MCMC Intro CRC Model CSR Model

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles

Glenn Meyers

Casualty Loss Reserve Seminar

September 17, 2020

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

臣

Background - Bayesians vs. Frequentists

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles

Glenn Meyers

MCMC Intro Reserves Intr CRC Model Boxplots SCC Model "loo" Stats PP Plots

CSR Model

IPI Model

Final Remarks

• Given the model $X \sim f(X|\theta)$

- Given the set of observations *x*.
 - Frequentists test the hypothesis $\theta = \theta_0$.
 - Bayesians calculate the posterior distribution $f(\theta|x)$.

$$f(heta|\mathbf{x}) = rac{f(\mathbf{x}| heta)\cdot\pi(heta)}{\int\limits_{artheta}f(\mathbf{x}|artheta)\cdot\pi(artheta)\cdotdartheta}$$

• The issue — What is the prior distribution, $\pi(\theta)$?

イロト イヨト イヨト イヨト 二日

The Philosophical Issue

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles

Glenn Meyers

MCMC Intro Reserves Intro CRC Model Boxplots SCC Model "loo" Stats PP Plots

CSR Model

IPI Model

Final Remarks

- Bayesians select π "subjectively" according to prior opinion.
- Frequentists respond by saying that conclusions should be dictated solely by looking at "the data."
- Bayesians respond with "noninformative" priors.
 - Is there such a thing?

回 とくほ とくほ とう

3

The Practical Issue — Can we do the calculations?

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles Glenn Meyers

Reserves Intr CRC Model Boxplots SCC Model "loo" Stats PP Plots

MCMC Intro

CSR Model

IPI Model

Final Remarks

- For most of the 20th century, the frequentists were winning.
 - Calculations were easy with quadradic forms needed for the normal distributions.
 - The General Linear Model (PROC GLM in SAS).
 - As computers and numerical analysis progressed we got the Generalized Linear Model (PROC GENMOD in SAS).
- Now the Bayesians are winning with MCMC and good software to implement it.

イロト イヨト イヨト イヨト

The Problem with Bayesian Analysis

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles

Glenn Meyers

MCMC Intro Reserves Intr CRC Model

Boxplots

"loo" Stats PP Plots

CSR Model

IPI Model

Final Remarks

• Let θ be an *n*-parameter vector — e.g. development factors.

• Let X be a set of observations — e.g. a loss triangle. $f(\theta|x) = \frac{f(x|\theta) \cdot \pi(\theta)}{\int\limits_{\vartheta_1} \cdots \int\limits_{\vartheta_n} f(x|\vartheta) \cdot \pi(\vartheta) \cdot d\vartheta}$

- $f(X|\theta)$ is the likelihood of X given θ .
- $\pi(\theta)$ is the prior distribution of θ .
- $f(\theta|X)$ is the posterior distribution of θ .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

The Problem with Bayesian Analysis

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles

Glenn Meyers

MCMC Intro Reserves Intr CRC Model

Boxplots

SCC Mode

PP Plots

CSR Model

IPI Model

Final Remarks

• Let θ be an *n*-parameter vector — e.g. development factors.

• Let X be a set of observations — e.g. a loss triangle. $f(\theta|x) = \frac{f(x|\theta) \cdot \pi(\theta)}{\int\limits_{\vartheta_1} \cdots \int\limits_{\vartheta_n} f(x|\vartheta) \cdot \pi(\vartheta) \cdot d\vartheta}$

- $f(X|\theta)$ is the likelihood of X given θ .
- $\pi(\theta)$ is the prior distribution of θ .
- $f(\theta|X)$ is the posterior distribution of θ .
- Calculating the *n*-dimensional integral is intractable.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

A New World Order

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles Glenn Meyers MCMC Intro Reserves Intro CRC Model Boxplots

SCC Model

'loo" Stats

PP Plots

CSR Model

IPI Model

Final Remarks

- This impasse came to an end in 1990 when a simulation-based approach to estimating posterior probabilities was introduced.
- Sampling Based Approach to Calculating Marginal Densities
 - Alan E. Gelfand and Adrian F.M. Smith
 - Journal of the American Statistical Association, June 1990

▶ < 토▶ < 토▶</p>

3

Markov Chains

MCMC Intro CRC Model CSR Model

IPI Model

Final Remarks

• Let Ω be a finite state with random events

 $X_1, X_2, \ldots, X_t, \ldots$

• A Markov chain P satisfies $Pr(X_t = y | X_{t-1} = x_{t-1}, ..., X_1 = x_1) = Pr(X_t = y | X_{t-1} = x_{t-1})$

The probability of an event in the chain depends only on the immediate previous event.

The Markov Convergence Theorem

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles Glenn Meyers MCMC Intro

CRC Model Boxplots

SCC Mode

PP Plots

CSR Model

IPI Model

Final Remarks

 There is a branch of probability theory, called Ergodic Theory, that gives conditions for which there exists a unique stationary distribution, π, such that

$$Pr(y|X_{t-1}) \longrightarrow \pi(y)$$

as
$$t \longrightarrow \infty$$

"Convergence" means that for sufficiently large t > T, X_t can be thought of as a random draw from the distribution function π.

The Metropolis Hastings Algorithm A Very Important Markov Chain.

MCMC Intro

CSR Model

- **1** Time t = 1: select a random initial position θ_1 in parameter space.
- **2** Select a proposal distribution $p(\theta|\theta_{t-1})$ that we will use to select proposed random steps away from our current position in parameter space.
- **3** Starting at time t = 2: repeat the following until you get convergence:
 - At step *t*, generate a proposal $\theta^* \sim p(\theta | \theta_{t-1})$.
 - Generate $U \sim uniform(0,1)$
 - Calculate

$$R = \frac{f(\theta^*|x)}{f(\theta_{t-1}|x)} \cdot \frac{p(\theta_{t-1}|\theta^*)}{p(\theta^*|\theta_{t-1})}$$

If
$$U < R$$
 then $\theta_t = \theta^*$. Else, $\theta_t = \theta_{t-1}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Dodging the Intractable Integral

MCMC Intro

$$R = \frac{f(\theta^*|x)}{f(\theta_{t-1}|x)} \cdot \frac{p(\theta_{t-1}|\theta^*)}{p(\theta^*|\theta_{t-1})}$$

$$R = \frac{\frac{f(x|\theta^*) \cdot \pi(\theta^*)}{\int \cdots \int f(x|\vartheta) \cdot \pi(\vartheta) \cdot d\vartheta}}{\frac{f(x|\theta_{t-1}) \cdot \pi(\theta_{t-1})}{\int \cdots \int f(x|\vartheta) \cdot \pi(\vartheta) \cdot d\vartheta}} \cdot \frac{p(\theta_{t-1}|\theta^*)}{p(\theta^*|\theta_{t-1})}$$

The integral
$$\int\limits_{artheta_1}\cdots\int\limits_{artheta_n}f(x|artheta)\cdot\pi(artheta)\cdot dartheta$$
 cancels out!

