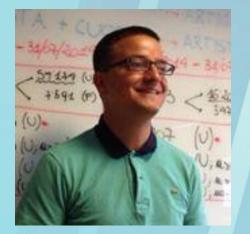


November 9-12, 2020 • Online Event

Determining Vehicle Symbols Using Machine Learning Techniques

Giorgio A. Spedicato & Marco De Virgilis

Presenters



Giorgio Alfredo Spedicato, Ph.D FCAS FSA CSPA C.Stat Data Science Manager, Unipol Group

Marco De Virgilis, Senior Actuarial Data Scientist, The Allstate Corporation

Disclaimer

The views and opinions expressed in this presentation are those of the authors' and do not necessarily reflect the position of the organizations of which they are part.

Agenda

- Vehicle Symbols Explanation
- Analysis and Methodology
- Algorithms Implemented
- Application
- Model Comparisons
- Conclusion

Vehicle Symbols

Vehicle Symbols

- Vehicle Symbols (VS) are codes that group vehicles experiencing similar loss costs. In practice, a code is assigned to a vehicle which corresponds to a loss relativity. The VS assigned to a given vehicle type may also vary by peril.
- Insurers writing motor perils coverage would typically charge vehicles belonging to the same VS group the same price — all policyholder characteristics being equal.
- A company may develop VS by itself or use those provided by Rating Bureaus.

Vehicle Symbols

- Determining VS is an important task in developing a sound ratemaking framework in motor insurance.
- Recent improvements have paved the way for more sophisticated algorithms that make more extensive use of data, reaching unprecedented levels of performance.
- Our aim is to show how a VS estimation exercise is carried out by exploiting unsupervised and supervised Machine Learning methods.

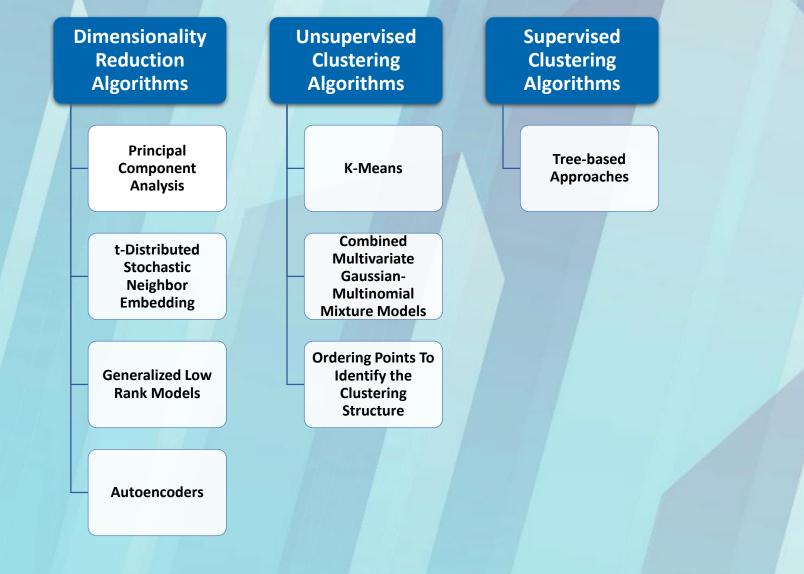
Analysis and Methodology

Analysis and Methodology

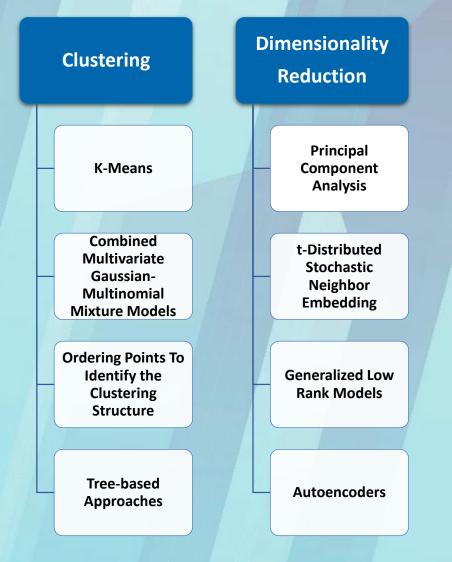
- Explore several ML techniques to either directly group vehicles into groups or to uncover latent dimensions that summarize their essential characteristics.
- Compare the different methodologies quantitatively, in terms of predictive performance and qualitatively, in terms of practicality and communicability.
- The Gini Index will quantify the predictive performance, while one-way plots will depict the relation between the clusters (or the latent dimensions) and the insurance risk.

