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Background - Bayesians vs. Frequentists

Given the model X ∼ f (X |θ)
Given the set of observations x .

Frequentists test the hypothesis θ = θ0.
Bayesians calculate the posterior distribution f (θ|x).

f (θ|x) = f (x |θ) · π(θ)∫
ϑ

f (x |ϑ) · π(ϑ) · dϑ

The issue — What is the prior distribution, π(θ)?
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The Philosophical Issue

Bayesians select π “subjectively” according to prior
opinion.
Frequentists respond by saying that conclusions should be
dictated solely by looking at “the data.”
Bayesians respond with “noninformative” priors.

Is there such a thing?
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The Practical Issue — Can we do the calculations?

For most of the 20th century, the frequentists were
winning.

Calculations were easy with quadradic forms needed for the
normal distributions.
The General Linear Model (PROC GLM in SAS).
As computers and numerical analysis progressed we got
the Generalized Linear Model (PROC GENMOD in SAS).

Now the Bayesians are winning - with MCMC and good
software to implement it.
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The Problem with Bayesian Analysis

Let θ be an n-parameter vector — e.g. development
factors.
Let X be a set of observations — e.g. a loss triangle.

f (θ|x) = f (x |θ) · π(θ)∫
ϑ1

· · ·
∫
ϑn

f (x |ϑ) · π(ϑ) · dϑ

f (X |θ) is the likelihood of X given θ.
π(θ) is the prior distribution of θ.
f (θ|X ) is the posterior distribution of θ.

Calculating the n-dimensional integral is intractable.
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The Problem with Bayesian Analysis

Let θ be an n-parameter vector — e.g. development
factors.
Let X be a set of observations — e.g. a loss triangle.

f (θ|x) = f (x |θ) · π(θ)∫
ϑ1

· · ·
∫
ϑn

f (x |ϑ) · π(ϑ) · dϑ

f (X |θ) is the likelihood of X given θ.
π(θ) is the prior distribution of θ.
f (θ|X ) is the posterior distribution of θ.
Calculating the n-dimensional integral is intractable.
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A New World Order

This impasse came to an end in 1990 when a
simulation-based approach to estimating posterior
probabilities was introduced.
Sampling Based Approach to Calculating Marginal
Densities

Alan E. Gelfand and Adrian F.M. Smith
Journal of the American Statistical Association, June 1990

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles



Bayesian
MCMC

Stochastic
Loss Reserve
Models for
Paid Loss
Triangles

Glenn Meyers

MCMC Intro

Reserves Intro

CRC Model

Boxplots

SCC Model

“loo” Stats

PP Plots

CSR Model

IPI Model

Final Remarks

Markov Chains

Let Ω be a finite state with random events

X1,X2, . . . ,Xt , . . .

A Markov chain P satisfies
Pr(Xt = y |Xt−1 = xt−1, . . . ,X1 = x1) = Pr(Xt = y |Xt−1 = xt−1)

The probability of an event in the chain depends only on
the immediate previous event.

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles



Bayesian
MCMC

Stochastic
Loss Reserve
Models for
Paid Loss
Triangles

Glenn Meyers

MCMC Intro

Reserves Intro

CRC Model

Boxplots

SCC Model

“loo” Stats

PP Plots

CSR Model

IPI Model

Final Remarks

The Markov Convergence Theorem

There is a branch of probability theory, called Ergodic
Theory, that gives conditions for which there exists a
unique stationary distribution, π, such that

Pr(y |Xt−1) −→ π(y)

as t −→∞
“Convergence” means that for sufficiently large t > T , Xt
can be thought of as a random draw from the distribution
function π.
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The Metropolis Hastings Algorithm
A Very Important Markov Chain.

1 Time t = 1: select a random initial position θ1 in
parameter space.

2 Select a proposal distribution p(θ|θt−1) that we will use to
select proposed random steps away from our current
position in parameter space.

3 Starting at time t = 2: repeat the following until you get
convergence:

At step t, generate a proposal θ∗ ∼ p(θ|θt−1).
Generate U ∼ uniform(0,1)
Calculate

R = f (θ∗|x)
f (θt−1|x) ·

p(θt−1|θ∗)
p(θ∗|θt−1)

If U < R then θt = θ∗. Else, θt = θt−1.
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Dodging the Intractable Integral

R = f (θ∗|x)
f (θt−1|x) ·

p(θt−1|θ∗)
p(θ∗|θt−1)

R =

f (x |θ∗)·π(θ∗)∫
ϑ1

···
∫

ϑn

f (x |ϑ)·π(ϑ)·dϑ

f (x |θt−1)·π(θt−1)∫
ϑ1

···
∫

ϑn

f (x |ϑ)·π(ϑ)·dϑ

· p(θt−1|θ∗)
p(θ∗|θt−1)

The integral
∫
ϑ1

· · ·
∫
ϑn

f (x |ϑ) · π(ϑ) · dϑ cancels out!
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The Metropolis Hastings Algorithm
A Very Important Markov Chain.