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Lo

・日・・ ヨ・・ モ・

э

The Metropolis Hastings Algorithm A Very Important Markov Chain.

MCMC Intro

CSR Model

- **1** Time t = 1: select a random initial position θ_1 in parameter space.
- **2** Select a proposal distribution $p(\theta|\theta_{t-1})$ that we will use to select proposed random steps away from our current position in parameter space.
- **3** Starting at time t = 2: repeat the following until you get convergence:
 - At step *t*, generate a proposal $\theta^* \sim p(\theta | \theta_{t-1})$.
 - Generate $U \sim uniform(0,1)$
 - Calculate

$$R = \frac{f(x|\theta^*) \cdot \pi(\theta^*)}{f(x|\theta_{t-1}) \cdot \pi(\theta_{t-1})} \cdot \frac{p(\theta_{t-1}|\theta^*)}{p(\theta^*|\theta_{t-1})}$$

If
$$U < R$$
 then $\theta_t = \theta^*$. Else, $\theta_t = \theta_{t-1}$.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ● ●

The Relevance of the Metropolis Hastings Algorithm

MCMC Intro CSR Model

Final Remarks

Defined in terms of the conditional distribution

 $f(X|\theta)$

and the prior distribution

 $\pi(\theta)$

The limiting distribution is the posterior distribution!

・日・・ ヨ・・ モ・

臣

The Relevance of the Metropolis Hastings Algorithm

MCMC Intro CRC Model

PP Plots

CSR Model

IPI Model

Final Remarks

Defined in terms of the conditional distribution

 $f(X|\theta)$

and the prior distribution

 $\pi(\theta)$

- The limiting distribution is the posterior distribution!
- Code f(X|θ) and π(θ) into a Markov chain and let it run for a while, and you have a large sample from the posterior distribution.

イロン 不同 とうほう 不同 とう

크

The Relevance of the Metropolis Hastings Algorithm

- MCMC Intro CRC Model

- CSR Model

- The theoretical limiting distribution is the same, no matter what proposal distribution, $p(\theta|\theta_{t-1})$, is used.
- The choice of the proposal distribution does affect the speed of convergence. The latest software is pretty fast.
- There is no fundamental limit on the number of parameters in you model!
- The practical limit is within range of stochastic loss reserve models.

A Short History of MCMC

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles Glenn Meyers MCMC Intro Reserves Intro CRC Model Boxplots

SCC Mode

DD Dioto

CSR Model

IPI Model

Final Remarks

- Originated with the study of nuclear fission.
 - Enrico Fermi, John von Neumann, Nicolas Metropolis and Stanislaw Ulam.
 - Developed the Metropolis algorithm.
- Keith Hastings (1970) recognized the potential of the Metropolis algorithm to solve statistical problems.
- Simulations were not readily accepted by the statistical community at that time.

A Short History of MCMC

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles

Glenn Meyers

MCMC Intro

CRC Model

Boxplots

SCC Model

loo" Stats

P Plots

CSR Model

IPI Model

Final Remarks

- Gelfand and Smith (1990) pulled together the relevant ideas at a time when simulation was deemed OK.
 - Seized upon by scientists in other fields.
 - Used the Gibbs sampler (A one parameter at a time special case of Metropolis Hastings algorithm).
- Statisticians in the UK started the BUGS project to produce software for MCMC.
 - Bayesian inference Using the Gibbs Sampler

Evolution of MCMC Software

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles

Glenn Meyers

MCMC Intro Reserves Intr

CRC Model

Boxplots

SCC Model

'loo" Stats

PP Plots

CSR Model

IPI Model

Final Remarks

- WinBUGS (Original now discontinued)
- OpenBUGS (Continuation of WinBUGS)
 - Designed mainly for the Windows operating system.

JAGS — Just Another Gibbs Sampler

- Originated by Martyn Plummer.
- Runs on multiple operating systems.
- Callable from R ("runjags" package.
- Stan (in honor of Stanislaw Ulam)
 - Stan team led by Andrew Gelman at Columbia University.
 - Runs on multiple operation systems.
 - Callable from R ("rstan" package) and other languages, e.g. Python and Matlab.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Evolution of MCMC Software

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles

Glenn Meyers

MCMC Intro Reserves Intr

CRC Model

Boxplots

SCC Model

'loo" Stats

PP Plots

CSR Model

IPI Model

inal Remarks

- WinBUGS (Original now discontinued)
- OpenBUGS (Continuation of WinBUGS)
 - Designed mainly for the Windows operating system.
- JAGS Just Another Gibbs Sampler
 - Originated by Martyn Plummer.
 - Runs on multiple operating systems.
 - Callable from R ("runjags" package.
- Stan (in honor of Stanislaw Ulam)
 - Stan team led by Andrew Gelman at Columbia University.
 - Runs on multiple operation systems.
 - Callable from R ("rstan" package) and other languages, e.g. Python and Matlab.
- Features of the latest software: (1) good convergence diagnostics, and (2) fast convergence.

