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Models for Loss Reserving

The problem is about matching data and model — making a productive relationship between them.
There is a purpose, and it is so that you can make a forecast about future data. An important side-
benefit is that a good model gives you insight into what’s driving your data.
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Models for Loss Reserving

So you want to match data and model in such a way that it empowers you to make a good guess, an educated
guess about future outcomes.

An actuarial prediction, or forecast, is a very different thing from an investor’s forecast. There’s very little room
for inspired hunches. Do we talk about the risk appetite of an actuary? You are supposed to account for risks but
not take them!

What we usually call models or methods | prefer to think of as structures for deriving models. Once you've
entered all the parameters you have a model. So, two different sets of parameters in the same structure
are two different models. For example, when you use age-to-age ratios there are many different ways of
choosing them

Method | 0-1 1-2 2-3 34 4-5 5-6
Standard Chain Ladder 2.30320 | 1.42097| 1.20149| 1.11491| 1.07412| 1.04784
Arithmetic Average 2.28806 | 1.41494| 1.19832| 1.11307| 1.07234| 1.04741
Geometric Average 2.28656 | 1.41462 | 1.19820| 1.11301| 1.07229| 1.04740
Average Without Min/Max 2.27951| 1.41098| 1.19697| 1.11129| 1.06840| 1.04720
‘Wid. Average of Last 4 2.38317| 1.44078| 1.20870| 1.11892| 1.07664 | 1.04802
Average of Last 4 2.37843 | 1.43814| 1.20704 | 1.11771| 1.07532| 1.047535
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Models for Loss Reserving

Method | o0

Standard Chain Ladder 2.30320
Arithmetic Average 2.28806
Geometric Average 2.28656

Average Without Min/Max 2.27951

Witd. Average of Last 4 2.38317

Average of Last 4 2.37543

1-2
1.42097
1.41494
1.41462
1.41098
1.44078
1.43814

2-3
1.20149
1.19832
1.19820
1.19697
1.20870
1.20704

34
1.11491
1.11307
1.11301
1.11129
1.11892
1.11771

4-5
1.07412
1.07234
1.07229
1.06840
1.07664
1.07532

5-6
1.04784
1.04741
1.04740
1.04720
1.04802
1.04755
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Each of these choices can be regarded as a different model, and if you think about them you’ll find that each of
them embodies certain assumptions about the data (or about the modeler or their company). You might also
have certain rules of thumb as to when to use one model rather than another — these considerations ought
properly to be regarded as a part of your model. This is because we want to be able to compare models in terms

of quality, or, if you'll forgive the pun, ‘fit for purpose’.

In this example there are always the same number of parameters (for a given size and shape of data
array) and that’s dictated by your structure, but it seems more natural that the number of required

parameters should also depend on what’s in the data.

Models for Loss Reserving: Further Considerations

1 25600

1 A1=62.

These are some of the things you need to think about, in terms of achieving a good model:

The smaller the number of parameters the better, although this is one consideration among others. In more

sophisticated contexts you can use the AIC or BIC to grade various models.

Take away point: redundant parameters harm a model — they improve the fit but add uncertainty to the forecast.
In the table above we showed the age-to-age ratios, but we should also include a ‘to Ultimate’ ratio — that is

really part of the forecast, but the parameters used in a forecast should be regarded as part of the model as well.
How do you go about choosing a ‘to Ultimate ratio’? Via smoothing, perhaps?

To get a grip on all relevant considerations it is useful to have a sandbox for model testing.
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A Sandbox for model QC: Real vs Simulated data

This just means that you have a rich set of sample data that you can use for testing models.

These could be sets of real data where you know the long-term outcome.

You know the data well and use it again and again.

This has advantages over using simulated data, but also has certain drawbacks.

What are the issues or real vs simulated data?

Knowing the outcome with real data can leads to a bias in choice of model. We want to know what the
best estimate of the outcome was at the time, and this might differ from what actually happened.
Generally it is good to have access to both kinds of data.

Simulation of data might sound tricky, but having a model for the data and being able to
simulate data are almost identical, or should be.