Algorithms Implemented

Algorithms Implemented



Algorithms Implemented



Dimensionality Reduction

Principal Component Analysis (PCA)

- Principal Component Analysis (PCA) is an approach for deriving a low-dimensional set of features from a large set of variables.
- PCA finds a small number of dimensions that keeps the initial dataset variation by computing a linear combination of the initial features.
- These linear combinations are called *Principal Components*.

•
$$Z_k = \phi_{1k} X_1 + \phi_{2k} X_2 + \dots + \phi_{ik} X_i$$

t-Distributed Stochastic Neighbor Embedding (t-SNE)

- t-SNE is a **non-linear** technique, while, PCA applies a linear transformation to the original data.
- Another important distinction is that, whereas, PCA tries to preserve the global similarities, t-SNE is more concerned with preserving local similarities.
- The algorithm optimizes a cost function that computes the Euclidean distance between the high-dimensional points and the low-dimensional points.

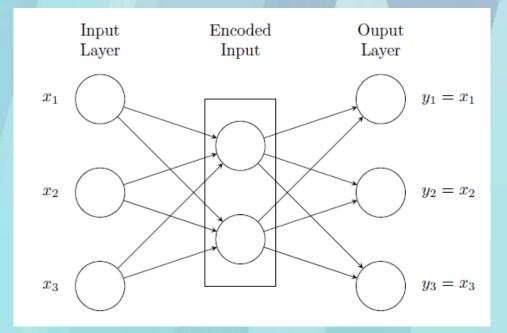
Generalized Low Rank Models (GLRM)

- GRLMs are a matrix factorization technique that represents a dimension reduction able to handle **mixed**-data matrices.
- GLRMs are commonly used as extension of the PCA technique, to naturally handle **mixed** data sets containing ordinal, categorical, Poisson and Boolean data types.
- They approximate an input data matrix $X_{m,n}$ by **projecting** it in a reduced low rank form.

•
$$X_{m,n} \approx A_{m,k} * Y_{k,n}$$

Autoencoders

- Autoencoders are a type of Artificial Neural Networks used to learn feature representations in an unsupervised manner
- They can be though as very powerful non-linear generalization of PCA.



Unsupervised Clustering

K-Means

- The K-Means algorithm is a clustering method which aims to **partition** a set of data points into *k* clusters, in which each observation belongs to the clusters with the **nearest** mean.
- It is an iterative algorithm that finds clusters by minimizing the Euclidean distances between points, hence it minimize the within-cluster variances.
- Extensions of the algorithm, namely K-Mods and K-Prototypes can also handle categorical variables.

Combined Multivariate Gaussian-Multinomial Mixture Models (Mixmod)

- Mixture models assume that the data are an i.i.d. samples from some population described by a **probability density** function.
- This density function is a finite mixture of parametric component density functions (e.g. multinomial or gaussian) where each component models one of the cluster.
- The advantage of using mixture models is that it allows to analyze all the data possibilities, numerical or categorical, in a unified modeling approach.

Ordering Points To Identify the Clustering Structure (OPTICS)

- Many clustering algorithms, e.g. K-Means, require the input of series of parameters in order to identify the clustering structure.
- Density-based approaches overcome this drawback and usually require less parameters to identify clusters.
- The OPTICS algorithm makes the all process seemingly parameter-less.
- The aim is to either assign each data point to a cluster or classify it as noise.