ヘロア ヘロア ヘビア ヘビア

3

Outline of The Main Event — Reserving

MCMC Intro Reserves Intro CRC Model CSR Model

- Data taken from the CAS Loss Reserve Database. 50 "well behaved" loss triangles from each of the CA, PA, WC and OL lines of business.
- Stochastic loss reserve modeling with Bayesian MCMC
 - Focus on paid loss triangles.
 - Three models using paid triangles, one using incurred triangles and one model using combined paid and incurred triangles.
 - Diagnostics on those models
 - Real-time diagnostics useful for current loss reserve analyses.
 - Long-term "Reputation" diagnostics based on how well a model performs on other "similar" loss triangles taken from the CAS Loss Reserve Database

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

References — CAS Monograph Series

MCMC Intro Reserves Intro CRC Model CSR Model

- Stochastic Loss Reserving Using Bayesian MCMC Models
- Stochastic Loss Reserving Using Bayesian MCMC Models
 2nd Edition
- The difference between the two editions
 - 1st edition provides a gentler introduction to Bayesian MCMC.
 - 2nd edition uses up-to-date software and more diagnostics. It also includes dependencies between lines of business and risk margins.
 - Today's webinar draws on material from the second edition.
- Today's talk will focus on paid data. The monographs provide more coverage for incurred data.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Common Features of the Models in this Talk

MCMC Intro Reserves Intro CRC Model CSR Model

IPI Model

Final Remarks

- Let C_{wd} equal the cumulative loss (paid or incurred) for accident year, w, and development lag, d.
- All models discussed in these talk will be of the form:

 $C_{wd} \sim \mathsf{lognormal}(\mu_{wd}, \sigma_d)$

- The examples that follow will be 10x10 loss triangles from US Schedule P.
- As an accident year matures, an increasing proportion of claims are settled. Thus we impose the condition.

$$\sigma_1^2 > \ldots > \sigma_{10}^2$$

• The models discussed in this talk explore alternative ways to model μ_{wd} .

Schedule P Data for Paid Losses

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles Glenn Meyers MCMC Intro Reserves Intro CRC Model

AY

Boxplots

SCC Model

"loo" Stats

PP Plots

CSR Model

IPI Model

Final Remarks

Table: Illustrative Insurer Net Written Premium

AY	1	2	3	4	5	6	7	8	9	10
Premium	5812	4908	5454	5165	5214	5230	4992	5466	5226	4962

Table: Illustrative Insurer Paid Losses Net of Reinsurance

\ Lag	1	2	3	4	5	6	7	8	9	10	Source
988	952	1529	2813	3647	3724	3832	3899	3907	3911	3912	1997
989	849	1564	2202	2432	2468	2487	2513	2526	2531	2527	1998
990	983	2211	2830	3832	4039	4065	4102	4155	4268	4274	1999
991	1657	2685	3169	3600	3900	4320	4332	4338	4341	4341	2000
992	932	1940	2626	3332	3368	3491	3531	3540	3540	3583	2001
993	1162	2402	2799	2996	3034	3042	3230	3238	3241	3268	2002
994	1478	2980	3945	4714	5462	5680	5682	5683	5684	5684	2003
995	1240	2080	2607	3080	3678	2004	4117	4125	4128	4128	1997
996	1326	2412	3367	3843	3965	4127	4133	4141	4142	4144	2005
997	1413	2683	3173	3674	3805	4005	4020	4095	4132	4139	2006

< 注 → < 注 →

臣

The CRoss Classified (CRC) Model

MCMC Intro **CRC Model** CSR Model

— Parameters

- logelr \sim normal(-0.4, $\sqrt{10}$).
- $\alpha_w \sim \text{normal}(0, \sqrt{10}) \text{ for } w = 2, ..., 10. \ \alpha_1 = 0.$
- $\beta_d \sim \text{normal}(0, \sqrt{10}) \text{ for } d = 1, \dots, 9. \ \beta_{10} = 0.$
- $a_i \sim uniform(0,1)$ for $i = 1, \ldots, 10$

回 と く ヨ と く ヨ と

크

The CRoss Classified (CRC) Model

MCMC Intro CRC Model CSR Model

Final Remarks

Parameters

- logelr \sim normal(-0.4, $\sqrt{10}$).
- $\alpha_w \sim \text{normal}(0, \sqrt{10}) \text{ for } w = 2, ..., 10. \ \alpha_1 = 0.$
- $\beta_d \sim \text{normal}(0, \sqrt{10}) \text{ for } d = 1, \dots, 9. \ \beta_{10} = 0.$
- $a_i \sim uniform(0,1)$ for $i = 1, \dots, 10$

Transformed Parameters

- $\sigma_d^2 = \sum_{i=d}^{10} a_i$ for $d = 1, \dots, 10$. Note that this forces $\sigma_1^2 > \dots > \sigma_{10}^2$
- $\mu_{wd} = \log(\operatorname{Premium}_w) + \log e r + \alpha_w + \beta_d$

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

The CRoss Classified (CRC) Model

MCMC Intro CRC Model CSR Model

Final Remarks

Parameters

- logelr \sim normal(-0.4, $\sqrt{10}$).
- $\alpha_{w} \sim \text{normal}(0, \sqrt{10}) \text{ for } w = 2, \dots, 10. \ \alpha_{1} = 0.$
- $\beta_d \sim \text{normal}(0, \sqrt{10}) \text{ for } d = 1, \dots, 9. \ \beta_{10} = 0.$
- $a_i \sim uniform(0,1)$ for $i = 1, \dots, 10$

— Transformed Parameters

- $\sigma_d^2 = \sum_{i=d}^{10} a_i$ for d = 1, ..., 10. Note that this forces $\sigma_1^2 > ... > \sigma_{10}^2$
- $\mu_{wd} = \log(\text{Premium}_w) + \textit{logelr} + \alpha_w + \beta_d$ - Model
 - Then $C_{wd} \sim \text{lognormal}(\mu_{wd}, \sigma_d)$

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

Run "CRC.R" to get 10,000 {.}

MCMC Intro **CRC Model** CSR Model

 The scripts are from the monograph. They can be downloaded from

https://www.casact.org/pubs/monographs/meyers/Appendix.zip.

