle.

Each model run will have an identifier with three
components.

1 The model name
2 The loss triangle used — either “P” or “I”
3 The calendar year range.

For example, the run id “CSR-vc P-7:16” means that the
CSR-vc model was fit to the paid loss triangle using data
from the calendar years from 7 to 16.
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Invoking Bayesian MCMC

As described in Meyers (2019), the Bayesian MCMC
fitting algorithm produces 10,000 equally likely parameter
sets2 {logelr}, {αw}Ww=1, {βd}Dd=1, {γ} and {σd}Dd=1.

With a sample of 10,000 parameter sets, one can use
Equation 1 to to obtain a sample of 10,000 expected
ultimate losses, {Uw}
Define {UTot} =

∑16
w=1{Uw}.

Also of interest is a sample of 10,000 possible unpaid
losses (ultimate loss less current paid loss), {Rc}, at
calendar year c where:

Rc =
c∑

w=1

Uw −
c∑

d=1

Cc+1−d ,d (2)

2The presence of brackets {·} around a parameter will indicate that it is
a sample of 10,000 values from the posterior distribution.
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Statistics of Interest

From the samples {Rc} and {UTot}, we can calculate
statistics of interest, such as:

Ultimate Loss = mean{UTot}
Ultimate Standard Error = standard deviation{UTot}
Reserve Low = 2.5th percentile of {R16}
Reserve = mean{R16}
Reserve High = 97.5th percentile of {R16}
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The Expected Log Predictive Density — êlpd loo
3

For each observation, Cwd in the loss triangle:

1 Remove that observation from the data.
2 Fit the selected model to the data in the triangle that

remains and obtain the parameter sets {θ(−wd)}
(consisting of all the {αw}s, {βd}s, etc.)

3 Calculate the average likelihood, p(Cwd |{θ(−wd)}) over
all 10,000 parameter sets.

Then
êlpd loo =

∑
w ,d

log(p(Cwd |{θ(−wd)}))

3More details about this statistic are in Section 6 of Meyers (2019).
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êlpd loo

Boxplots

P-7:16 Data

Boxplots

I-7:16 Data

Boxplots

Speedup Rates

POS Model

Boxplots

Speedup Rates

Bad Stuff?

Commentary

êlpd loo — Continued

The “loo” term refers to the “leave one out” feature in
bullet #1 above.

Since the likelihoods are calculated on holdout data, there
is no penalty for fitting models with a large number of
parameters.
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Standardized Residual Boxplots

The models in this talk all assume a lognormal distribution
with the parameters µwd and σd . Thus we expect that

log(Cwd)− {µwd}
{σd}

will have a normal(0,1) distribution.

To test this graphically we split the residuals, in turn by
accident year, development year and calendar year and
plot a sample of size 200 in each “year” with the R
“boxplot” function.
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Running the MCMC Models on Paid Data

Run ID Ult Loss Ult SE Res Low Reserve Res High êlpd loo
CRC P-7:16 1,186,501 26,857 175,749 226,573 283,168 234.94
CSR-w P-7:16 1,233,188 46,782 185,870 273,260 369,290 235.05
CSR-c P-7:16 1,280,649 53,024 227,348 320,721 439,200 236.06
CSR-vc P-7:16 1,256,436 73,076 179,454 296,510 460,811 240.85

Some observations

The CSR-vc model had the highest êlpd loo statistic.

The mean reserve estimates vary significantly by model.

The mean speedup rate is -0.0156 for the CSR-w model,
-0.0291 for the CSR-c model. For the CSR-vc model it
starts as 0.0131 and moves down to fluctuate between the
-0.012 to -0.035 range for the later calendar years.

A negative speedup rate means a slowdown in claim
settlements, and hence a higher predicted ultimate loss.
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Expected Results with the R “boxplot” Function

The following four pages contain the standardized residual
Boxplots for the four models on the P-7:16 data.

The gray bars correspond to the interquartile range.
Ideally the bars should be centered on 0. The endpoints of
those bars should be touching the black lines representing
the interquartile range of the standard normal distribution.

Most of the remaining residuals should be between ± 2. A
few could be in the (-3,-2) or the (2,3) ranges. Very few
should be outside the ± 3 range.

Now flip through the next four pages to see how close the
Boxplots are to the “ideal” Boxplot. I will give my take on
the other side.
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Boxplots P-7:16
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P-7:16 Discussion

I judge the CSR-vc model to have the best Boxplots.