Supervised Methods

Tree-based Approaches (CART)

- Classification and Regression Trees (CART) recursively split the dataset into smaller subsets that are defined in terms of intervals of the target variable.
- The algorithms are able to unravel interactions between variables and represent them in terms of hierarchical dependency structures.

Application

Application

- The research will focus on how vehicle characteristics significantly affects the insurance risk, keeping them as the primary point of view.
- This means that each analysis shall lead to a finite number of groups of vehicle that share **similar** characteristics.
- These groups will be analyzed in terms of claim frequency, on a dataset used in a Kaggle competition sponsored by Allstate in 2011.

Model Comparisons

Model Comparisons

- The following slides will show the dataset grouped according to the found VS clusters and the insurance risk (claim frequency).
- We are looking for well-defined and well-separated cluster or monotone relations between the identified latent variables and the claim frequency.
- A quantitative ranking will be performed evaluating the Gini Index as measure of the VS clustering performance.

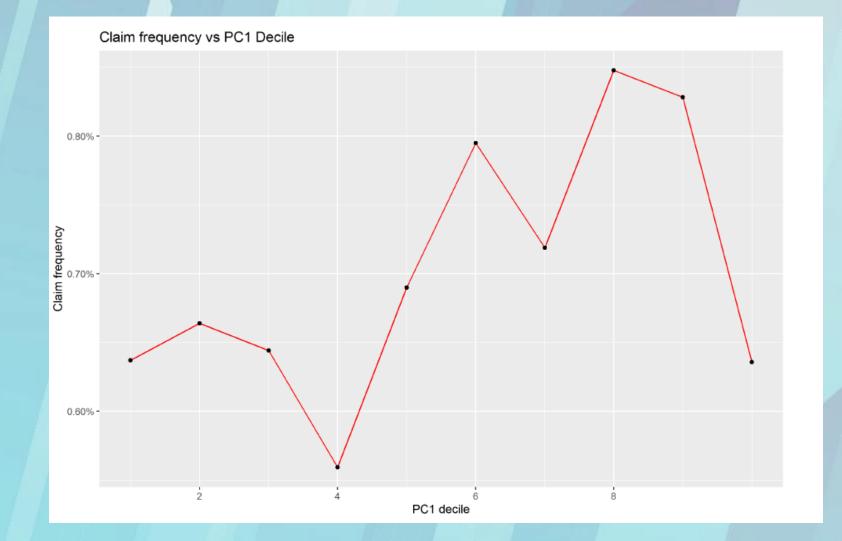
Model Comparisons

• The score given to each VS grouping is based on the quality of the prediction of a **frequency GLM**: $E(\lambda_i) = f(x_i) + offset(\ln(Exposure)).$

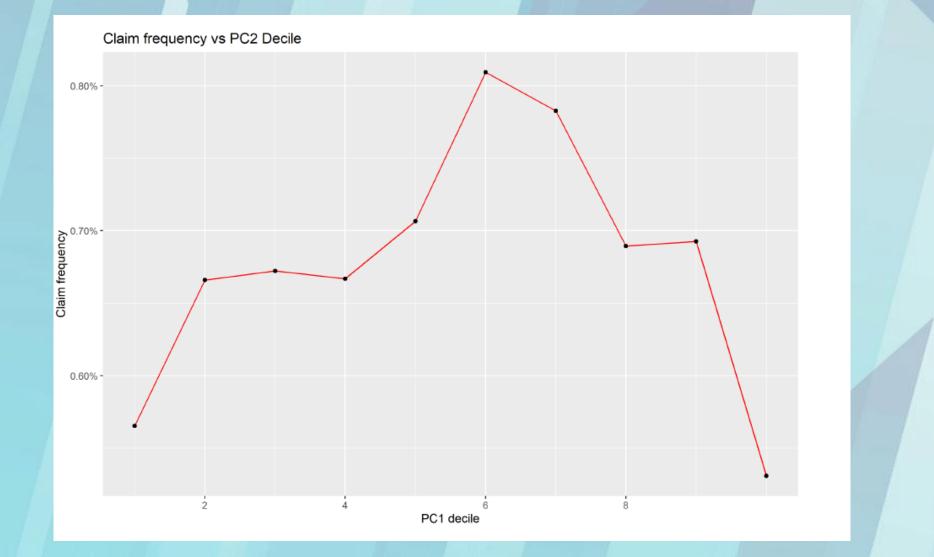
• When the VS model provides k categorical cluster indexes, $f(x_i)$ is the **dummy coefficient** given to each cluster.

