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Loss Development and Growth Curves

Business Context:

Goal is to improve estimation of loss development patterns for individual clients.

A mathematical model is introduced and expanded to include:
 Exposure information
 Benchmark patterns

Principle:  Including more information improves our estimate
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Loss Development and Growth Curves
Description of Model

Loss development patterns trace 
the aggregate amount of paid or 
case incurred loss over time.

General pattern is increasing, 
ultimately reaching 100%.

Note: This example shows a collection of 
third party liability (TPL) paid claims for US 
insurance companies.  Each line is a 
different company.
Median of the sample shown in red.
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Loss Development and Growth Curves
Description of Model

The pattern of development can be modelled as a “growth curve” smoothly moves from 
0% to 100% over time.

Two forms are useful:

 Weibull (aka “Craighead”)

 Loglogistic (aka “inverse power”)

Each of these has a “scale” parameter (theta), and a “shape” parameter (omega).
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Loss Development and Growth Curves
Description of Model

Advantages of using fitted curves:

 Reduce over-parameterization

 Smooth and extrapolate the pattern – including help with tail factor selection

 Handle irregular evaluation dates
(e.g., latest diagonal less than 12 months)

 Estimate variance or ranges
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Loss Development and Growth Curves
Description of Model

Limitations and Model Assumptions:

 Pattern is the same for all accident years

 Growth curve form selection is correct

 Requires curve-fitting engine:   fast, but generally not “real time”
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Loss Development and Growth Curves
LDF and Cape Cod Forms

We begin with incremental losses in each “cell” of a development triangle.

“LDF Form” lets each accident year stand on its own.

The expected loss is estimated based on the growth curve and an estimated ultimate 
loss for each accident year.

Number of parameters = 2 + number of accident years
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Loss Development and Growth Curves
LDF and Cape Cod Forms

An alternative form is based on the “Cape Cod” or “Additive” method, if we have an 
exposure base for each year.

Onlevel (indexed) premium may be used.

This form reduces the number of parameters to be estimated to three:
ELR, Scale (theta), and Shape (omega)
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Loss Development and Growth Curves
LDF and Cape Cod Forms

The names for these two methods are based on the fact that the Ultimate Loss and 
ELR parameters are based on the MLE estimates.

For LDF method:

For Cape Cod method:
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Loss Development and Growth Curves
Variance Definition and Fitting Criteria

To fit the model, it is convenient to borrow the “over-dispersed Poisson” (ODP) from the 
world of Generalized Linear Models (GLM).

The ODP GLM model can reproduce the traditional chain-ladder method when the 
model has a separate parameter for each development period.

The key assumption is that variance of loss is proportional to the mean, and that this 
proportion is a constant for all years and development ages.
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Loss Development and Growth Curves
Variance Definition and Fitting Criteria

The ODP GLM fit is performed using “quasi-likelihood”.

We borrow the form of the Poisson likelihood to estimate the parameters of the growth 
curve.  When needed, the variance-to-mean ratio is separately approximated using a 
chi-square statistic.

This allows for a quick model fit, and an approximation for standard error on the 
parameters.
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Loss Development and Growth Curves
Variance Definition and Fitting Criteria

Should the uncertainty in the parameters change our selected development pattern?

In original paper, we recommend using the growth curves with the “best” fitted 
parameters:

An alternative is to use the expected growth curve, averaging over all the possible 
parameters:
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Blending Client Data with Benchmark Curves
Bayesian Credibility

The model described so far works well for a development triangle on a single client.  
The growth curve smooths out the pattern and is robust against [some] negative 
development or outlier points.

For small clients or volatile lines of business, the fit does not always help.  The model 
parameters can “blow up” and produce unrealistic results.

We want to stabilize the results by incorporating more information.
Thomas Bayes to the rescue!
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Blending Client Data with Benchmark Curves
Bayesian Credibility

Bayesian credibility follows Bayes’ Theorem (technically: Laplace’s generalization of 
Bayes’ original work).

The idea is that we have some prior knowledge of the range of possible parameter 
values.  When new data comes in, we gain more knowledge about the parameters.

For our application, the prior knowledge is our benchmark curve including some 
measure of uncertainty when it is used for a given client.

Prior is updated when we see the client’s development data.
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Blending Client Data with Benchmark Curves
Bayesian Credibility

The blended curve is the 
posterior distribution of the 
shape parameter theta.
It represents the uncertainty in 
the shape parameter after both 
the benchmark and the client 
information have been included.
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Blending Client Data with Benchmark Curves
Bayesian Credibility

Key idea: We have a mixture model.

There is a standard statistical model (in this case the ODP model with growth curve).
There is also a mixing distribution on the parameters of the model.

The total variance therefore has two components:
 Expected process variance = random outcomes
 Parameter variance = “prior” uncertainty around the parameters themselves

The relative magnitude of these two variances determines how much credibility we 
assign to the client data relative to the benchmark.
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Blending Client Data with Benchmark Curves
Bayesian Credibility

We will assume that each company has a growth curve that follows a Weibull pattern.
All companies share the same “shape” (omega) but have different “scale” (theta) 
parameters.

The spread of the “scale” parameters is centered and controlled by a prior mixing 
distribution.  The mixing distribution is an inverse transformed gamma, where the alpha 
parameter controls the spread.  