The interquartile ranges are about the same and all pretty
good.
The CSR-vc model has noticeably fewer outliers in the
Boxplots, i.e. outside the ±2 range.

This combined with its having the highest êlpd loo statistic
make it the model of choice for the paid data.
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Running the MCMC Models on I-7:16 Data

Run ID Ult Loss Ult SE Res Low Reserve Res High êlpd loo
CRC I-7:16 1,230,151 29,800 214,940 270,223 333,281 235.64
CSR-w I-7:16 1,193,518 37,085 167,331 233,590 313,557 232.50
CSR-c I-7:16 1,317,128 75,412 243,610 357,200 531,381 235.19
CSR-vc I-7:16 1,262,187 58,618 201,157 302,261 430,947 241.27

Some observations

The CSR-vc model had the highest êlpd loo statistic.

The mean reserve varies significantly by model.

The mean speedup rate is a positive 0.0375 for the CSR-w
model, a negative 0.0675 for the CSR-c model. For the
CSR-vc model it starts close to zero and moves up around
the -0.02 to -0.04 range for the later calendar years.

A negative speedup rate for incurred losses can also
indicate a decreasing recognition of outstanding losses,
and hence a higher predicted ultimate loss.

Now scroll through the Boxplots for these models.
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Plots I-7:16
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I-7:16 Discussion

I judge that the CSR-vc model has the best Boxplots.

Slightly better by accident year and development year.

The Boxplots by calendar year suggests that there as been
a change in case reserving practices.

The next page shows plots of the mean speedup rates for
the paid and the incurred models. One would expect to
see the plots track closely with each other as a substantial
portion of the incurred losses are already paid.

But — As we can see from these plots, there is a
noticeable difference between the plots. And moreover,
they cross.

This suggests that there should be separate {γ}
parameters for paid and outstanding losses.
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Mean Speedup Rates for the
CSR-vc P-7:16 and the CSR-vc I-7:16 Models
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Integrated Paid and Outstanding (POS) Models

This section proposes a model that simultaneously fits
both paid and incurred losses.4

This model has lognormal distributions for each of the
paid and incurred losses.

The µwd parameter of the distribution for paid losses is the
same as above.
The µwd of the incurred losses are equal to the sum of the
µwd for the paid losses, plus a separate factor representing
outstanding losses.

More details on the next page.

4A more detailed discussion of fitting models simultaneously to paid
and incurred is discussed in Section 9 of Meyers (2019)
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The POS-vc Model

The prefixes P, I and OS denote “Paid”, “Incurred” and
“Outstanding” respectively.

Pµwd = log(Premiumw ) + logelr + αw + Pβd · PSp(c)

Iµwd = Pµwd + OSβd · OSSp(c)

PβD ≡ 0, and OSβD 6≡ 0

Where

XSp(C ) = 1

XSp(C − i) = Sp(C − i + 1) · (1 + XγC−i )

for i = 1, · · · ,C − 1 and X = P or OS

Then

PCwd ∼ lognormal(Pµwd , Pσd)

ICwd ∼ lognormal(Iµwd , Iσd)
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Running the POS Model on PI-7:16 Data

Results for the comparable CSR model runs are also given.

Run ID Ult Loss Ult SE Res Low Reserve Res High êlpd loo
CSR-vc P-7:16 1,256,436 73,076 179,454 296,510 460,811 240.85
CSR-vc I-7:16 1,262,187 58,618 201,157 302,261 430,947 241.27

POS-vcp PI-7:16 1,262,897 58,400 205,683 302,969 432,516 251.85
POS-vci PI-7:16 1,262,897 58,400 205,691 302,969 432,529 255.56

The êlpd loo statistics are calculated separately on the paid
and incurred data in the POS model. These statistics are
significantly better for the POS-vc model than they are for
the corresponding CSR-vc models.
The standardized residual Boxplots are on the following
three pages. Compared with the corresponding CSR-vc
Boxplots:

The POS-vc plots look a bit worse for the paid losses.
They look a bit better for the incurred losses.
They look pretty good for the combined losses.
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Claims Department Practices

The following page has plots of the the mean paid claim
speedup rate, mean{Pγ}, and the mean outstanding claim
speedup rate, mean{OSγ}.
The claims department appears to be slowing down the
paid claim settlements, while speeding up the recognition
of outstanding claims, and vice versa.