This is an important point and bears repeating.

Modeling and Simulating

Having a model for the data and being able to simulate data are almost identical.

What makes a good model? What makes a good simulation?
Is the answer to these two questions the same? Not really.
More like two ways of looking at the same thing.

A good simulation should be a “deep fake”.
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108548
104388018
11140493
103716.43
54| 104159.494
s | 100780.903
56| 102010.836
57| 107771968
58| 103826.002
59| 100076.852
50| 379153818
51| 100612794
2| 10876741
53| 101618400
54 97768.0084
240176273

3 | CLratio

Does anyone know of a good chain-ladder based data simulator?
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The value of simulating data

The next few slides show a simple one that | created in Excel. This is an exercise | recommend, especially if
you use this method a lot.
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CL ratios and ‘True' CL ratios

Here is a screen cap. The data is the black part of the array at the top. The red are the future values that | got
for free as a result of my method.
Underneath is the age-to-age ratio triangle, which tells me how plausible looking my sims are.

Light blue are the chain-ladder ratios and the C-L ultimates. The orange or light-brown are the ‘best’ ratios.



The value of simulating data

1. The aim is to simulate data that ‘looks like’ real data.

2. Because a uniform process is used we produce consistent ‘future’ values at the same time. We can use these to

test the forecast.
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3. A table of cumulatives doesn’t reveal much to the eye, so the idea was to produce a plausible
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looking age-to-age ratios table.

4. The CL method is deterministic so there is a need to ‘inject’ randomness into the simulation. There is no obvious
consistent way to do this, so it’s a matter of choice. The underlying structure is therefore CL-skeleton with

randomness added on.

In my example | put random fluctuations in the individual age-to-age ratios and added some normally distributed
‘noise’ on top of that. | wanted a small minority of individual age-to-age ratios to be less than 1.
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The value of simulating data
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The value of simulating data

5. Because | had the ‘true’ forecast values | also had access to ‘true’ or ‘look-ahead’ CL ratios, based on all the
data instead of just the current data.
The look-ahead ratios when graphed were smoother than the current ratios — which might make a case for ratio

smoothing.
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The value of simulating data

6. Naturally, part of the simulator was to run the CL method forecast with the two sets of ratios, and compare the
ultimates with the ‘true’ values that were consistently simulated.
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7. How did we do? Typically with this set-up the CL forecasts differ significantly from the true result. And it’s
clear why. Models are good in the early accident years but poor in the later ones. They under-estimate the

volatility.
8. This gives you exactly the motivation behind Bornhuetter-Ferguson. But the problem it seeks to correct is
not in the data, but in the model.
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Take-away point #1: Having a data model and being able to simulate data
are almost identical
1. If your model is derived from (parameterized by) real data, then the datasets you simulated ought
to ‘look-like’ the original data.

2. This is an important idea: if your model really captures the features in the original data then you
should be able to run it backwards and produce datasets that are similar to the original data. This is
a powerful way of testing the model.

3. It leads to an important question: What does it mean to be similar to the data?

4. In my example | wasn’t trying to simulate a particular dataset, but | judged the plausibility of the
data by the plausibility of the age-to-age ratios.

5. So one answer: Every result of transforming the data that arises in the course of modeling it should
‘look like” the same result for the real data. (The transformations should make the ‘looks like’ easier to
judge.) A good simulation should be a “deep fake”.

6. Corollary: If it’s easy to tell that data simulated from a model is not real data then it’s probably not
a good model.

Take-away point #1: Having a data model and being able to simulate data
are almost identical

7. A further point: My Excel CL-reversing simulator was poor because the randomness was introduced in a completely
ad hoc manner. A better model is going to have some way of measuring the volatility inherent in the data and
incorporating that, so that when you run the model backwards your simulations should come out with pretty much the
same volatility.

Enter Mack and the Bootstrap!

But first a digression...



Before we go on, one reason that | recommend creating your own CL data simulator is that it’s fun. It very quickly
becomes a game where you can play around with the formulas and parameters and see how good you can get at
forecasting. It’s simple enough to do this easily.