The mixed version is a Burr curve.
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Blending Client Data with Benchmark Curves
Bayesian Credibility

A growth curve following a “Burr” shape adds one additional parameter (alpha).  The 
other curves are special cases.
The Burr can also be derived as a “mixed” version of the Weibull curve.
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Blending Client Data with Benchmark Curves
Bayesian Credibility

A “benchmark” growth curve takes the “Burr” form:

The blended growth curve includes additional terms from the fit to client data:
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Blending Client Data with Benchmark Curves
Bayesian Credibility

The age-to-age factors (link 
ratios) for an individual client are 
shown in blue in this graph.
The high volatility of the client 
data means there is little 
credibility assigned to their data. 

The blended pattern (yellow) is 
still a change from the 
benchmark (red).
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Blending Client Data with Benchmark Curves
Bayesian Credibility

For the credibility constant assigned to the client data:

This is derived from the standard error of the fitted growth curve parameters.

However, this standard error may be understated and need some adjustment.
 The model assumes incremental losses are independent and identically 

distributed (i.i.d.)
 The use of the Hessian matrix to approximate parameter variance is a lower 

bound that becomes accurate in large samples, but our data is small sample
 The variance/mean parameter is assumed to be fixed and known
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Blending Client Data with Benchmark Curves
Bayesian Credibility

How do we set the spread around the benchmark parameter?

Subjective Bayes:
 Business expertise selects the range of possible values

For example:  how much faster or slower than average can a company settle its 
claims?

Empirical Bayes:
 How much actual spread is there among the companies?
 This is equivalent to what data scientists call estimation via “cross validation”
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Blending Client Data with Benchmark Curves
Bayesian Credibility

Big alpha means a narrow range 
of possible values around the 
benchmark.
Small alpha means a wider range 
of patterns across companies.
Alpha=1 is a very wide range and 
reproduces the log-logistic curve.
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Blending Client Data with Benchmark Curves
Bayesian Credibility

Shifting the scale parameter (theta) 
can be interpreted as a company 
speeding up or slowing down the steps 
of the processing of an “average” 
claim.

Other considerations:
 Mix of from-ground-up and excess 

policies
 Use of Third Party Administrators
 Technology / automated claims
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Blending Client Data with Benchmark Curves
Cross Validation

We note that credibility theory is similar to “shrinkage” methods (Ridge Regression, 
LASSO, etc.) where parameters are constrained or “regularized” to stay within a given 
range. This is accomplished by introducing a tuning parameter that shrinks parameters 
towards an average value.

Cross validation is a method for estimating this tuning parameter.
 Split the data into training and validation (hold-out) sets
 For a grid of tuning parameters, estimate the error in predicting the hold-out data
 Repeat for multiple validation sets
 Select the tuning parameter that produces the smallest prediction error

See for example James, et al “An Introduction to Statistical Learning” pages 214-227 of the sixth edition.
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Blending Client Data with Benchmark Curves
Cross Validation

Five-fold cross validation runs the fitting exercise five time, each time leaving one fifth 
of the data out of the fit.
The best tuning parameter reducing the error when tested against each hold-out set.
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Blending Client Data with Benchmark Curves
Cross Validation

“Leave one out” (LOO) is the extreme version of cross validation, in which we calculate a validation error for 
each point in the data.
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Blending Client Data with Benchmark Curves
Cross Validation

Actuaries often use similar technique, 
viewed as a time series with the 
prospective period being the “hold-out” 
data.

We can perform a similar exercise with the 
development data by company.

Source:  Mahler, “A Graphical Illustration of 
Experience Rating Credibility”, PCAS 1998
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Blending Client Data with Benchmark Curves
Cross Validation

For each company, we split the data into 
two blocks of years.  The credibility for an 
“average” company is the slope of the 
fitted line.
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Blending Client Data with Benchmark Curves
Cross Validation

Fortunately, credibility values and shrinkage tuning parameters can be forgiving.  A credibility formula with a “k” 
that is imprecise is generally still better than either extreme of no-pooling or complete pooling.

“When estimating the Bayesian credibility parameter k, the estimate need not be extremely precise. For 
many practical applications, the estimate of k can be wrong by as much as a factor of two in either direction 
and still produce a fairly good estimate of the quantity, e.g., frequency, severity, pure premium, etc., that 
credibility is being used to estimate.”

Mahler, “An Actuarial Note on Credibility Parameters”,  PCAS 1986

A similar conclusion was found in the original 1970 paper by Hoerl and Kennard, “Ridge Regression: Biased 
Estimation for Nonorthogonal Problems”
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Blending Client Data with Benchmark Curves
Cross Validation

Even if we cannot estimate the
optimal credibility perfectly, we 
can select a value that produces 
a blended estimate that is an
improvement on either estimator
alone.
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Blending Client Data with Benchmark Curves
Example

The spread of patterns by 
company is very wide.
This may imply that the credibility 
assigned to a single TPL 
benchmark pattern would be 
small.

33



Blending Client Data with Benchmark Curves
Example

Next goal is to better refine the 
benchmark into smaller cohorts 
of companies.

For this example, we can split the 
companies into three groups, and 
create a benchmark for each.

Research question: how best to 
create these cohorts?
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Conclusion and Takeaways

 Fitting growth curves to individual client data is straightforward, but can be 
unreliable when the data is volatile or sparse

 Blending with benchmark patterns can stabilize the curve fit; and the mathematics 
is not difficult to derive

 More work is still needed on assembling the benchmark patterns
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Thank you!
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