This observation should be discussed with the claims
department.
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Mean Speedup Rates for the POS-vc Model
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Estimating Ultimate Losses

Recall from Equation 1 that the ultimate expected loss for
accident year w is equal to the expected value

Premiumw · E{exp(logelr + αw + Xσ
2
D/2)}

where X can refer to either paid, P, or incurred, I , losses.

For the POS-vc model the expected ultimate incurred loss
is slightly more complicated.

Premiumw · E{exp(logelr + αw + OSβD +I σ
2
D/2)}

After 16 years of development, the values of OSβD and

XσD are close to zero. So the paid and incurred loss
estimates are very close to each other.

The following three pages give the ultimate loss estimates
by accident year for the CSR-vc and POS-vc models.
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Accident Year Exhibit for CSR-vc P-7:16

AY Premium Estimate SE CV
2002 13,750 7,035 36 0.0051
2003 28,052 11,172 89 0.0080
2004 44,853 27,882 237 0.0085
2005 70,507 42,229 397 0.0094
2006 80,285 45,451 459 0.0101
2007 96,286 58,149 659 0.0113
2008 130,481 66,126 817 0.0124
2009 142,059 49,960 715 0.0143
2010 131,024 70,952 1,150 0.0162
2011 131,870 89,695 1,702 0.0190
2012 122,125 83,745 2,025 0.0242
2013 125,456 88,474 2,794 0.0316
2014 201,129 105,300 4,505 0.0428
2015 271,351 148,458 10,143 0.0683
2016 297,237 180,482 22,320 0.1237
2017 292,035 181,328 51,519 0.2841
Total 2,178,500 1,256,436 73,076 0.0582
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Accident Year Exhibit for CSR-vc I-7:16

AY Premium Estimate SE CV
2002 13,750 7,037 35 0.0050
2003 28,052 11,056 84 0.0076
2004 44,853 27,643 231 0.0084
2005 70,507 41,556 376 0.0090
2006 80,285 44,764 439 0.0098
2007 96,286 57,033 619 0.0109
2008 130,481 65,057 765 0.0118
2009 142,059 49,100 658 0.0134
2010 131,024 70,228 1,078 0.0154
2011 131,870 89,487 1,542 0.0172
2012 122,125 82,593 1,863 0.0226
2013 125,456 87,515 2,526 0.0289
2014 201,129 105,847 4,581 0.0433
2015 271,351 148,245 9,905 0.0668
2016 297,237 184,843 21,850 0.1182
2017 292,035 190,185 46,733 0.2457
Total 2,178,500 1,262,187 58,618 0.0464
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Accident Year Exhibit for POS-vc PI-7:16

AY Premium Estimate(p) Estimate(i) SE(p) SE(i) CV(p) CV(i)
2002 13,750 7,038 7,038 34 34 0.0048 0.0048
2003 28,052 11,117 11,117 68 68 0.0061 0.0061
2004 44,853 27,779 27,779 184 184 0.0066 0.0066
2005 70,507 41,907 41,907 299 299 0.0071 0.0071
2006 80,285 45,135 45,135 347 347 0.0077 0.0077
2007 96,286 57,636 57,636 489 489 0.0085 0.0085
2008 130,481 65,630 65,630 603 603 0.0092 0.0092
2009 142,059 49,658 49,658 513 513 0.0103 0.0103
2010 131,024 70,692 70,692 792 792 0.0112 0.0112
2011 131,870 89,930 89,930 1,175 1,175 0.0131 0.0131
2012 122,125 83,456 83,456 1,373 1,373 0.0165 0.0165
2013 125,456 88,619 88,619 1,909 1,909 0.0215 0.0215
2014 201,129 106,701 106,701 3,372 3,372 0.0316 0.0316
2015 271,351 149,816 149,816 7,690 7,690 0.0513 0.0513
2016 297,237 183,299 183,299 17,254 17,254 0.0941 0.0941
2017 292,035 184,484 184,484 37,469 37,469 0.2031 0.2031
Total 2,178,500 1,262,897 1,262,897 58,400 58,400 0.0462 0.0462
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Predictive Distribution of Loss Reserve Liability

Following Equation 2, a sample of the predictive
distribution of the outstanding losses is given by:

{XRC} =
C∑

w=1

{XUw} −
C∑

d=1

Cc+1−d ,d

where X =CSR-vc P-7:16, CSR-vc I-7:16 or POS-vc 7:16.