Digression: Simulating Insurance

30/08/2019

In general ‘game-ification’ is a bit of a buzzword these days. We're reliably informed that people learn skills faster if it
is turned into a game. How many of you learned to type in this way?

Someone might create a good game to learn loss-reserving, putting in all the pitfalls.

A while back | had the idea of creating a P&C Insurance simulator game. The idea was to turn it into an app that we
could give away at conferences like this. People might enjoy playing it for a day or two and it would have our logo

plastered over it.

It never got beyond a prototype in Python which | want to show you. It doesn’t have any logos on it, but if you think it
might be fun to play come and see me at our booth and I'll give you a copy of the Python script. (The Python language
is free and the script is just an easy to understand text file.)

The P&C Insurance Game

Two players: You and your Competitor (= the computer)

When the game round starts you get a list of properties seeking insurance:

fR

S5tart? v

Humber of properties? 10

property
property
property
pProperty
property
property
property
property
property
property

= e e e e e e e e e

Each property want to be insured to a certain value and has a certain probability of a loss event in the insured

1
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insured
insured
insured
insured
insured
insured
insured
insured
insured

wvalue =

wvalue

value =
value =
wvalue =

valus
value

wvalue =
wvalue =
insured wvalue =

1081791.
2112635.
1157874.
1136942,
1800431.
2216953,
1125078,
1486219.
987T038.0

1930853.0
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event
event
event
event
event
cvent
event
event

period. The loss, if it happens, can be anything up to the insured value.

The game model includes randomized environmental factors affecting severity and event likelihood. These

change with each round.

prokbakility
probability
probakility
probability
probability
probakility
probakility
probability

event probability
event prokakility =

10.0 %
5.0 %
1.0 %
15.0 %
21.0 %

14.0 %
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The P&C Insurance Game

What is your strategy? [eg. 053R2 or C+5-R] O50R-2

Strategy = how you set your premiums. Whether you or your
competitor get the account is premium driven, but only
probabilistically.

So depending on the client you will be more or less competitive
than the base rate which is designed for LR = 90%

S means discounting for high value accounts; R means
discounting for high risk ones.

0OS2R-1 means you prefer low risk and strongly prefer high
value accounts.

C+S-R means you look at what your competitor is charging and
whatever it is you try do outdo him for high value low risk.

It generates a little picture of the properties. Size = value,
color = event likelihood.

When you close the picture window you are prompted for
your premium-setting strategy:

The P&C Insurance Game

OSOR-2 was chosen in response to the picture. In this case the competitor chose a similar strategy, but discounted
more on large accounts. Split was about equal, but we raised a bit more premium. The ELR for each policy indicates
discounting. Here the Competitor did more of that.

Competitor strategy is OS1R-1

[o, 1, 1, 1, o, o, 1, 1, 0, 01

M¥ PORTFOLIO

property # 2 Premium = 126%81.0 WValue = 2,112,635 Risk lewvel = 0.055 ELR = 52 %
property # 3 Premium = 211432.0 WValue = 1,157,874 Risk level = 0.166 ELR = 91 %
property # 4 Premium = 298153.0 Value = 1,136,942 Risk level = 0.236 ELR = 90 %
property # 7 Premium = 10382.0 WValue = 1,129,078 Risk level = 0.009 ELR = 92 %
property # & Premium = 250263.0 Value = 1,486,219 Risk level = 0,153 ELR = 91 %
Total Premium = 887,211

COMPETITOR PCRTFCOLIO

property ¥ 1 Premium = 39%501.0 Value = 1,081,791 Risk lewvel = 0.034 ELR = 93 %
property # 5 Premium = 184633.0 Value = 1,800,431 Risk level = 0.096 ELR = 93 %
property # 6 Premium = 108132.0 Value = 2,216,953 Risk level = 0.046 ELR = 94 %
property # 9 Premium = 222309.0 Value = 987,038 Risk level = 0.207 ELR = 82 3
property ¥ 10 Premium = 289%307.0 Value = 1,930,853 Risk level = 0.14 ELR = &3 %

Total Premium = 843,882

10
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The P&C Insurance Game

The competitor’s properties have been blacked out.
We only got two of the 5 low risk properties, and
we got the big high risk one.

