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Antitrust Notice

• The Casualty Actuarial Society is committed to adhering strictly to 
the letter and spirit of the antitrust laws. Seminars conducted 
under the auspices of the CAS are designed solely to provide a 
forum for the expression of various points of view on topics 
described in the programs or agendas for such meetings. 

• Under no circumstances shall CAS seminars be used as a means 
for competing companies or firms to reach any understanding –
expressed or implied – that restricts competition or in any way 
impairs the ability of members to exercise independent business 
judgment regarding matters affecting competition. 

• It is the responsibility of all seminar participants to be aware of 
antitrust regulations, to prevent any written or verbal discussions 
that appear to violate these laws, and to adhere in every respect 
to the CAS antitrust compliance policy.
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Overview

• Chocolate Chips – MLE & Bootstrap
• Chocolate Chips – a Bayesian Analysis
• More Complex Model – Bayesian Analysis
• Metropolis Hastings
• Gibbs Sampling
• Tests
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Chocolate Chips – MLE & 
Bootstrap

• Curious to know how many chocolate chips are in a 
cookie

• Estimate of the Mean (# of Chips in a Cookie)

• Distribution of the Mean
• Distribution of Chips in Cookies
• Draw 6 cookies

5, 5, 7, 10, 10, 11
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Chocolate Chips – MLE & 
Bootstrap

• Assume they follow a Poisson Distribution
• The Maximum Likelihood Estimator is the Sample 

Mean

5, 5, 7, 10, 10, 11
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Chocolate Chips – MLE & 
Bootstrap

5, 5, 7, 10, 10, 11

• Does not consider 
Parameter Risk for 

• Assumes we estimated 
perfectly

• The Distribution here 
only has Process Risk
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Chocolate Chips – MLE & 
Bootstrap

• To add Parameter Risk, we can Bootstrap
• We draw 6 “cookies”, from our set above, with 

replacement
• Calculate a sample mean
• Draw one cookie from Poisson with this sample 

mean
• Repeat 20,000 times

5, 5, 7, 10, 10, 11
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Chocolate Chips – MLE & 
Bootstrap

8



Chocolate Chips – a Bayesian 
Analysis

• Bootstrap was useful in adding Parameter Risk
• Bayesian Analysis provides another way to do this
• Also allows us to consider Expert Opinion
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Chocolate Chips – a Bayesian 
Analysis

• Bayes Theorem
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Chocolate Chips – a Bayesian 
Analysis

• Bayes Theorem
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Chocolate Chips – a Bayesian 
Analysis

• Using Continuous Density notation 
• Let be a set of data
• Let be a collection of parameters
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Chocolate Chips – a Bayesian 
Analysis

• – is the Likelihood (LL)
– This is the density of our data, given a set of parameters

– The set of parameters, that maximizes the Likelihood 
are called the Maximum Likelihood Estimators - MLE 

– The MLE is used often to find a “best” set of parameters
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Chocolate Chips – a Bayesian 
Analysis

• – is the Prior Distribution of 
– This is our Opinion on before we have collected data
– This can be an informed opinion, or an uninformed

opinion
– In the latter case, we typically select a large variance
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Chocolate Chips – a Bayesian 
Analysis

• – is the integral of the numerator

• Often – Calculate the numerator, and then 
integrate to get the denominator

• Allows us to drop constants in the numerator
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Chocolate Chips – a Bayesian 
Analysis

• – is the Posterior Distribution of 
• – is the Likelihood
• – is the Prior Distribution of 
• – is the Normalizing Constant
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Chocolate Chips – a Bayesian 
Analysis

• Let’s return to our Chocolate Chip problem
• are the data points (the 6 cookies)
•

• is the parameter of the Poisson distribution
• We will now estimate a distribution for 
• Then, we can estimate a distribution for 
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Chocolate Chips – a Bayesian 
Analysis

• We need a Prior Distribution for 
• We are not confident in our prior, so select a wide variance
• Select Gamma, with mean , and 

•
మ

మ మ
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Chocolate Chips – a Bayesian 
Analysis

• We need the Poisson Likelihood:
೔

5, 5, 7, 10, 10, 11

೔
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Chocolate Chips – a Bayesian 
Analysis

• This is the Gamma Distribution:

Mean Std. Dev మ
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Chocolate Chips – a Bayesian 
Analysis

• We Calculated the Likelihood Formula, 
• Selected a Prior, 
• Calculated the Posterior, 
• Draw 20,000 samples from the posterior for 
• For each , draw 1 cookie
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Chocolate Chips – a Bayesian 
Analysis
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Chocolate Chips – a Bayesian 
Analysis • Prior Distribution of

Mean of Chips to have:
• Mean , Stdev
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Bootstrap vs Bayesian

• Both Bootstrap and Bayesian gave us predictive 
distribution of the # of Chips in a Cookie

• Bayesian – allowed us to consider our Prior, Expert 
Opinion
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Bayesian Model

• The cookie problem had a relatively simple 
Posterior Distribution – we lucked out, and it was 
the Gamma Distribution