1 Time t = 1: select a random initial position θ1 in
parameter space.

2 Select a proposal distribution p(θ|θt−1) that we will use to
select proposed random steps away from our current
position in parameter space.

3 Starting at time t = 2: repeat the following until you get
convergence:

At step t, generate a proposal θ∗ ∼ p(θ|θt−1).
Generate U ∼ uniform(0,1)
Calculate

R = f (x |θ∗) · π(θ∗)
f (x |θt−1) · π(θt−1) ·

p(θt−1|θ∗)
p(θ∗|θt−1)

If U < R then θt = θ∗. Else, θt = θt−1.
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The Relevance of the
Metropolis Hastings Algorithm

Defined in terms of the conditional distribution

f (X |θ)

and the prior distribution

π(θ)
The limiting distribution is the posterior distribution!

Code f (X |θ) and π(θ) into a Markov chain and let it run
for a while, and you have a large sample from the posterior
distribution.
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The Relevance of the
Metropolis Hastings Algorithm

Defined in terms of the conditional distribution

f (X |θ)

and the prior distribution

π(θ)
The limiting distribution is the posterior distribution!
Code f (X |θ) and π(θ) into a Markov chain and let it run
for a while, and you have a large sample from the posterior
distribution.
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The Relevance of the
Metropolis Hastings Algorithm

The theoretical limiting distribution is the same, no matter
what proposal distribution, p(θ|θt−1), is used.
The choice of the proposal distribution does affect the
speed of convergence. The latest software is pretty fast.
There is no fundamental limit on the number of
parameters in you model!
The practical limit is within range of stochastic loss
reserve models.
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A Short History of MCMC

Originated with the study of nuclear fission.
Enrico Fermi, John von Neumann, Nicolas Metropolis and
Stanislaw Ulam.
Developed the Metropolis algorithm.

Keith Hastings (1970) recognized the potential of the
Metropolis algorithm to solve statistical problems.
Simulations were not readily accepted by the statistical
community at that time.
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A Short History of MCMC

Gelfand and Smith (1990) pulled together the relevant
ideas at a time when simulation was deemed OK.

Seized upon by scientists in other fields.
Used the Gibbs sampler (A one parameter at a time special
case of Metropolis Hastings algorithm).

Statisticians in the UK started the BUGS project to
produce software for MCMC.

Bayesian inference Using the Gibbs Sampler
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Evolution of MCMC Software

WinBUGS (Original — now discontinued)
OpenBUGS (Continuation of WinBUGS)

Designed mainly for the Windows operating system.
JAGS — Just Another Gibbs Sampler

Originated by Martyn Plummer.
Runs on multiple operating systems.
Callable from R (“runjags” package.

Stan (in honor of Stanislaw Ulam)
Stan team led by Andrew Gelman at Columbia University.
Runs on multiple operation systems.
Callable from R (“rstan” package) and other languages,
e.g. Python and Matlab.

Features of the latest software: (1) good convergence
diagnostics, and (2) fast convergence.
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Evolution of MCMC Software

WinBUGS (Original — now discontinued)
OpenBUGS (Continuation of WinBUGS)

Designed mainly for the Windows operating system.
JAGS — Just Another Gibbs Sampler

Originated by Martyn Plummer.
Runs on multiple operating systems.
Callable from R (“runjags” package.

Stan (in honor of Stanislaw Ulam)
Stan team led by Andrew Gelman at Columbia University.
Runs on multiple operation systems.
Callable from R (“rstan” package) and other languages,
e.g. Python and Matlab.

Features of the latest software: (1) good convergence
diagnostics, and (2) fast convergence.

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles



Bayesian
MCMC

Stochastic
Loss Reserve
Models for
Paid Loss
Triangles

Glenn Meyers

MCMC Intro

Reserves Intro

CRC Model

Boxplots

SCC Model

“loo” Stats

PP Plots

CSR Model

IPI Model

Final Remarks

Outline of The Main Event — Reserving

Data taken from the CAS Loss Reserve Database. 50
“well behaved” loss triangles from each of the CA, PA,
WC and OL lines of business.
Stochastic loss reserve modeling with Bayesian MCMC

Focus on paid loss triangles.
Three models using paid triangles, one using incurred
triangles and one model using combined paid and incurred
triangles.

Diagnostics on those models
Real-time diagnostics useful for current loss reserve
analyses.
Long-term “Reputation” diagnostics based on how well a
model performs on other “similar” loss triangles taken from
the CAS Loss Reserve Database
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References — CAS Monograph Series

Stochastic Loss Reserving Using Bayesian MCMC Models
Stochastic Loss Reserving Using Bayesian MCMC Models
- 2nd Edition
The difference between the two editions

1st edition provides a gentler introduction to Bayesian
MCMC.
2nd edition uses up-to-date software and more diagnostics.
It also includes dependencies between lines of business and
risk margins.
Today’s webinar draws on material from the second edition.