回 とう ほ とう きょう

Outline of "CRC.R"

Bayesian MCMC Stochastic Loss Reserve Models far Paid Loss Triangles Glenn Meyers MCMC Intro Reserves Intro CRC Model Boxplots

PP Plots CSR Model

IPI Model

Final Remarks

- Get 10,000 parameter vectors by running Stan within R. $\{logelr\}, \{\alpha_{1:10}\}, \{\beta_{1:10}\}, \text{ and } \{\sigma_{1:10}\}$
- Calculate $\{\mu_{2:10,10}\} = \log(\operatorname{Premium}_w) + \{\operatorname{logelr}\} + \{\alpha_{2:10}\}$ Note $\beta_{10} = 0$
- Simulate "ultimate" outcomes

$$\{C_{2:10,10}\} \sim \{\text{lognormal}(\mu_{2:10,10}, \sigma_{10})\}$$

- Calculate the totals $\{\sum_{w=1}^{10} C_{w,10}\}$
- Calculate "statistics of interest" of $\{\sum_{w=1}^{10} C_{w,10}\}$
 - Mean[$\{\sum_{w=1}^{10} C_{w,10}\}$]
 - Standard Deviation[$\{\sum_{w=1}^{10} C_{w,10}\}$]
 - Percentile of actual "ultimates" from holdout lower triangle data.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

CRC Output for the Paid Illustrative Loss Triangle

MCMC Intro **CRC Model**

w	Premium	Estimate	SE	CV	Outcome	Percentile
1	5812	3912	0	0.0000	3912	
2	4908	2564	114	0.0445	2527	
3	5454	4149	193	0.0465	4274	
4	5165	4315	223	0.0517	4341	
5	5214	3566	203	0.0569	3583	
6	5230	3410	249	0.0730	3268	
7	4992	5208	445	0.0854	5684	
8	5466	3630	442	0.1218	4128	
9	5226	4392	817	0.1860	4144	
10	4962	4976	1762	0.3541	4139	
Total	52429	40121	2487	0.0620	40000	51.88

★ E ► < E ►</p>

臣

Standardized Residual Boxplots

MCMC Intro CRC Model Boxplots CSR Model

Final Remarks

- We have a large sample of parameter vectors, rather than a single parameter vector that arises from, say, a maximum likelihood estimate.
- Take a random sample of 100 *j*s and use the corresponding parameter vectors, μ_{wd}^{j} and σ_{d}^{j} from the posterior distribution and calculate the standardized residuals, r_{wd}^{j} , for the log of all losses in the training (upper) loss triangle.

$$r_{wd}^{j} = \frac{\log(C_{wd}) - \mu_{wd}^{j}}{\sigma_{d}^{j}}$$

for $w = 1..., 10, d = 1, \cdots, 11 - w$ and for each j.

Do Boxplots by accident year and development year.

・ 回 ト ・ ヨ ト ・ ヨ ト

크

Standardized Residual Boxplots — CRC Model

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Los

The Stochastic Cape Cod (SCC) Model

MCMC Intro CRC Model SCC Model CSR Model

- Parameters
 - logelr ~ normal(-0.4, $\sqrt{10}$).
 - α_w is dropped.
 - $\beta_d \sim \text{normal}(0, \sqrt{10}) \text{ for } d = 1, \dots, 9. \ \beta_{10} = 0.$
 - $a_i \sim uniform(0,1)$ for $i = 1, \dots, 10$
- Transformed Parameters
 - $\sigma_d^2 = \sum_{i=d}^{10} a_i$ for $d = 1, \dots, 10$. Note that this forces $\sigma_1^2 > \dots > \sigma_{10}^2$
 - $\mu_{wd} = \log(\text{Premium}_w) + \textit{logelr} + \beta_d$
- Model
 - Then $C_{wd} \sim \text{lognormal}(\mu_{wd}, \sigma_d)$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

SCC Output for the Paid Illustrative Loss Triangle

MCMC Intro SCC Model

-inal	I RA	mai	
ппа	1116		N 3

w	Premium	Estimate	SE	CV	Outcome	Percentile
1	5812	3912	0	0.0000	3912	
2	4908	2905	640	0.2203	2527	
3	5454	4265	724	0.1698	4274	
4	5165	4199	703	0.1674	4341	
5	5214	3376	694	0.2056	3583	
6	5230	3097	690	0.2228	3268	
7	4992	4645	665	0.1432	5684	
8	5466	3180	700	0.2201	4128	
9	5226	3639	657	0.1805	4144	
10	4962	3506	591	0.1686	4139	
Total	52429	36725	3950	0.1075	40000	83.38

★ E ► < E ►</p>

臣

CRC Output for the Paid Illustrative Loss Triangle

MCMC Intro SCC Model

w	Premium	Estimate	SE	CV	Outcome	Percentile
1	5812	3912	0	0.0000	3912	
2	4908	2564	114	0.0445	2527	
3	5454	4149	193	0.0465	4274	
4	5165	4315	223	0.0517	4341	
5	5214	3566	203	0.0569	3583	
6	5230	3410	249	0.0730	3268	
7	4992	5208	445	0.0854	5684	
8	5466	3630	442	0.1218	4128	
9	5226	4392	817	0.1860	4144	
10	4962	4976	1762	0.3541	4139	
Total	52429	40121	2487	0.0620	40000	51.88

< ∃⇒

臣

Standardized Residual Boxplots — SCC Model

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss

Standardized Residual Boxplots — CRC Model

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss
Model Selection With the "loo" Package"

MCMC Intro "loo" Stats CSR Model

Given two different models for the same data, how do you select the "better" model?

> < 물 > < 물 >

臣

Model Selection With the "loo" Package"

MCMC Intro CRC Model "loo" Stats CSR Model

- Given two different models for the same data, how do you select the "better" model?
 - "loo" stands for Leave One Out.
 - Maintained by members of the stan development team.
 - Vehtari, A., Gelman, A., and Gabry, J. (2015). "Efficient implementation of leave-one-out cross validation and WAIC for evaluating fitted Bayesian models."
 - See the documentation of the "loo" package for the latest version of the paper.

米田 と 米田 と 米田 と 三田

Selecting Models Fit By Maximum Likelihood

MCMC Intro CRC Model "loo" Stats CSR Model

Final Remarks

If we fit a model, $f(x|\theta)$, by maximum likelihood, define

$$\mathsf{AIC} = 2 \cdot \mathsf{p} - 2 \cdot \mathsf{L}(x|\hat{ heta})$$

Where:

- *p* is the number of parameters in the model.
- L(x|\u00f3) is the maximum log-likelihood of the model specified by f.
- Lower AIC indicates a better fit.
 - Encourages a larger log-likelihood.
 - Penalizes an increase in the number of parameters.