• In insurance modeling, we’ll have many more 
parameters, and solving the integral to determine 
the normalizing constant is intractable
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Bayesian Model

• Take a 4x4 Triangle
• Incremental Losses, , are Over Dispersed Poisson, 

with fixed (but unknown) dispersion parameter 
• 4 Row parameters: 
• 3 Column Parameters 
• ; fixed
• Mean of each cell is: 

• Variance 

• , have Gamma Priors
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Bayesian Model

೔ ೕ

೔ೕ

೔ ೔ ೔ ೕ ೕ ೕ
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Bayesian Model

• We would be able to calculate the Posterior 
Distribution to within a Normalizing Constant

• We would not be able to integrate it – it’s 
intractable

•
• We can find the ratio of the density for any set of 

parameters to any other set of parameters; but we 
don’t have the actual density

• There is an algorithm that allows us to sample from 
this distribution – Metropolis Hastings
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Metropolis-Hastings

• Markov Chain is a mapping where the probability of 
the next state is dependent only on the current 
state

• A continuous version, with a single parameter could 
be written as a probability density
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Metropolis-Hastings

• If we have, posterior to within a constant:

• Generating Function 
• The following algorithm will (in the limit) be 

samples from the distribution with density 
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Metropolis-Hastings

• 1. Select an initial 
• 2. Draw from 
• 3. Calculate 

• 4. Draw 
• 5. If then ; otherwise 
Repeat Steps 2-5 many times
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Metropolis-Hastings

• In the cookie, example we calculated a Posterior:

• Generating Function is Uniform with width 2
•
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Metropolis-Hastings
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Metropolis-Hastings
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Metropolis-Hastings
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Metropolis-Hastings
•

Since   
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Metropolis-Hastings
• Want a Result Like this
• Blue Line is 200 point average

Acceptance Rate: 52%

• Stationary
• Covers the Space of Outcomes
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Metropolis-Hastings
• Iterate 100 times Acceptance Rate: 79%

• Too Short
• Does not Cover Space
• Acceptance Rate is too High
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Metropolis-Hastings
• Iterate 1,000 times
• Blue Line is 200 point rolling average

Acceptance Rate: 82%

• Acceptance Rate is too High
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Metropolis-Hastings

• Want Acceptance Rate between 23% and 50%

• A High Acceptance Rate will result in the 
Generating Distribution

• To Decrease Acceptance – Increase Variance of 
Generating Function

• Switch from 

• To 
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Metropolis-Hastings
• 1,000 Iterations; Generating 
• Blue Line is 200 point average

Acceptance Rate: 55%

• Stationary
• Covers the Space of Outcomes
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Metropolis-Hastings
• 1,000 Iterations; Generating 
• Choose a ridiculous starting point ଴

Acceptance Rate: 53%

• Finds the Distribution by the 
200th iteration

• Important to Discard the first 
several iterations
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Metropolis-Hastings
• First 1,000 Iterations Discarded; Generating 

• 20,000 samples

Acceptance Rate: 52%
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Metropolis-Hastings
• Orange is using the 

Analytical Bayesian 
Solution

• Gray (transparent) is 
from Metropolis 
Hastings
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Metropolis-Hastings

• 1. Select an initial 
• 2. Draw from 
• 3. Calculate 

• 4. Draw 
• 5. If then ; otherwise 
Repeat Steps 2-5 many times
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Diagnostics

• Gelman Diagnostic
• Auto Correlation
• Effective Size
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Diagnostics

• Gelman Diagnostic
• Run multiple Markov Chains
• Compare the variance within each chain to the 

variance in other chains
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Diagnostics – Gelman

• 3 Chains each of length 1,000
• Gelman Diagnostic is 1.000
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Diagnostics - Autocorrelation
• High Autocorrelation, reduces the information in 

the Markov Chain
• This dataset has low Autocorrelation
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Diagnostics - Autocorrelation
• High Autocorrelation, reduces the information in 

the Markov Chain
• Data can be “thinned”
• Eg. Only use every 20 points from the Markov Chain 

if the Autocorrelation is small at lag 20 and beyond
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Diagnostics – Effective Size

• Effective Size
• If there is Autocorrelation in the Markov Chain, it 

does not have the same amount of information as 
the same number of points drawn from the target 
distribution

• Effective Size tells you how much information is in 
your markov chain in terms of if it was actual pulls 
from the target distribution
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Gibbs Sampling

•
• Calculate
•
• Treat as a constant; and drop constant terms
•
• When sampling, do the MH algorithm, assuming is 

known; and draw a sample from 
• Then use, this as a constant, and use MH to draw a 

sample from 
• Repeat

52



Summary

• Bayesian Analysis – allows for a prior opinion on 
parameters

• Create a , posterior distribution
• Use Metropolis-Hastings to sample from the posterior 

distribution
• Use Gibbs Sampling if you have more than one 

parameter
• Use Diagnostics to test convergence
• You have a sample of the posterior of all the 

parameters
• Simulate Data, using draws from the sampled 

parameters
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