Not as good a position as we’d hoped for.

Salesmanship counts for something, but at least we
didn’t discount as much as the competitor.

ready? ¥

The P&C Insurance Game

property # 5 is hit.
property # 10 4is hit.

The size of the orange dot shows the severity.
All of our properties were event free!

Bonus to the sales team!!

11
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The P&C Insurance Game

My losses = 0

Change = 897,211

My total funds = 897,211

Competitor losses = 2,213,454

Change = -1,3659,611

Competitor total funds = -1,369,611

Another round? vy
Humber of properties? 100

The P&C Insurance Game

12
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Back to the main thread: The value of simulating data

One moral we can draw from all of that is when you simulate you need to choose your random inputs carefully, both as to
distribution and where in the structure you inject them. The original Excel CL model failed on both counts: the random bits
were chosen ad hoc from easy distributions, they were used to make the individual ratios table look good, but with no
further insight into the structure.

The Bootstrap Method (which is ultimately nothing more than a way to run the Chain-Ladder backwards*) attempts to solve
both of these problems in a single stroke.

1. We'll extract the random inputs from the deviations between model and data (i.e. the ‘residuals’)

2. We'll inject them in exactly the same places as we took them from.

3. Randomness will come from randomly shuffling them.

There are numerous technical problems that have to be solved to make this work, of which I'll only mention the first:

If you are going to shuffle the residuals they need to all be on the same basis — differences between big/small numbers are
typically big/small — they need to be scaled before you can swap them.

The natural way to do this is via a regression, where part of the process is to compute the standard deviation of the residuals;
this ought to be the natural scaling factor.

So, we'll follow Thomas Mack and express each step of the C-L as a regression.

*When applied to the Mack model. Other bootstraps invert other models.

The Chain-Ladder as a set of regressions

Cum.(2) vs Cum.(1)

Here is what a single step in the C-L looks like as
a regression. (Real data.)

The red line is the C-L ratio, and its gradient has
been selected so as to minimize the sum of the

-

squares of the distances from the blue dots, but
with a weighting so that the same deviation .
counts more lower down the line than higher. A
It looks pretty good, doesn’t it?
Actually there’s an optimistic bias here, since
Cumul2 = Cumull + Incr2 30,000

20,000
The true regression underneath what you see 10,000
here is of Incr2 on Cumul1: 0

0 20,000 40,000 60,000
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The Chain-Ladder as a set of regressions

The residuals from this regression, the Incr.(2) vs Cum.(1)

differences between observed and predicted,
suitably reweighted and standardized will
provide us with a completely interchangeable
set of random-like values expressive of the
inherent volatility in the data.

To simulate a dataset we can sprinkle these
residuals randomly over our data array,
unweighting and un-standardizing according to
the cell they fall into, and then add them onto
the regression value (red line) that belongs with

that cell. -

40,000 50,000 60,000 70,000
Incidentally, these regressions form a powerful Corr. = 0.815, P-value = 0.014

fake data detector. If | apply them to data
produced by my Excel C-L simulator, | get...

Chain-Ladder regressions as fake data detector

Iner.(2) vs Cum.(1) Iner.(3) vs Cum.(2) Incr.(4) vs Cum.(3)

140,000 160,000 150,000 200,000 250,000 150,000 200,000 250,000 300,000 350,000

Corr. = 0.957, P-value = 0.000 Corr. = 0.977, P-value = 0.000 Corr. = 0.968, P-value = 0.000

Here are three successive age-to-age regressions from the data generated by my primitive C-L reverser.
The correlations are insanely high, such as are never seen in real data! They completely expose my
fabrication.

(Note that Bootstrap generally abbreviates as ‘BS’.)
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The Chain-Ladder as a set of regressions

Now that we have a full set of standardized residuals we can do three things:
(1) Plot them in different views, and this will give us a sort of x-ray of how well the model fits the data.
(2) Create as many Bootstrap pseudo-data sets as we want and use them to draw out distributional measures for our C-

L model.

