
Rated Age Mortality for Lifetime Medical Claims CLRS 2020

Lori Helge Jon Sappington September 16, 2020

willistowerswatson.com © 2020 Willis Towers Watson. All rights reserved.

WillisTowersWatson III'I'III

Today's speakers

Lori Helge FSA, MAAA

Willis Towers Watson

Director

Jon Sappington FCAS, MAAA

Willis Towers Watson

Manager

Antitrust notice

CIS	

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws.
 Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Agenda

- Intro
- Estimating Claimant Mortality
- Modeling Lifetime Medical claims

Intro

- Situations that require analysis of lifetime medical claims
 - Runoff book of Permanent Total Workers Compensation claims
 - Unlimited Personal Injury Protection (PIP)
- Features of this situation
 - Payments are likely to continue for remainder of claimant's life
 - Often the claims adjuster, care manager, or doctor will include a 'rated age'
- Data required
 - Claimant age and rated age (if available)
 - Claimant gender
 - Historical annual medical payments
 - Reinsurance structure, if applicable

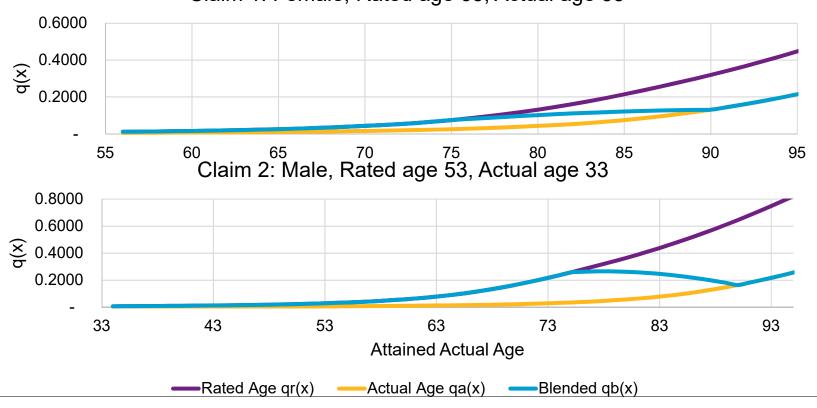
Life and Casualty Intersect

Structured Settlement Annuity (SSA) Overview

- Mortality is a key risk for SSAs
 - When annuitants live longer, they continue to receive life contingent benefits for a longer period of time
 - A higher mortality assumption implies a shorter life, and fewer life contingent benefit payments
 - A lower mortality assumption implies a longer life, and more life contingent benefit payments
- In the Life insurance industry, companies typically do not receive updates on the impairment of the annuitant after issue (except notification of death), which results in uncertainty that increases with the duration of the contract.
 - I was quite interested (oh, let's be honest...envious!) to see that Jon's data included updated views on rated ages!
 - This difference in life vs casualty may be quite important when considering ways to use SSA data from the life industry

Life and Casualty Intersect

Structured Settlement Annuity (SSA) Overview (cont'd)


- The risk of volatility surrounding structured settlement mortality experience is a significant issue:
 - The causes and degrees of impairment vary widely and there is limited experience especially in the later durations.
 - The original underwriting may not have been appropriate and/or sufficient documentation is not available to make that determination. This issue is more prevalent with older business.
 - Medical advances since issue may significantly increase life expectancy.
 - It takes time for evidence to emerge that the mortality experience is worse than expected (i.e., annuitants are living longer).
 - Industry and company experience is very limited, particularly in durations 20-25+.

Three Simplified Views of Substandard Mortality

- Actual Age
 - Assume mortality rates and life expectancy of an unimpaired life
 - At the time the underwriting is performed, actual age mortality would produce a longer life expectancy than the underwriter believes is reasonable
- Rated Age
 - The rated age is assigned by the underwriter at the time that the contract is issued
 - The rated age reflects the underwriter's view on the life expectancy of the annuitant given the degree and type of impairment at issue (and is also dependent on the underlying mortality table assumption used in the life expectancy calculation)
 - Results in higher mortality rates and lower life expectancy than Actual Age mortality
- Blended Age
 - The basic idea is that a blended age approach falls in between Actual Age and Rated Age mortality
 - Tends to be closer to Rated Age mortality at the time of issue, and Actual Age mortality at the end of the mortality table (such as age 100 or 110)
 - There can be different ways to accomplish this Jon has used one example today based on blending the mortality rates:
 - For attained years 75 and prior, give 100% weight to the rated age mortality
 - For attained age 90 and subsequent, give 100% weight to the mortality associated with the actual age
 - For ages 75-90, give linearly increasing weight from the rated age to the actual mortality

Mortality Curve

- Use the rated age with a life table to calculate $q_r(x)$, the probability of death at each age
 - If the claims adjuster provides a life expectancy, perform a reverse lookup from the life table to estimate the rated age
- Repeat to create $q_a(x)$, the probability of death at age given the actual age
- Blend $q_r(x)$ and $q_a(x)$ to get $q_b(x)$