Today’s talk will focus on paid data. The monographs
provide more coverage for incurred data.
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Common Features of the Models in this Talk

Let Cwd equal the cumulative loss (paid or incurred) for
accident year, w , and development lag, d .
All models discussed in these talk will be of the form:

Cwd ∼ lognormal(µwd , σd )

The examples that follow will be 10x10 loss triangles from
US Schedule P.
As an accident year matures, an increasing proportion of
claims are settled. Thus we impose the condition.

σ2
1 > . . . > σ2

10

The models discussed in this talk explore alternative ways
to model µwd .
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Schedule P Data for Paid Losses

Table: Illustrative Insurer Net Written Premium
AY 1 2 3 4 5 6 7 8 9 10

Premium 5812 4908 5454 5165 5214 5230 4992 5466 5226 4962

Table: Illustrative Insurer Paid Losses Net of Reinsurance
AY \ Lag 1 2 3 4 5 6 7 8 9 10 Source

1988 952 1529 2813 3647 3724 3832 3899 3907 3911 3912 1997
1989 849 1564 2202 2432 2468 2487 2513 2526 2531 2527 1998
1990 983 2211 2830 3832 4039 4065 4102 4155 4268 4274 1999
1991 1657 2685 3169 3600 3900 4320 4332 4338 4341 4341 2000
1992 932 1940 2626 3332 3368 3491 3531 3540 3540 3583 2001
1993 1162 2402 2799 2996 3034 3042 3230 3238 3241 3268 2002
1994 1478 2980 3945 4714 5462 5680 5682 5683 5684 5684 2003
1995 1240 2080 2607 3080 3678 2004 4117 4125 4128 4128 1997
1996 1326 2412 3367 3843 3965 4127 4133 4141 4142 4144 2005
1997 1413 2683 3173 3674 3805 4005 4020 4095 4132 4139 2006
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The CRoss Classified (CRC) Model

— Parameters
logelr ∼ normal(-0.4,

√
10).

αw ∼ normal(0,
√

10) for w = 2, . . . , 10. α1 = 0.
βd ∼ normal(0,

√
10) for d = 1, . . . , 9. β10 = 0.

ai ∼ uniform(0, 1) for i = 1, . . . , 10

— Transformed Parameters
σ2

d =
∑10

i=d ai for d = 1, . . . , 10.
Note that this forces σ2

1 > . . . > σ2
10

µwd = log(Premiumw ) + logelr + αw + βd

— Model
Then Cwd ∼ lognormal(µwd , σd )
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The CRoss Classified (CRC) Model

— Parameters
logelr ∼ normal(-0.4,

√
10).

αw ∼ normal(0,
√

10) for w = 2, . . . , 10. α1 = 0.
βd ∼ normal(0,

√
10) for d = 1, . . . , 9. β10 = 0.

ai ∼ uniform(0, 1) for i = 1, . . . , 10
— Transformed Parameters

σ2
d =

∑10
i=d ai for d = 1, . . . , 10.

Note that this forces σ2
1 > . . . > σ2

10
µwd = log(Premiumw ) + logelr + αw + βd

— Model
Then Cwd ∼ lognormal(µwd , σd )
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The CRoss Classified (CRC) Model

— Parameters
logelr ∼ normal(-0.4,

√
10).

αw ∼ normal(0,
√

10) for w = 2, . . . , 10. α1 = 0.
βd ∼ normal(0,

√
10) for d = 1, . . . , 9. β10 = 0.

ai ∼ uniform(0, 1) for i = 1, . . . , 10
— Transformed Parameters

σ2
d =

∑10
i=d ai for d = 1, . . . , 10.

Note that this forces σ2
1 > . . . > σ2

10
µwd = log(Premiumw ) + logelr + αw + βd

— Model
Then Cwd ∼ lognormal(µwd , σd )

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles



Bayesian
MCMC

Stochastic
Loss Reserve
Models for
Paid Loss
Triangles

Glenn Meyers

MCMC Intro

Reserves Intro

CRC Model

Boxplots

SCC Model

“loo” Stats

PP Plots

CSR Model

IPI Model

Final Remarks

Run “CRC.R” to get 10,000 {.}

The scripts are from the monograph. They can be
downloaded from

https://www.casact.org/pubs/monographs/meyers/Appendix.zip.
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Outline of “CRC.R”

Get 10,000 parameter vectors by running Stan within R.
{logelr}, {α1:10}, {β1:10}, and {σ1:10}
Calculate {µ2:10,10} = log(Premiumw ) + {logelr}+ {α2:10}
Note β10 = 0
Simulate “ultimate” outcomes