• When the model provides k latent dimensions (η_i^k) , for each latent dimension, we compute a separate GLM, where $f(x_i) = \beta_k * \eta_i^k$. We are assessing whether the k-th latent dimension shows a monotone relation with the insurance risk and estimate the model performance taking the highest Gini index.

Application of PCA

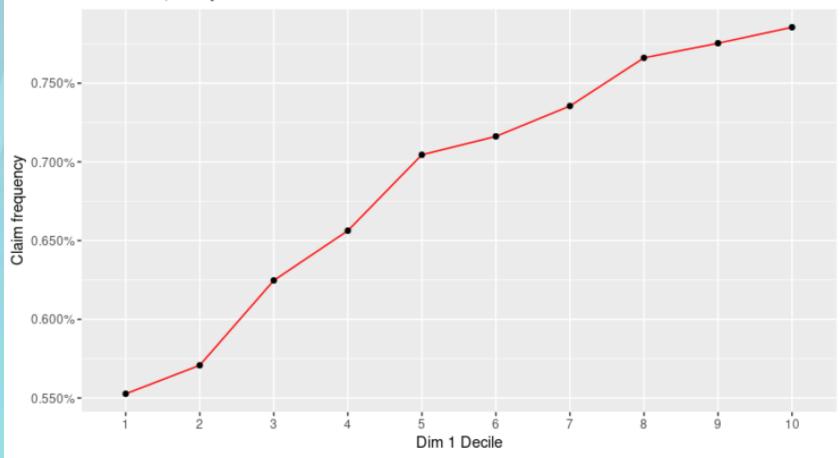


Application of PCA



Application of t-SNE

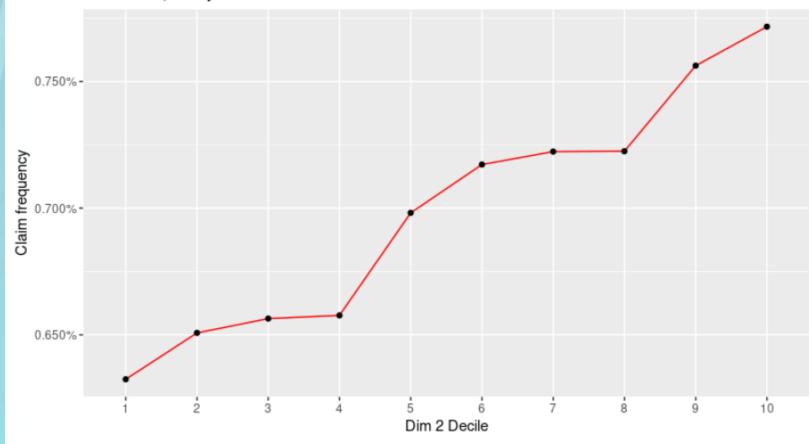
Claim frequency vs t-SNE Dimension 1 Decile