And
(3) Combine (1) and (2) by comparing the X-rays of the real data with those of the pseudo-data to again assess the

quality of the model.

I'll finish by quickly going through each of these in turn.

Evaluating the fit of model to data

(1) Plot them in different views.
Here are five different ways of looking at the residuals: - —

Witd Std Res

.

2 15 1 05 0 05 1 L5 2
N =44, P-value is greater than 0.5, R"2 = 0.9861

[T T] 1] [T TT JT [] [T TJ T T] 1] JT T[] [T JJ
o 1 2 3 4 5 6 7 8 9 97 98 99 00 01 02 03 04 05 06

Left clockwise:

1. By development year

2. By accident year

3. By Size of underlying value
4. By Calendar year

Above:

1. Normality plot — quantile vs.
Normal quantile.
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Evaluating the fit of model to data: the view from development

Wtd Std Res vs Dev. Yr

Along the development axis the residuals ought to
appear nicely balanced. This is the age-to-age
direction; each residual comes out of its
respective regression and the weighting and
standardization mean that the shade bars ought
to be close to horizontal.

Weighting = adjusting the Std. Deviation by size of
the predictor

Standardizing = adjusting the residual by the Std.
Deviation.

This shows only that Mack was done correctly.

Evaluating the fit of model to data: the view from accident

Witd Std Res vs Acc. Yr

Along the accident axis we can see some structure

that was not captured by the model.

The early year residuals lean positive, the later

ones lean strongly negative.

Does this matter?

Yes, it does.

It means our forecasts come in too low in the

early years and too high in the later years, and the

division is sharp at 2000~2001.

It’s something you have to look into. You might

0 5 Y need to split the data, or remove early years from
97 98 99 00 0L 02 03 04 05 06 your calculations.

(This data is CAL.)
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Evaluating the fit of model to data: the view from size

‘Wtd Std Res vs Fitted

Arrayed according to the size of the fitted value
the division between positive and negative
residuals appears again. The big numbers have
negative residuals while the small ones have
positive ones. This suggests a systematic bias in
our model derived values and that the forecast is
likely to come in on the high side.

The conclusion is not certain, but again we see
that there is structure in the data that is not
removed by the model.

Evaluating the fit of model to data: the view from calendar

‘Wtd Std Res vs Cal. Yr

W R S R R R S In the calendar direction this unaccounted for
structure appears as something like a constant
trend. The further in time we go the more out of
kilter the fitted values are.

Calendar trends (aka inflation) are not picked up
by this kind of model. They can have severe
effects on the forecast. If you know they are there
you might be able to develop strategies to
compensate — but first you need to know they are
there.

P TT T7 7 [T [T [ [ [ ]

97 98 99 00 0L 02 03 04 05 06

In this case the downward trend means the model likely
overestimates future losses. The next slide shows a
more dangerous example.
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Evaluating the fit of model to data: a synoptic view

{4 ABC:PL(C)ELRF[Ratio Only - D{T)-1}Wtd Std Res Plot =N (EsR
Wed Std Res vs Dev. ¥r Wid Std Res vs Acc. ¥r

This is WC data.

In this case there was a radical
change in trend at about 1984.
We go from overfitting the earlier
years to seriously underfitting the
5 S X R later ones.

Trusting this model without further
adjustment would lead to drastic
under-reserving and eventual
insolvency.

(Which | believe is what
happened.)

Evaluating the fit of model to data: the view from Normal

‘Wtd Res Normality Plot

The fifth ‘x-ray’ picture is the Normality plot,
which for this example looks good. There are
reasons why we want the weighted and
standardized residuals to be Normal.

In fact this speaks to Mack’s original motivation in
developing the regression formulation of the C-L.
Of all the ways that could have been used to
come up with an average age-to-age ratio, the C-L
formula is best if these residuals are Normal. It is
a hidden assumption in the method.

-2 -1 (1] 1 2
N =44, P-value is greater than 0.5, R"2 = 09861
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Create as many Bootstrap pseudo-data sets as we want and use
them to draw out distributional measures for your C-L model

As they say about sausages: There is no problem as long as we don’t go into the details of how it is done.