{C2:10,10} ∼ {lognormal(µ2:10,10, σ10)}

Calculate the totals {
∑10

w=1 Cw ,10}
Calculate “statistics of interest” of {

∑10
w=1 Cw ,10}

Mean[{
∑10

w=1 Cw ,10}]
Standard Deviation[{

∑10
w=1 Cw ,10}]

Percentile of actual “ultimates” from holdout lower
triangle data.
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CRC Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile
1 5812 3912 0 0.0000 3912
2 4908 2564 114 0.0445 2527
3 5454 4149 193 0.0465 4274
4 5165 4315 223 0.0517 4341
5 5214 3566 203 0.0569 3583
6 5230 3410 249 0.0730 3268
7 4992 5208 445 0.0854 5684
8 5466 3630 442 0.1218 4128
9 5226 4392 817 0.1860 4144
10 4962 4976 1762 0.3541 4139

Total 52429 40121 2487 0.0620 40000 51.88
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Standardized Residual Boxplots

We have a large sample of parameter vectors, rather than
a single parameter vector that arises from, say, a
maximum likelihood estimate.
Take a random sample of 100 js and use the corresponding
parameter vectors, µj

wd and σj
d from the posterior

distribution and calculate the standardized residuals, r j
wd ,

for the log of all losses in the training (upper) loss triangle.

r j
wd = log(Cwd )− µj

wd
σj

d

for w = 1 . . . , 10, d = 1, · · · , 11− w and for each j .
Do Boxplots by accident year and development year.
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Standardized Residual Boxplots — CRC Model
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The Stochastic Cape Cod (SCC) Model

— Parameters
logelr ∼ normal(-0.4,

√
10).

αw is dropped.
βd ∼ normal(0,

√
10) for d = 1, . . . , 9. β10 = 0.

ai ∼ uniform(0, 1) for i = 1, . . . , 10
— Transformed Parameters

σ2
d =

∑10
i=d ai for d = 1, . . . , 10.

Note that this forces σ2
1 > . . . > σ2

10
µwd = log(Premiumw ) + logelr + βd

— Model
Then Cwd ∼ lognormal(µwd , σd )
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SCC Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile
1 5812 3912 0 0.0000 3912
2 4908 2905 640 0.2203 2527
3 5454 4265 724 0.1698 4274
4 5165 4199 703 0.1674 4341
5 5214 3376 694 0.2056 3583
6 5230 3097 690 0.2228 3268
7 4992 4645 665 0.1432 5684
8 5466 3180 700 0.2201 4128
9 5226 3639 657 0.1805 4144
10 4962 3506 591 0.1686 4139

Total 52429 36725 3950 0.1075 40000 83.38
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CRC Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile
1 5812 3912 0 0.0000 3912
2 4908 2564 114 0.0445 2527
3 5454 4149 193 0.0465 4274
4 5165 4315 223 0.0517 4341
5 5214 3566 203 0.0569 3583
6 5230 3410 249 0.0730 3268
7 4992 5208 445 0.0854 5684
8 5466 3630 442 0.1218 4128
9 5226 4392 817 0.1860 4144
10 4962 4976 1762 0.3541 4139

Total 52429 40121 2487 0.0620 40000 51.88
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Standardized Residual Boxplots — SCC Model
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Standardized Residual Boxplots — CRC Model
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Model Selection With the “loo” Package”

Given two different models for the same data, how do you
select the “better” model?

“loo” stands for Leave One Out.
Maintained by members of the stan development team.
Vehtari, A., Gelman, A., and Gabry, J. (2015). “Efficient
implementation of leave-one-out cross validation and
WAIC for evaluating fitted Bayesian models.”
See the documentation of the “loo” package for the latest
version of the paper.
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Model Selection With the “loo” Package”

Given two different models for the same data, how do you
select the “better” model?
“loo” stands for Leave One Out.
Maintained by members of the stan development team.
Vehtari, A., Gelman, A., and Gabry, J. (2015). “Efficient
implementation of leave-one-out cross validation and
WAIC for evaluating fitted Bayesian models.”
See the documentation of the “loo” package for the latest
version of the paper.
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Selecting Models Fit By Maximum Likelihood

If we fit a model, f (x |θ), by maximum likelihood, define

AIC = 2 · p − 2 · L(x |θ̂)

Where:
p is the number of parameters in the model.
L(x |θ̂) is the maximum log-likelihood of the model
specified by f .

Lower AIC indicates a better fit.
Encourages a larger log-likelihood.
Penalizes an increase in the number of parameters.
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AIC in a Bayesian Environment?

When doing maximum likelihood estimation, we have a
single parameter vector.
With MCMC we have 10,000 parameter vectors.

In a Bayesian environment — Should the penalty for a
parameter be as great when there is strong prior
information?
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AIC in a Bayesian Environment?