CIS

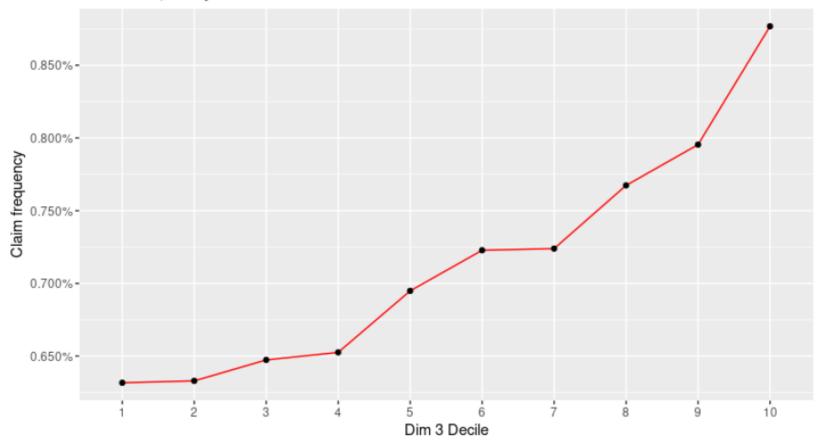
Application of t-SNE

Claim frequency vs t-SNE Dimension 2 Decile



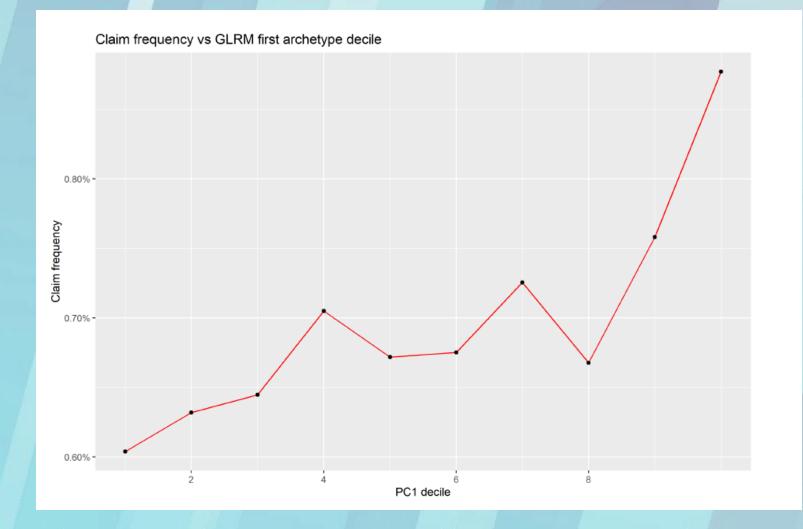
Application of t-SNE

Claim frequency vs t-SNE Dimension 3 Decile

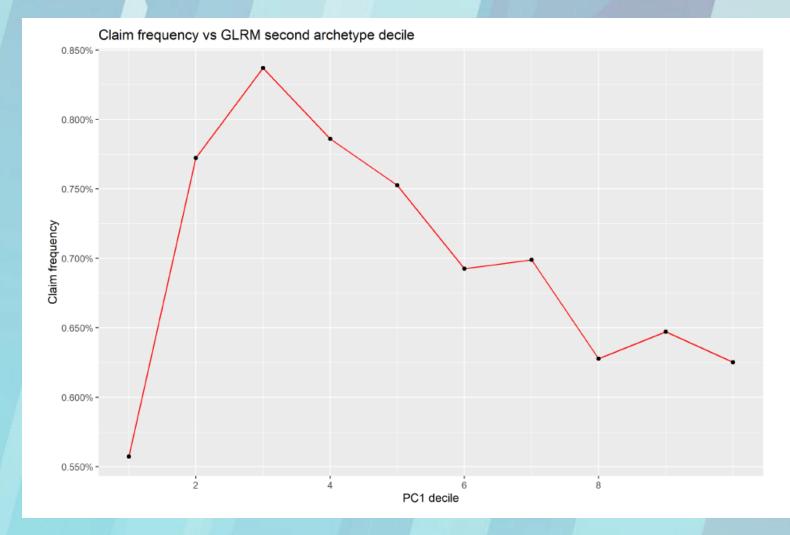


CIS

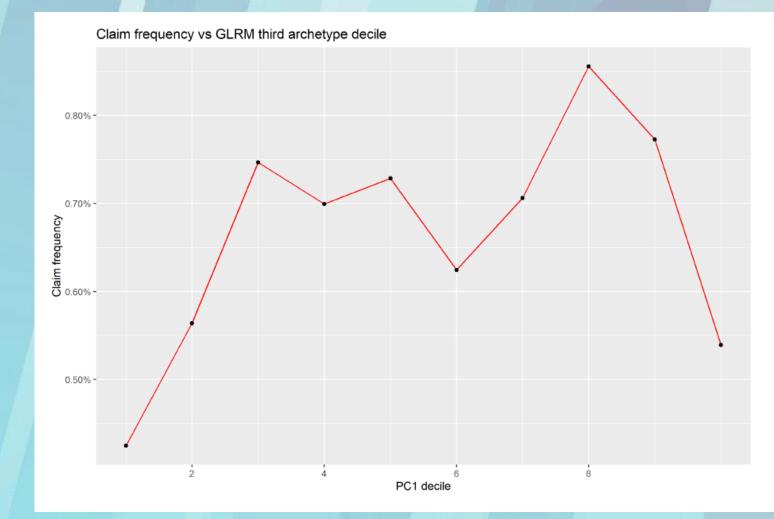
Application of GLRM



Application of GLRM

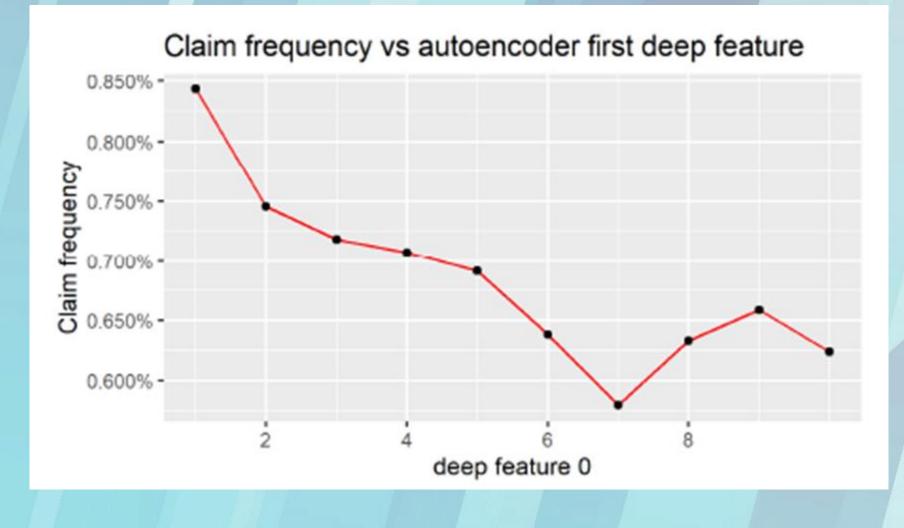


Application of GLRM

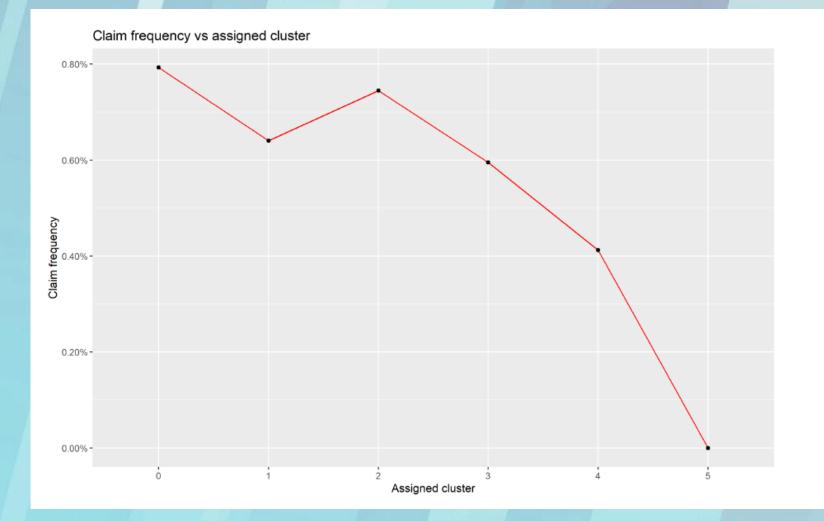


CIS

Application of Autoencoders

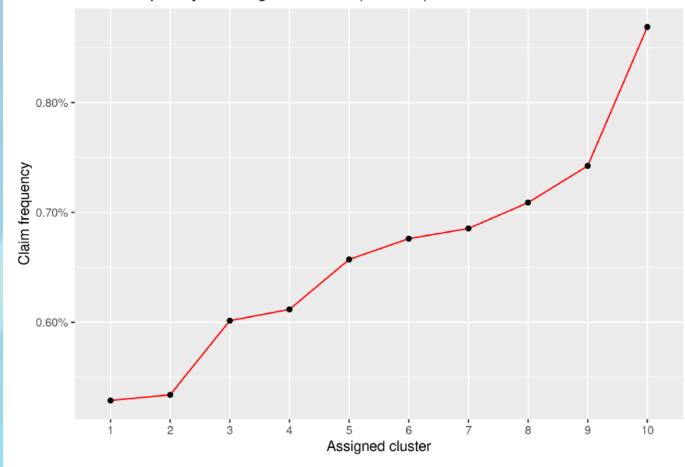


Application of K-Means



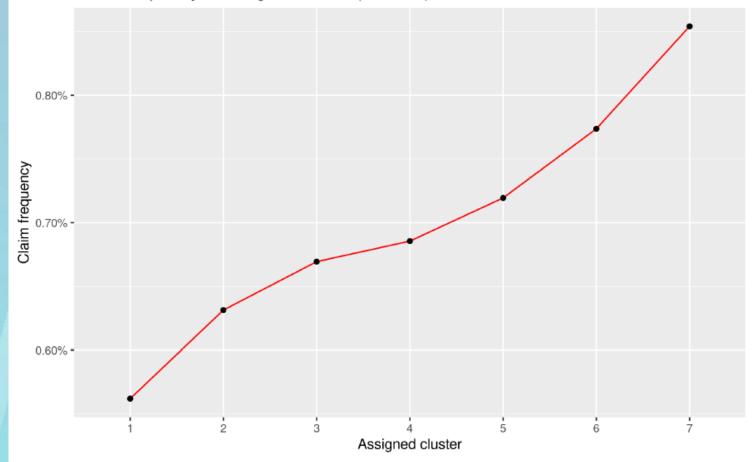
Application of Mixmod

Claim frequency vs assigned cluster (Mixmod)



Application of OPTICS

Claim frequency vs assigned cluster (OPTICS)