Histograms of the predictive distributions for these models
are given in the next page.

Note that the POS-vc model reduces the range of ultimate
estimates, by a lot for paid losses, and by a little for
incurred losses.
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Predictive Distribution of Loss Reserve Liability
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The Question Addressed by This Talk

In prior years the original opining actuary underestimated
the loss reserve liability.

Was this a case of “bad stuff” that sometimes happens?

Or was it the case that there is a loss reserve model that
does a better job of predicting the “bad stuff?”

The Learning Lounge presentation mentioned a number of
red flags, e.g. declining paid to current ultimate and
declining incurred to current ultimate ratios, and slowdown
in claim settlement due to rapid premium growth.

It appears that the opining actuary and the Learning
Lounge presenters recognized by 2016 and 2017, that
earlier reserve estimates were understated because of the
slowdown in the claim settlements.

To my way of thinking, this means that they needed a
better model.
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The Question Addressed by This Talk

In prior years the original opining actuary underestimated
the loss reserve liability.

Was this a case of “bad stuff” that sometimes happens?

Or was it the case that there is a loss reserve model that
does a better job of predicting the “bad stuff?”

The Learning Lounge presentation mentioned a number of
red flags, e.g. declining paid to current ultimate and
declining incurred to current ultimate ratios, and slowdown
in claim settlement due to rapid premium growth.

It appears that the opining actuary and the Learning
Lounge presenters recognized by 2016 and 2017, that
earlier reserve estimates were understated because of the
slowdown in the claim settlements.

To my way of thinking, this means that they needed a
better model.
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A Proposal for the “Bad Stuff”

This talk proposes the “vc” models that explicitly
recognize changes in the claim speedup rate by calendar
year.

The CRS-vc model works well with paid losses, but not
very well with incurred losses.

POS-vc model obtains a better fit with the incurred losses.

My opinion — Declaring victory would be premature. We
need further testing.
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A Proposal for the “Bad Stuff”

This talk proposes the “vc” models that explicitly
recognize changes in the claim speedup rate by calendar
year.

The CRS-vc model works well with paid losses, but not
very well with incurred losses.

POS-vc model obtains a better fit with the incurred losses.

My opinion — Declaring victory would be premature. We
need further testing.
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êlpd loo

Boxplots

P-7:16 Data

Boxplots

I-7:16 Data

Boxplots

Speedup Rates

POS Model

Boxplots

Speedup Rates

Bad Stuff?

Commentary

My Loss Reserving Philosophy

I view loss reserving as a dialogue between an actuarial
department and its corresponding claims department. One
way this dialogue might work is as follows.

1 In talking with the claims department, the actuaries try to
find out how the claims adjustment process works.

2 They then formulate a model that describe the claims
adjustment process. Then test the model thoroughly.

3 If testing reveals unexpected differences between the model
and the data, repeat Steps 1-2 above as necessary.

Advantages of using Bayesian MCMC for model building
1 Flexibility in model building — If you can code the

likelihood function, you can run the model.
2 Bayesian models are transparent and reproducible. Your

judgments are made explicit in your choice of models and
prior distributions.

3 Bayesian models provide output that can be used for
calculating risk margins. See Section 11 of Meyers (2019).
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Comments

The flexibility of Bayesian MCMC models was very helpful
in this exercise. It enabled me to to easily explore beyond
my existing collection of models.
Over time, I expect that I, and others, will add to our
collection of such models in the future.
I want to thank Bob and Mary Frances for making these
data available to the public. It was interesting to see how
well the estimates derived from a Bayesian MCMC model
tracked with the estimates from experienced reserving
actuaries. I was glad for my model and for the actuarial
profession, to see that the estimates were reasonably close.

I want to make a call out to Ben Zehnwirth, who for years
has been insisting on a calendar year model for loss
reserving. See, for example, Barnett and Zehnwirth
(2000).
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For Discussion

Actuaries have long recognized the effect of changing
settlement/recognition rates.

Actuaries have traditionally adjusted the data to reflect
changing claim settlement practices.

Bayesian think of the data as being reality, and the model
is random.

Don’t mess with the data!

In this talk I have attempted to recognize the changing
claim settlement practices explicitly in the model.
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