When doing maximum likelihood estimation, we have a
single parameter vector.
With MCMC we have 10,000 parameter vectors.
In a Bayesian environment — Should the penalty for a
parameter be as great when there is strong prior
information?
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Selecting Bayesian MCMC Models
with the LOOIC Statistic

Given an MCMC model with parameters {θi}10,000
i=1 , define

LOOIC = 2 · p̂loo − 2 · {L(x |θi )}10,000
i=1

Where
p̂loo is the effective number of parameters.

p̂loo = {L(x |θi )}10,000
i=1 −

N∑
n=1
{L(xn|x(−n), θi )}10,000

i=1

x(−n) = x1, . . . , xn−1, xn+1, . . . , xN
L(xn|x(−n), θ

i ) is the log-likelihood of xn from a model fit
using all data except xn.
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Selecting Bayesian MCMC Models
with the LOOIC Statistic

After some algebra we can see that

LOOIC = −2 ·
N∑

n=1
{L(xn|x(−n), θi )}10,000

i=1

which we like as it favors the model with the largest
likelihood, and the smallest LOOIC, on the “holdout” data.

Some “loo” package features.∑N
n=1 {L(xn|x(−n), θi )}10,000

i=1 ≡ ELPDloo

“loo” does not calculate each summand in ELPDloo by
MCMC. Instead it approximates the sum using a
10,000 x N matrix of log-likelihoods.
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Selecting Bayesian MCMC Models
with the LOOIC Statistic

After some algebra we can see that

LOOIC = −2 ·
N∑

n=1
{L(xn|x(−n), θi )}10,000

i=1

which we like as it favors the model with the largest
likelihood, and the smallest LOOIC, on the “holdout” data.
Some “loo” package features.∑N

n=1 {L(xn|x(−n), θi )}10,000
i=1 ≡ ELPDloo

“loo” does not calculate each summand in ELPDloo by
MCMC. Instead it approximates the sum using a
10,000 x N matrix of log-likelihoods.
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Model Comparison (loo) Statistics

Model êlpd loo ploo LOOIC
CRC-Paid 47.80 14.97 -95.60
SCC-Paid -5.14 8.75 10.28

In my monograph, I calculated the loo statistics for 200
loss triangles, and the CRC fit better than the SCC model
for all 200 triangles!

At this point I want to introduce what I call “ReputationReputationReputation”
statistics. That is I want to draw conclusions about a
model based on looking at a lot of other triangles.
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Model Comparison (loo) Statistics

Model êlpd loo ploo LOOIC
CRC-Paid 47.80 14.97 -95.60
SCC-Paid -5.14 8.75 10.28

In my monograph, I calculated the loo statistics for 200
loss triangles, and the CRC fit better than the SCC model
for all 200 triangles!
At this point I want to introduce what I call “ReputationReputationReputation”
statistics. That is I want to draw conclusions about a
model based on looking at a lot of other triangles.

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles



Bayesian
MCMC

Stochastic
Loss Reserve
Models for
Paid Loss
Triangles

Glenn Meyers

MCMC Intro

Reserves Intro

CRC Model

Boxplots

SCC Model

“loo” Stats

PP Plots

CSR Model

IPI Model

Final Remarks

Testing Percentiles of Outcomes with the
Lower Triangle Holdout Data.

Use the model to calculate the percentile of the predictive
distribution of the actual outcome.
We should expect the percentiles of the outcomes to be
uniformly distributed.
Uniformity is testable with model fits and outcomes of
several insurers.

PP Plots - Plot the sorted values of a uniformly distributed
set of numbers (Expected) against the sorted percentiles
of the outcomes predicted by the model (Predicted).

We expect the plot to lie along a 45o line.
Kolmogorov-Smirnov test puts bounds around how far the
difference between the predicted and expected can be.

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles



Bayesian
MCMC

Stochastic
Loss Reserve
Models for
Paid Loss
Triangles

Glenn Meyers

MCMC Intro

Reserves Intro

CRC Model

Boxplots

SCC Model

“loo” Stats

PP Plots

CSR Model

IPI Model

Final Remarks

Testing Percentiles of Outcomes with the
Lower Triangle Holdout Data.

Use the model to calculate the percentile of the predictive
distribution of the actual outcome.
We should expect the percentiles of the outcomes to be
uniformly distributed.
Uniformity is testable with model fits and outcomes of
several insurers.
PP Plots - Plot the sorted values of a uniformly distributed
set of numbers (Expected) against the sorted percentiles
of the outcomes predicted by the model (Predicted).

We expect the plot to lie along a 45o line.
Kolmogorov-Smirnov test puts bounds around how far the
difference between the predicted and expected can be.
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PP Plot Characteristics
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PP Plot Characteristics
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CRC PP Plot on 200 Paid Loss Triangles

CRC model is biased high
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SCC PP Plot on 200 Paid Loss Triangles

SCC model has tails that are too light!
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So Where Are We?