(日) (四) (三) (三) (三)

AIC in a Bayesian Environment?

MCMC Intro "loo" Stats CSR Model

- When doing maximum likelihood estimation, we have a single parameter vector.
- With MCMC we have 10,000 parameter vectors.

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣

AIC in a Bayesian Environment?

- MCMC Intro CRC Model "loo" Stats CSR Model
- When doing maximum likelihood estimation, we have a single parameter vector.
- With MCMC we have 10,000 parameter vectors.
- In a Bayesian environment Should the penalty for a parameter be as great when there is strong prior information?

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣

Selecting Bayesian MCMC Models with the LOOIC Statistic

MCMC Intro "loo" Stats CSR Model

IPI Model

Final Remarks

Given an MCMC model with parameters $\{\theta^i\}_{i=1}^{10,000}$, define

$$LOOIC = 2 \cdot \hat{p}_{loo} - 2 \cdot \overline{\{L(x|\theta^{i})\}_{i=1}^{10,000}}$$

Where

• \hat{p}_{loo} is the *effective* number of parameters.

$$\hat{p}_{loo} = \overline{\{L(x|\theta^{i})\}_{i=1}^{10,000}} - \sum_{n=1}^{N} \overline{\{L(x_{n}|x_{(-n)},\theta^{i})\}_{i=1}^{10,000}}$$

•
$$x_{(-n)} = x_1, \dots, x_{n-1}, x_{n+1}, \dots, x_N$$

L(x_n|x_(-n), θⁱ) is the log-likelihood of x_n from a model fit using all data except x_n.

・ 回 ト ・ ヨ ト ・ ヨ ト

Selecting Bayesian MCMC Models with the LOOIC Statistic

MCMC Intro CRC Model "loo" Stats CSR Model

IPI Model

Final Remarks

• After some algebra we can see that

$$LOOIC = -2 \cdot \sum_{n=1}^{N} \overline{\{L(x_n | x_{(-n)}, \theta^i)\}_{i=1}^{10,000}}$$

which we like as it favors the model with the largest likelihood, and the smallest LOOIC, on the "holdout" data.

▶ < E ▶ < E ▶

Selecting Bayesian MCMC Models with the LOOIC Statistic

MCMC Intro CRC Model "loo" Stats CSR Model

After some algebra we can see that

$$LOOIC = -2 \cdot \sum_{n=1}^{N} \overline{\{L(x_n | x_{(-n)}, \theta^i)\}_{i=1}^{10,000}}$$

which we like as it favors the model with the largest likelihood, and the smallest LOOIC, on the "holdout" data. Some "loo" package features.

•
$$\sum_{n=1}^{N} \overline{\{L(x_n | x_{(-n)}, \theta^i)\}_{i=1}^{10,000}} \equiv ELPD_{loo}$$

"loo" does not calculate each summand in ELPD_{loo} by MCMC. Instead it approximates the sum using a 10,000 x N matrix of log-likelihoods.

・ 回 ト ・ ヨ ト ・ ヨ ト

Model Comparison (loo) Statistics

	Model <i>elpd</i> _{loo} p _{loo} LOOIC
Glenn Meyers	CRC-Paid 47.80 14.97 -95.60
MCMC Intro	SCC-Paid -5.14 8.75 10.28
	In my monograph I calculated the los statistics for 200
CRC Model	In my monograph, I calculated the los statistics for 200 loss triangles, and the CDC fit better then the SCC mode
	loss triangles, and the CRC in better than the SCC mode
SCC Model	for all 200 triangles!
"loo" Stats	
CSR Model	
Final Remarks	

臣

Model Comparison (loo) Statistics

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles Glenn Meyers MCMC Intro	Model <i>elpd</i> _{loo} p _{loo} LOOIC CRC-Paid 47.80 14.97 -95.60 SCC-Paid -5.14 8.75 10.28
Reserves Intro CRC Model Boxplots SCC Model	In my monograph, I calculated the loo statistics for 200 loss triangles, and the CRC fit better than the SCC model for all 200 triangles!
"loo" Stats PP Plots CSR Model IPI Model Final Remarks	At this point I want to introduce what I call "Reputation" statistics. That is I want to draw conclusions about a model based on looking at a lot of other triangles.

副 と く ヨ と く ヨ と

æ,

Testing Percentiles of Outcomes with the Lower Triangle Holdout Data.

MCMC Intro CRC Model **PP Plots** CSR Model

- Use the model to calculate the percentile of the predictive distribution of the actual outcome.
- We should expect the percentiles of the outcomes to be uniformly distributed.
- Uniformity is testable with model fits and outcomes of several insurers.

▶ ★ E ▶ ★ E ▶

Testing Percentiles of Outcomes with the Lower Triangle Holdout Data.

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss Triangles Glenn Meyers MCMC Intro Reserves Intro CRC Model Boxplots

SCC Model

"loo" Stats

PP Plots

CSR Model

IPI Model

Final Remarks

- Use the model to calculate the percentile of the predictive distribution of the actual outcome.
- We should expect the percentiles of the outcomes to be uniformly distributed.
- Uniformity is testable with model fits and outcomes of several insurers.
- PP Plots Plot the sorted values of a uniformly distributed set of numbers (Expected) against the sorted percentiles of the outcomes predicted by the model (Predicted).
 - We expect the plot to lie along a 45° line.
- Kolmogorov-Smirnov test puts bounds around how far the difference between the predicted and expected can be.

・ロト ・回ト ・ヨト ・ヨト … ヨ

PP Plot Characteristics

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss

PP Plot Characteristics

Frequency MCMC Intro Frequency **PP** Plots CSR Model

Model is Heavy Tailed

Model is Biased High

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss

E

CRC PP Plot on 200 Paid Loss Triangles

SCC PP Plot on 200 Paid Loss Triangles

So Where Are We?

MCMC Intro **PP Plots** CSR Model

Final Remarks

- We have two models
 - The CRoss-Classified (CRC) model
 - The Stochastic Cape Cod (SCC) model

臣

So Where Are We?