Bootstrap Forecast Details ps

Simulations

iumber %
Depending on your software you press a few buttons to e
set it up. Periods

First Acddent [1ggg -
Last Accident [appg -

Options
¥ Use Fixed Seed [123]

[~ Exdude Max ratio for delta = 2

Override Period Means. ..

And voila! —
oK Cancel | Help ‘
Bootstrap distribution | ., S

- Quantile | # S.D.'s | VaR | T-VaR
Sample-Based Statistics 99.7  409.503  2.806| 106.500| 118.402
99.6  406.963  2.739| 103.959| 115.168
Accident| Sample | ELRF Sample Sample  ELRF 99.5 | 403.711| 2.654| 100.708) 112.664
99.4 401117  2.585| 08.114| 110.484

Year Mean Mean @ Median S.D. S.D. - - -
993 398778 2.524| 95.774| 108.568
1998 507 989 491 947 478 99.2 397495  2.490| 94.492| 106.882
1999 932 914 929 1,385 1,065 991 395702 2.443| 92.699| 105.399
2000 2725 2976 2713 1970 1857 99.0 394295  2.405| 91.292| 104.068
98.0 383416  2.119| S0.413| 94.615
2001 8,964 6,536 8,906 3672 2,274 97.0 376138 1.927| 73.134| 88.595
2002 18,633 16,360 18,592 7,250 6,624 96.0 371186 1797 68.183 84.104
2003 36,648 28916 36517|| 9945 9,154 950 | 366585 1675| 63.582| 80455

2004 39,203 50,009 58,955] | 12,004| 10,598 The entire distribution is available. However, if you

2005 82,725| 75373 82,011|| 18,791 13,343 look closely you can see that the Bootstrap sample
2006 92,666 86,679 92,116| | 20,677 19,662 mean is about 13% bigger than the ELRF = Mack =
C-L mean, and the sample S.D. is about 13% bigger
than the Mack S.D.

If you like the C-L mean value better you can shift
the distribution over to equalize the means.

Total | 303,003 | 268,752 302,153| | 37.952 | 33.501
20,000 Simulations. 1 Unit = 1,000 €
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Combine Bootstrap and model-fit by comparing the residual ‘X-rays’
of the real data with those of the pseudo-data to assess the quality
of the model

Bootstrap simulated pseudo-datasets are computationally very cheap. We just used 20,000 of them to
derive a loss distribution. For each such dataset we computed its C-L forecast and threw it away.

Now we’ll use the Bootstrap to make just three pseudo-datasets, but we’ll hang on to them in full detail. It’s
not the forecasts we want to look at but the residual plots from applying Mack.

Bootstrap for model fit

[= [@]=]

fia, CHF CAL:PL(C)ELRF[Ratio Only - D(1)-1}:Wtd Std Res Plot (S| @ CHF CAL:PL(C)BST:ELRFIRatio O
Wid Std Res vs Cal. Ve

Wtd Std Res vs Cal ¥r

Wid Std Res vs Cal ¥r

] 7171 1 TT [1 [T T[] [ ] | I | I | I
97 98 9% 00 0 o 02 04 05 06 97 9% % 0 0 0 03 04 08 06

Here they the calendar direction residual plots. Can you see the odd one out?

20



30/08/2019

Bootstrap for model fit

@ CHF CAL:PL

{8, CHF CALPL{C)ELRF[Ratio Only - D{1)-1:Wid Std Res Plot

Wid Std Res vs Cal Yr
— —

Witd Std Res vs Cal Yr

Witd Std Res vs Cal ¥r
— — — —

r

If you went for the upper left you were right. The downward trend in the residuals in the calendar direction
disappears in the Bootstrapped samples. Which is just what you’d expect when you think about it.

In one way you could think of it as smoothing out the idiosyncrasies in the data.

But if you regard the residual plots as valuable diagnostic tools...

... you might better call it, “shredding the evidence.”
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Arlington, Virginia 22203
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