We have two models
The CRCRCRoss-CCClassified (CRC) model
The SSStochastic CCCape CCCod (SCC) model

The SCC model has fewer parameters than the CRC
model. — Good!
But the additional parameters in the CRC model add
information.
The SCC models tend to have tails that are too thin.
The CRC models tend to have an upward bias.

An anonymous referee to my first monograph suggested
that claim settlement was speeding up.

This led to the CCChanging SSSettlement RRRate model.
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So Where Are We?

We have two models
The CRCRCRoss-CCClassified (CRC) model
The SSStochastic CCCape CCCod (SCC) model

The SCC model has fewer parameters than the CRC
model. — Good!
But the additional parameters in the CRC model add
information.

The SCC models tend to have tails that are too thin.
The CRC models tend to have an upward bias.

An anonymous referee to my first monograph suggested
that claim settlement was speeding up.

This led to the CCChanging SSSettlement RRRate model.
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So Where Are We?

We have two models
The CRCRCRoss-CCClassified (CRC) model
The SSStochastic CCCape CCCod (SCC) model

The SCC model has fewer parameters than the CRC
model. — Good!
But the additional parameters in the CRC model add
information.
The SCC models tend to have tails that are too thin.
The CRC models tend to have an upward bias.

An anonymous referee to my first monograph suggested
that claim settlement was speeding up.

This led to the CCChanging SSSettlement RRRate model.
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The Changing Settlement Rate (CSR) Model

— Parameters
logelr ∼ normal(-0.4,

√
10).

αw ∼ normal(0,
√

10) for w = 2, . . . , 10. α1 = 0.
βd ∼ normal(0,

√
10) for d = 1, . . . , 9. β10 = 0.

γ ∼ normal(0, 0.05).
ai ∼ uniform(0, 1) for i = 1, . . . , 10

— Transformed Parameters
σ2

d =
∑10

i=d ai for d = 1, . . . , 10.
Note that this forces σ2

1 > . . . > σ2
10

µwd = log(Premiumw ) + logelr + αw + βd · (1− γ)w−1

— Model
Then Cwd ∼ lognormal(µwd , σd )
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The Settlement Rate Parameter — γ

Figure: CSR Posterior Distribution of γ
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CSR Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile
1 5812 3912 0 0.0000 3912
2 4908 2566 113 0.0440 2527
3 5454 4139 189 0.0457 4274
4 5165 4292 215 0.0501 4341
5 5214 3516 192 0.0546 3583
6 5230 3332 235 0.0705 3268
7 4992 4971 426 0.0857 5684
8 5466 3323 407 0.1225 4128
9 5226 3756 742 0.1976 4144
10 4962 3790 1416 0.3736 4139

Total 52429 37597 2401 0.0639 40000 86.26

Model êlpd loo ploo LOOIC
CSR-Paid 49.76 15.09 -99.53
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CRC Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile
1 5812 3912 0 0.0000 3912
2 4908 2564 114 0.0445 2527
3 5454 4149 193 0.0465 4274
4 5165 4315 223 0.0517 4341
5 5214 3566 203 0.0569 3583
6 5230 3410 249 0.0730 3268
7 4992 5208 445 0.0854 5684
8 5466 3630 442 0.1218 4128
9 5226 4392 817 0.1860 4144
10 4962 4976 1762 0.3541 4139

Total 52429 40121 2487 0.0620 40000 51.88

Model êlpd loo ploo LOOIC
CRC-Paid 47.80 14.97 -95.60
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Standardized Residual Boxplots — CSR Model
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Standardized Residual Boxplots — CRC Model
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CSR PP Plot on 200 Paid Loss Triangles

Clearly a uniform distribution of percentiles
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CRC PP Plot on 200 Paid Loss Triangles

CRC model is biased high
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Using Incurred Data to Better Estimate Paid Losses

Table: Illustrative Insurer Net Written Premium
AY 1 2 3 4 5 6 7 8 9 10

Premium 5812 4908 5454 5165 5214 5230 4992 5466 5226 4962

Table: Illustrative Insurer Incurred Losses Net of Reinsurance
AY \ Lag 1 2 3 4 5 6 7 8 9 10 Source

1988 1722 3830 3603 3835 3873 3895 3918 3918 3917 3917 1997
1989 1581 2192 2528 2533 2528 2530 2534 2541 2538 2532 1998
1990 1834 3009 3488 4000 4105 4087 4112 4170 4271 4279 1999
1991 2305 3473 3713 4018 4295 4334 4343 4340 4342 4341 2000
1992 1832 2625 3086 3493 3521 3563 3542 3541 3541 3587 2001
1993 2289 3160 3154 3204 3190 3206 3351 3289 3267 3268 2002
1994 2881 4254 4841 5176 5551 5689 5683 5688 5684 5684 2003
1995 2489 2956 3382 3755 4148 4123 4126 4127 4128 4128 2004
1996 2541 3307 3789 3973 4031 4157 4143 4142 4144 4144 2005
1997 2203 2934 3608 3977 4040 4121 4147 4155 4183 4181 2006
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The Correlated Accident Year (CAY) Model

— Parameters
logelr ∼ normal(-0.4,

√
10).