MCMC Intro CRC Model **PP Plots**

- CSR Model
- Final Remarks

- We have two models
 - The CRoss-Classified (CRC) model
 - The Stochastic Cape Cod (SCC) model
- The SCC model has fewer parameters than the CRC model. Good!
- But the additional parameters in the CRC model add information.

・ 回 ト ・ ヨ ト ・ ヨ ト …

臣

So Where Are We?

MCMC Intro CRC Model **PP Plots** CSR Model

IPI Model

Final Remarks

- We have two models
 - The CRoss-Classified (CRC) model
 - The Stochastic Cape Cod (SCC) model
- The SCC model has fewer parameters than the CRC model. Good!
- But the additional parameters in the CRC model add information.
- The SCC models tend to have tails that are too thin.
- The CRC models tend to have an upward bias.
 - An anonymous referee to my first monograph suggested that claim settlement was speeding up.
- This led to the Changing Settlement Rate model.

・ロト ・回ト ・ヨト ・ヨト … ヨ

The Changing Settlement Rate (CSR) Model

MCMC Intro CRC Model CSR Model

- Parameters
 - logelr \sim normal(-0.4, $\sqrt{10}$).
 - $\alpha_w \sim \operatorname{normal}(0, \sqrt{10})$ for $w = 2, \dots, 10$. $\alpha_1 = 0$.
 - $\beta_d \sim \text{normal}(0, \sqrt{10}) \text{ for } d = 1, \dots, 9. \ \beta_{10} = 0.$
 - $\gamma \sim \operatorname{normal}(0, 0.05).$
 - $a_i \sim uniform(0,1)$ for $i = 1, \ldots, 10$
- Transformed Parameters
 - $\sigma_d^2 = \sum_{i=d}^{10} a_i$ for $d = 1, \dots, 10$. Note that this forces $\sigma_1^2 > \dots > \sigma_{10}^2$
 - $\mu_{wd} = \log(\operatorname{Premium}_{w}) + \log lr + \alpha_{w} + \beta_{d} \cdot (1 \gamma)^{w-1}$
- Model
 - Then $C_{wd} \sim \text{lognormal}(\mu_{wd}, \sigma_d)$

・ロト ・回ト ・ヨト ・ヨト - ヨ

The Settlement Rate Parameter — γ

CSR Output for the Paid Illustrative Loss Triangle

		Duanaiuna	Estimate	C E	\sim	Outeeme	Deveentile
	w	Premium	Estimate	35	CV	Outcome	Percentile
	1	5812	3912	0	0.0000	3912	
	2	4908	2566	113	0.0440	2527	
	3	5454	4139	189	0.0457	4274	
Glenn Meyers	4	5165	4292	215	0.0501	4341	
	5	5214	3516	192	0.0546	3583	
MCMC Intro	6	5230	3332	235	0.0705	3268	
Reserves Intro	7	4992	4971	426	0.0857	5684	
	8	5466	3323	407	0.1225	4128	
CRC Model	9	5226	3756	742	0.1976	4144	
	10	4962	3790	1416	0.3736	4139	
SCC Model	Total	52429	37597	2401	0.0639	40000	86.26
CSR Model		Ν	lodel <i>él</i>	pdia	Dioo	LOOIC	
		CSP	Daid 10) 76	15.00	00.53	
Final Remarks		C3N-	Falu 45	9.10	10.09	-99.00	
					< □		<

Glenn Meyers Bayesian MCMC Stochastic Los

esian MCMC Stochastic Loss Reserve Models for Paid Loss

CRC Output for the Paid Illustrative Loss Triangle

	w	Premium	Estimate	SE	CV	Outcome	Percentile
	1	5812	3912	0	0.0000	3912	
	2	4908	2564	114	0.0445	2527	
	3	5454	4149	193	0.0465	4274	
Glenn Meyers	4	5165	4315	223	0.0517	4341	
	5	5214	3566	203	0.0569	3583	
MCMC Intro	6	5230	3410	249	0.0730	3268	
Reserves Intro	7	4992	5208	445	0.0854	5684	
	8	5466	3630	442	0.1218	4128	
CRC Model	9	5226	4392	817	0.1860	4144	
	10	4962	4976	1762	0.3541	4139	
SCC Model	Total	52429	40121	2487	0.0620	40000	51.88
CSR Model		Ν	Aodel <i>el</i>	pd	ploo	LOOIC	
		CDC	Daid 1	7 00	14 07	05 60	
Final Remarks		CRC	-raiu 4	1.00	14.97	-95.00	
					. □		

Glenn Meyers Bayesian MCMC Stochastic Loss Res

Standardized Residual Boxplots — CSR Model

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss

Standardized Residual Boxplots — CRC Model

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Los

CSR PP Plot on 200 Paid Loss Triangles

CRC PP Plot on 200 Paid Loss Triangles

MCMC Intro CSR Model

IPI Model

Final Remarks

Table: Illustrative Insurer Net Written Premium

AY	1	2	3	4	5	6	7	8	9	10
Premium	5812	4908	5454	5165	5214	5230	4992	5466	5226	4962

Table: Illustrative Insurer Incurred Losses Net of Reinsurance

$AY \setminus Lag$	1	2	3	4	5	6	7	8	9	10	Source
1988	1722	3830	3603	3835	3873	3895	3918	3918	3917	3917	1997
1989	1581	2192	2528	2533	2528	2530	2534	2541	2538	2532	1998
1990	1834	3009	3488	4000	4105	4087	4112	4170	4271	4279	1999
1991	2305	3473	3713	4018	4295	4334	4343	4340	4342	4341	2000
1992	1832	2625	3086	3493	3521	3563	3542	3541	3541	3587	2001
1993	2289	3160	3154	3204	3190	3206	3351	3289	3267	3268	2002
1994	2881	4254	4841	5176	5551	5689	5683	5688	5684	5684	2003
1995	2489	2956	3382	3755	4148	4123	4126	4127	4128	4128	2004
1996	2541	3307	3789	3973	4031	4157	4143	4142	4144	4144	2005
1997	2203	2934	3608	3977	4040	4121	4147	4155	4183	4181	2006