Application of CART

Claim frequency vs MOB groups 0.80% -Claim frequency 0.40% 0.004 0.006 0.008 MOB group (score)

- The ability to predict the claim frequency is the main criterion that has been used to rank the different predictive algorithms presented.
- The Normalized Gini index has been used to quantify, on the test set, the methods' ability to discriminate vehicle propensity to file claims.

0.468
0.334
0.327
0.314
(

- The CART supervised approach clearly outperforms the other unsupervised methods.
- However, among unsupervised algorithms, some latent features of GLMR and Autoencoders show substantial Gini scores.

- This paper has compared several ML algorithms aiming to define groups of vehicle characterized by **similar loss propensity**, the Vehicle Symbols.
- The predictive power of newer techniques appears to significantly outperform older ones.
- Many of these algorithms are very new and **little known** by the predictive modeling practitioners in the insurance industry.
- This research aims to offer an **initial introduction** to the capabilities of such new techniques, in order to encourage more in-depth study by actuaries.
- We believe that it is very beneficial to **explore** these capabilities in the context of actuarial science.

Contacts:

Giorgio A. Spedicato: spedygiorgio@gmail.com Marco De Virgilis: devirgilis.marco@gmail.com

Casualty Actuarial Society 4350 North Fairfax Drive, Suite 250 Arlington, Virginia 22203

www.casact.org

CIS