αw ∼ normal(0,
√

10) for w = 2, . . . , 10. α1 = 0.
βd ∼ normal(0,

√
10) for d = 1, . . . , 9. β10 = 0.

ρpos ∼ beta(2, 2)
ai ∼ uniform(0, 1) for i = 1, . . . , 10.

— Transformed Parameters
ρ = 2 · ρpos − 1, This allows ρ to take on any value in the
interval (-1,1).
σ2

d =
∑10

i=d ai for d = 1, . . . , 10. This forces
σ2

1 > . . . > σ2
10.
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The Correlated Accident Year (CAY) Model

— Transformed Parameters - continued
µ1,d = log(Premium1) + logelr + βd .
µwd = log(Premiumw ) + logelr + αw + βd
+ρ · (log(Cw−1,d )− µw−1,d ) for w > 1.

— Comment
This step generates a correlation between the accident
years.

— Model
Then Cwd ∼ lognormal(µwd , σd ).
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Posterior Distribution of ρ - Illustrative Insurer

Figure: CAY Posterior Mean of ρ for the Set of 200 Paid Loss
Triangles
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CAY Model Output for the Incurred Illustrative
Loss Triangle

w Premium Estimate SE CV Outcome Percentile
1 5812 3917 0 0.0000 3917
2 4908 2547 65 0.0255 2532
3 5454 4107 127 0.0309 4279
4 5165 4308 144 0.0334 4341
5 5214 3547 133 0.0375 3587
6 5230 3329 152 0.0457 3268
7 4992 5285 296 0.0560 5684
8 5466 3790 323 0.0852 4128
9 5226 4180 621 0.1486 4144
10 4962 4183 1373 0.3282 4181

Total 52429 39193 1859 0.0474 40061 73.24

Plots, goodness of fit and holdout statistics for this model
are in my monographs.
Bottom line — CAY model is better fit for some, but not
all triangles.
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Integrated Paid and Incurred (IPI) Model

— Common Parameters
logelr ∼ normal(-0.4,

√
10)

αw ∼ normal(0,
√

10) for w = 2, . . . , 10. α1 = 0

— Paid Parameters
Pβd ∼ normal(0,

√
10) for d = 1, . . . , 10

γ ∼ normal(0, 0.05)
Pai ∼ uniform(0, 1) for i = 1, . . . , 10

— Incurred Parameters
Iβd ∼ normal(0,

√
10) for d = 1, . . . , 9. Iβ10 = 0

ρpos ∼ beta(2,2)
Iai ∼ uniform(0, 1) for i = 1, . . . , 10
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Integrated Paid and Incurred (IPI) Model

— Common Parameters
logelr ∼ normal(-0.4,

√
10)

αw ∼ normal(0,
√

10) for w = 2, . . . , 10. α1 = 0
— Paid Parameters

Pβd ∼ normal(0,
√

10) for d = 1, . . . , 10
γ ∼ normal(0, 0.05)
Pai ∼ uniform(0, 1) for i = 1, . . . , 10

— Incurred Parameters
Iβd ∼ normal(0,

√
10) for d = 1, . . . , 9. Iβ10 = 0

ρpos ∼ beta(2,2)
Iai ∼ uniform(0, 1) for i = 1, . . . , 10
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Integrated Paid and Incurred (IPI) Model

— Transformed Parameters
Pσ

2
d =

∑10
i=d Pai for d = 1, . . . , 10

Pµwd = log(Premiumw ) + logelr + αw +P βd · (1− γ)w−1

·
ρ = 2 · ρpos − 1
Iσ

2
d =

∑10
i=d Iai for d = 1, . . . , 10

Iµ1,d = log(Premium1) + logelr +I βd

Iµwd = log(Premiumw ) + logelr + αw +I βd
+ρ · (log(ICw−1,d )−I µw−1,d ) for w > 1

— Model
ICwd ∼ lognormal(Iµwd ,I σd )
PCwd ∼ lognormal(Pµwd ,P σd )
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Summary of Common Parameters for IPI

CSR Model CAY Model IPI Model
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

logelr -0.3956 0.0246 -0.3945 0.0150 -0.3951 0.0109
α1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
α2 -0.2541 0.0272 -0.2619 0.0156 -0.2618 0.0090
α3 0.1188 0.0308 0.1105 0.0213 0.1157 0.0119
α4 0.2089 0.0373 0.2124 0.0253 0.2140 0.0153
α5 -0.0002 0.0445 0.0083 0.0308 0.0091 0.0186
α6 -0.0581 0.0617 -0.0586 0.0401 -0.0657 0.0263
α7 0.3881 0.0787 0.4499 0.0521 0.4319 0.0383
α8 -0.1097 0.1166 0.0248 0.0819 -0.0207 0.0619
α9 0.0462 0.1914 0.1601 0.1453 0.1248 0.1056
α10 0.0645 0.3467 0.1779 0.2984 0.1571 0.1947