The Correlated Accident Year (CAY) Model

MCMC Intro CRC Model CSR Model IPI Model

Parameters

- logelr ~ normal(-0.4, $\sqrt{10}$).
- $\alpha_w \sim \text{normal}(0, \sqrt{10})$ for w = 2, ..., 10. $\alpha_1 = 0$.
- $\beta_d \sim \text{normal}(0, \sqrt{10})$ for $d = 1, \dots, 9$. $\beta_{10} = 0$.
- $\rho_{pos} \sim \text{beta}(2,2)$
- $a_i \sim \text{uniform}(0, 1)$ for i = 1, ..., 10.
- Transformed Parameters
 - $\rho = 2 \cdot \rho_{pos} 1$, This allows ρ to take on any value in the interval (-1,1).
 - $\sigma_d^2 = \sum_{i=d}^{10} a_i$ for $d = 1, \dots, 10$. This forces $\sigma_1^2 > \ldots > \sigma_{10}^2$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The Correlated Accident Year (CAY) Model

MCMC Intro CRC Model CSR Model

IPI Model

Final Remarks

- Transformed Parameters continued
 - $\mu_{1,d} = \log(\operatorname{Premium}_1) + \operatorname{logelr} + \beta_d$.
 - $\mu_{wd} = \log(\operatorname{Premium}_w) + \log elr + \alpha_w + \beta_d + \rho \cdot (\log(C_{w-1,d}) \mu_{w-1,d}) \text{ for } w > 1.$
- Comment
 - This step generates a correlation between the accident years.
- Model
 - Then $C_{wd} \sim \text{lognormal}(\mu_{wd}, \sigma_d)$.

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

Posterior Distribution of ρ - Illustrative Insurer

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Lo

CAY Model Output for the Incurred Illustrative Loss Triangle

Glenn Meyers
MCMC Intro
CRC Model
SCC Model
PP Plots
CSR Model
IPI Model
Final Remarks

w	Premium	Estimate	SE	CV	Outcome	Percentile
1	5812	3917	0	0.0000	3917	
2	4908	2547	65	0.0255	2532	
3	5454	4107	127	0.0309	4279	
4	5165	4308	144	0.0334	4341	
5	5214	3547	133	0.0375	3587	
6	5230	3329	152	0.0457	3268	
7	4992	5285	296	0.0560	5684	
8	5466	3790	323	0.0852	4128	
9	5226	4180	621	0.1486	4144	
10	4962	4183	1373	0.3282	4181	
Total	52429	39193	1859	0.0474	40061	73.24

- Plots, goodness of fit and holdout statistics for this model are in my monographs.
- Bottom line CAY model is better fit for some, but not all triangles.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ • • • • • • •

Integrated Paid and Incurred (IPI) Model

MCMC Intro CSR Model **IPI** Model

— Common Parameters

- logelr \sim normal(-0.4, $\sqrt{10}$)
- $\alpha_w \sim \operatorname{normal}(0, \sqrt{10})$ for $w = 2, \dots, 10$. $\alpha_1 = 0$

★ E ► ★ E ►

臣

Integrated Paid and Incurred (IPI) Model

MCMC Intro CRC Model CSR Model IPI Model

- Common Parameters
 - logelr \sim normal(-0.4, $\sqrt{10}$)
 - $\alpha_w \sim \operatorname{normal}(0, \sqrt{10})$ for $w = 2, \dots, 10$. $\alpha_1 = 0$
- Paid Parameters
 - $_Peta_d\sim \operatorname{normal}(0,\sqrt{10})$ for $d=1,\ldots,10$
 - $\gamma \sim \operatorname{normal}(0, 0.05)$
 - $Pa_i \sim uniform(0,1)$ for $i = 1, \dots, 10$
- Incurred Parameters
 - $_{I}\beta_{d} \sim \text{normal}(0, \sqrt{10}) \text{ for } d = 1, \dots, 9. \ _{I}\beta_{10} = 0$
 - $ho_{\it pos} \sim {\sf beta}(2,2)$
 - $_Ia_i \sim uniform(0,1)$ for $i = 1, \dots, 10$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 日 ・

Integrated Paid and Incurred (IPI) Model

MCMC Intro CRC Model CSR Model IPI Model

Final Remarks

- Transformed Parameters
 - $_{P}\sigma_{d}^{2} = \sum_{i=d}^{10} _{P}a_{i}$ for d = 1, ..., 10
 - $_{P}\mu_{wd} = \log(\operatorname{Premium}_{w}) + logelr + \alpha_{w} + _{P}\beta_{d} \cdot (1 \gamma)^{w-1}$

•

 \sim

$$\rho = 2 \cdot \rho_{pos} - 1$$

$$I_{\sigma_d^2} = \sum_{i=d}^{10} I_{a_i} \text{ for } d = 1, \dots, 10$$

$$I_{\mu_{1,d}} = \log(\text{Premium}_1) + logelr + I_{\sigma_d}$$

- $_{I}\mu_{wd} = \log(\operatorname{Premium}_{w}) + logelr + \alpha_{w} + _{I}\beta_{d}$ + $\rho \cdot (\log(_{I}C_{w-1,d}) - _{I}\mu_{w-1,d})$ for w > 1
- Model
 - ${}_{I}C_{wd} \sim \text{lognormal}({}_{I}\mu_{wd}, {}_{I}\sigma_{d})$ • ${}_{P}C_{wd} \sim \text{lognormal}({}_{P}\mu_{wd}, {}_{P}\sigma_{d})$

* 圖 * * 注 * * 注 * … 注

Summary of Common Parameters for IPI

Bayesian MCMC							
Stochastic							
Loss Reserve							
Models for Paid Loss		CSR	Model	CAY	Model	IPI	Model
Triangles		Mean	Std. Dev.	Mean	Std. Dev.	Mean	Std. Dev.
Glenn Mevers	logelr	-0.3956	0.0246	-0.3945	0.0150	-0.3951	0.0109
	α_1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
MCMC Intro	α_2	-0.2541	0.0272	-0.2619	0.0156	-0.2618	0.0090
December lister	α_3	0.1188	0.0308	0.1105	0.0213	0.1157	0.0119
Reserves Intro	$lpha_4$	0.2089	0.0373	0.2124	0.0253	0.2140	0.0153
CRC Model	α_5	-0.0002	0.0445	0.0083	0.0308	0.0091	0.0186
Boxplots	α_6	-0.0581	0.0617	-0.0586	0.0401	-0.0657	0.0263
SCC Madel	α_7	0.3881	0.0787	0.4499	0.0521	0.4319	0.0383
SCC Iviodel	α_8	-0.1097	0.1166	0.0248	0.0819	-0.0207	0.0619
"loo" Stats	lpha9	0.0462	0.1914	0.1601	0.1453	0.1248	0.1056
PP Plots	α_{10}	0.0645	0.3467	0.1779	0.2984	0.1571	0.1947

Note the smaller standard deviations for the IPI model.