Note the smaller standard deviations for the IPI model.
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IPI Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile
1 5812 3912 0 0.0000 3912
2 4908 2543 58 0.0228 2527
3 5454 4124 98 0.0238 4274
4 5165 4309 111 0.0258 4341
5 5214 3544 97 0.0274 3583
6 5230 3299 109 0.0330 3268
7 4992 5180 223 0.0431 5684
8 5466 3612 234 0.0648 4128
9 5226 4009 429 0.1070 4144
10 4962 3986 796 0.1997 4139

Total 52429 38518 1253 0.0325 40000 88.50

Model êlpd loo ploo LOOIC
IPI-Paid 63.54 -127.08
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CSR Output for the Paid Illustrative Loss Triangle

w Premium Estimate SE CV Outcome Percentile
1 5812 3912 0 0.0000 3912
2 4908 2566 113 0.0440 2527
3 5454 4139 189 0.0457 4274
4 5165 4292 215 0.0501 4341
5 5214 3516 192 0.0546 3583
6 5230 3332 235 0.0705 3268
7 4992 4971 426 0.0857 5684
8 5466 3323 407 0.1225 4128
9 5226 3756 742 0.1976 4144
10 4962 3790 1416 0.3736 4139

Total 52429 37597 2401 0.0639 40000 86.26

Model êlpd loo ploo LOOIC
CSR-Paid 49.76 15.09 -99.53
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Standard Error Reductions by the IPI Model
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Predictive Distributions of Paid Outcomes
CSR(top) and IPI(bottom)
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Standardized Residual Boxplots — IPI Paid Model

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles



Bayesian
MCMC

Stochastic
Loss Reserve
Models for
Paid Loss
Triangles

Glenn Meyers

MCMC Intro

Reserves Intro

CRC Model

Boxplots

SCC Model

“loo” Stats

PP Plots

CSR Model

IPI Model

Final Remarks

Standardized Residual Boxplots — CSR Model
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IPI PP Plot on 200 Paid Loss Triangles

Close to a uniform distribution of percentiles
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IPI PP Plot on 4x50 Paid Loss Triangles

For WC, paid and incurred losses can be different.
Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles



Bayesian
MCMC

Stochastic
Loss Reserve
Models for
Paid Loss
Triangles

Glenn Meyers

MCMC Intro

Reserves Intro

CRC Model

Boxplots

SCC Model

“loo” Stats

PP Plots

CSR Model

IPI Model

Final Remarks

̂elpd loo Paid Model Pairwise Comparisons

Line IPI>CSR IPI>CRC CSR>CRC CRC>SCC
CA 46 45 26 50
PA 41 42 27 50
WC 18 22 25 50
OL 41 40 23 50

Total 146 149 100 200
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̂elpd test Paid Model Pairwise Comparisons

Line IPI>CSR IPI>CRC CSR>CRC CRC>SCC
CA 43 44 27 49
PA 42 44 30 47
WC 32 40 30 48
OL 39 42 32 47

Total 156 170 119 191

“Test” data are the lower triangle holdout data.
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Summary

Focused on paid loss triangles
Four different models on paid triangles — IPI, CSR, CRC
and SCC
Provided diagnostics to help choose models

Real-time diagnostics — “loo” statistics and Standardized
Residual Boxplots.
“Reputation” diagnostics on holdout data for several loss
triangles — êlpd test statistics and-PP Plots.

We can rule out the “unadjusted” SCC.
Reputation statistics tend to favor the IPI and CSR
models. But there are enough counterexamples to suggest
that real-time testing should be done.
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On Prior Distributions

In this work I tend to use wide or “weakly informative”
priors. I like to leave room for surprises, but rule out
“ridiculous” parameters. Ridiculous parameters can lead to
numerical problems. See, for example, John Major’s article
on “Bayesian Dragons.
Section 5 in my 2019 monograph discusses how I choose
priors.
Recommended reading —Prior Choice Recommendations
by Andrew Gelman.
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https://ar.casact.org/wp-content/uploads/2017/03/Bayesian_Dragons_A_Cautionary_Note.pdf
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Prior Recommendations

I recommend starting with wide proper priors checking for
surprises.
Then narrow the priors reflecting additional information.
Be prepared to show and defend your initial run and runs
with your priors to management, auditors and regulators.
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Why Use a Stochastic Model?

The parameters {µwd , σd} contain the information needed
to plot alternative development paths.

For each path calculate
Capital→Released Capital→PV of Released Capital
Cost of capital risk margin =

Original Capital− E [PV of Released Capital]

Details in the 2nd edition of my monograph.
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