Final Remarks

IPI Model

イロン イヨン イヨン イヨン

크
IPI Output for the Paid Illustrative Loss Triangle

	w	Premium	Estimate	SE	CV	Outcome	Percentile
	1	5812	3912	0	0.0000	3912	
	2	4908	2543	58	0.0228	2527	
	3	5454	4124	98	0.0238	4274	
Glenn Meyers	4	5165	4309	111	0.0258	4341	
	5	5214	3544	97	0.0274	3583	
MCMC Intro	6	5230	3299	109	0.0330	3268	
Reserves Intro	7	4992	5180	223	0.0431	5684	
	8	5466	3612	234	0.0648	4128	
CRC Model	9	5226	4009	429	0.1070	4144	
	10	4962	3986	796	0.1997	4139	
SCC Model	Total	52429	38518	1253	0.0325	40000	88.50
CSR Model		M	lodel <i>eli</i>	nd	Diag	10010	
IPI Model		IPI-	Paid 63	54	1-100	-127.08	
Final Remarks		11 1-				121.00	
					< 🗆		

Glenn Meyers Bayesian MCMC Stochastic Loss Reserve Models for Paid Lo

CSR Output for the Paid Illustrative Loss Triangle

	w	Premium	Estimate	SE	CV	Outcome	Percentile
	1	5812	3912	0	0.0000	3912	
	2	4908	2566	113	0.0440	2527	
	3	5454	4139	189	0.0457	4274	
Glenn Meyers	4	5165	4292	215	0.0501	4341	
	5	5214	3516	192	0.0546	3583	
MCMC Intro	6	5230	3332	235	0.0705	3268	
Reserves Intro	7	4992	4971	426	0.0857	5684	
	8	5466	3323	407	0.1225	4128	
CRC Model	9	5226	3756	742	0.1976	4144	
	10	4962	3790	1416	0.3736	4139	
SCC Model	Total	52429	37597	2401	0.0639	40000	86.26
CSR Model		N	lodel <i>el</i>	nd	Dias	10010	
IPI Model			Daid 10	76	15 00	00 53	
Final Remarks		CSK-	-raiu 49	0.10	15.09	-99.00	
					4 🗖		

Glenn Meyers Bayesian MCMC Stochasti

esian MCMC Stochastic Loss Reserve Models for Paid Loss

Standard Error Reductions by the IPI Model

Predictive Distributions of Paid Outcomes CSR(top) and IPI(bottom)

Glenn Meyers

avesian MCMC Stochastic Loss Reserve Models for Paid Los

Standardized Residual Boxplots — IPI Paid Model

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Lo

Standardized Residual Boxplots — CSR Model

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss

IPI PP Plot on 200 Paid Loss Triangles

IPI PP Plot on 4x50 Paid Loss Triangles

Glenn Meyers

Bayesian MCMC Stochastic Loss Reserve Models for Paid Loss

elpd loo Paid Model Pairwise Comparisons

Glenn Meyers	Line	IPI>CSR	IPI>CRC	CSR>CRC	CRC>SCC
MCMC Intro	CA	46	45	26	50
	PA	41	42	27	50
CRC Model	WC	18	22	25	50
	OL	41	40	23	50
SCC Model	Total	146	149	100	200
CSR Model					
IPI Model					

Final Remarks

▲御▶ ▲ 臣▶ ▲ 臣▶ 二 臣

*elpd*_{test} Paid Model Pairwise Comparisons

Glenn Meyers	Line	IPI>CSR	IPI>CRC	CSR>CRC	CRC>SCC
	CA	43	44	27	49
MCMC Intro	PA	42	44	30	47
	WC	32	40	30	48
CRC Model	OL	39	42	32	47
	Total	156	170	110	101
SCC Model	Total	150	170	119	191
	"Т	est" data ar	re the lower	triangle holdo	out data.
CSR Model					

IPI Model

Final Remarks

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Summary

MCMC Intro CRC Model CSR Model **Final Remarks**

- Focused on paid loss triangles
- Four different models on paid triangles IPI, CSR, CRC and SCC
- Provided diagnostics to help choose models
 - Real-time diagnostics "loo" statistics and Standardized Residual Boxplots.
 - "Reputation" diagnostics on holdout data for several loss triangles — *elpd*_{test} statistics and-PP Plots.
- We can rule out the "unadjusted" SCC.
- Reputation statistics tend to favor the IPI and CSR models. But there are enough counterexamples to suggest that real-time testing should be done.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

On Prior Distributions

MCMC Intro CRC Model CSR Model

Final Remarks

- In this work I tend to use wide or "weakly informative" priors. I like to leave room for surprises, but rule out "ridiculous" parameters. Ridiculous parameters can lead to numerical problems. See, for example, John Major's article on "Bayesian Dragons.
- Section 5 in my 2019 monograph discusses how I choose priors.
- Recommended reading Prior Choice Recommendations by Andrew Gelman.

(1日) (1日) (日) (日)

크

Prior Recommendations

MCMC Intro CRC Model CSR Model **Final Remarks**

- I recommend starting with wide proper priors checking for surprises.
- Then narrow the priors reflecting additional information.
- Be prepared to show and defend your initial run and runs with your priors to management, auditors and regulators.

> < 물 > < 물 >

Why Use a Stochastic Model?

MCMC Intro CRC Model CSR Model Final Remarks

The parameters $\{\mu_{wd}, \sigma_d\}$ contain the information needed to plot alternative development paths.

Paths of Ultimate Loss Estimates

- For each path calculate Capital→Released Capital→PV of Released Capital
- Cost of capital risk margin =

Original Capital - E[PV of Released Capital]

Details in the 2nd edition of my monograph.