Claim 1: Female, Rated age 65, Actual age 55

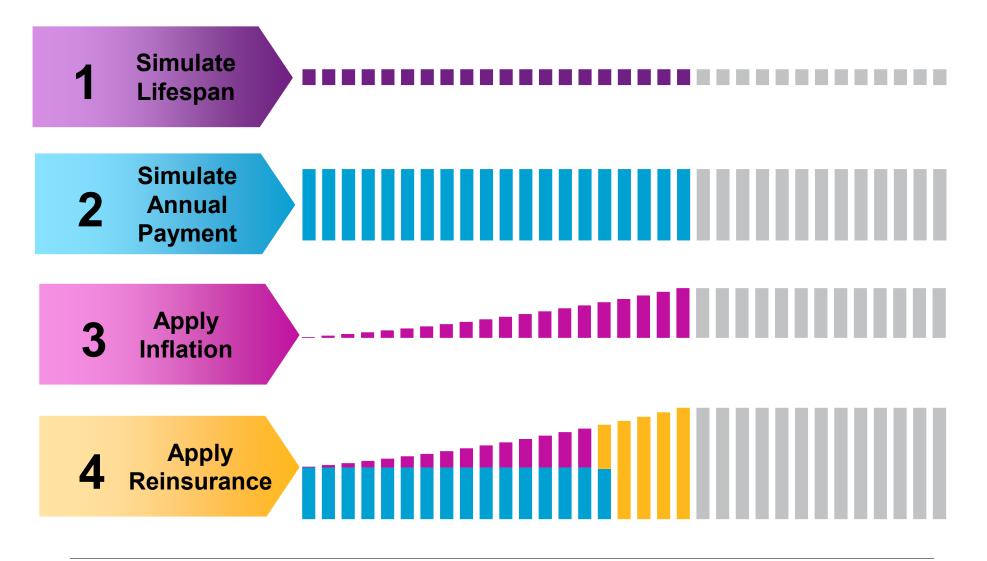
willistowerswatson.com

© 2020 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

2005-2017 Structured Settlement Mortality Experience Report Published by the SOA in January 2020

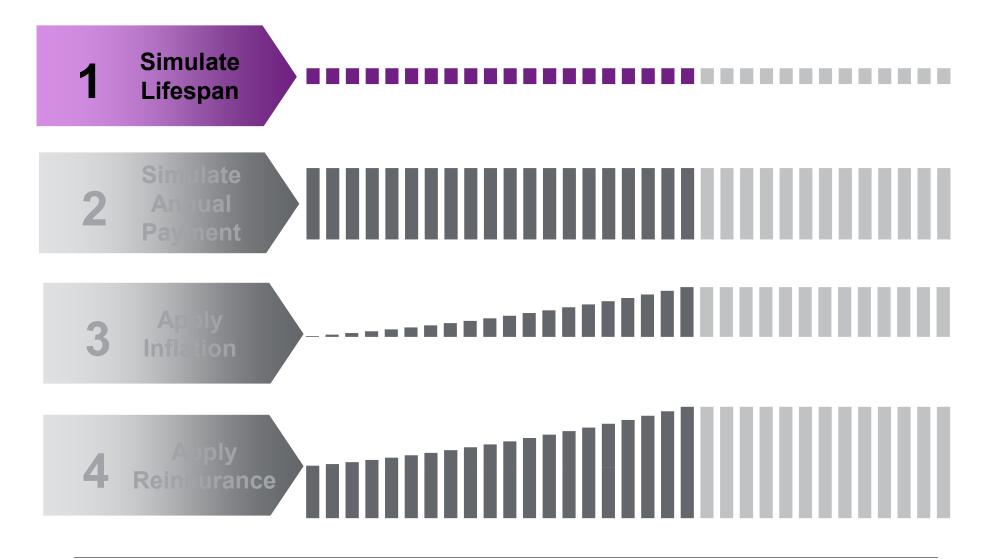
- https://www.soa.org/resources/research-reports/2020/2005-17-structured-settlement-mortality/
- This link includes both a report and pivot tables with the full set of underlying data
- Be sure to consider other slices of data (particularly duration) when evaluating a methodology or table Table 19

A/E RATIO BY EXPECTED BASIS					
		Actual Deaths		Actual Death Amount ('000)	
Expected Bases		13,475	A/E Ratio	\$2,734,619	A/E Ratio
		Expected		Expected Death	
		Deaths		Amount ('000)	
1983 IAM	True Age	4,382	307.5%	\$610,785	447.7%
2000 Annuity	True Age	3,513	383.6%	\$489,297	558.9%
2012 IAM Period with G2 Scale	True Age	2,697	499.5%	\$378,878	721.8%
SSA 2011 (midpoint)	True Age	5,549	242.8%	\$805,158	339.6%
Expected Bases	\times	Expected Deaths	ME Ratio	Expected Death Amount ('000)	A/E Ratio
1983 IAM	Rated Age	13,479	100.0%	\$3,695,921	74.0%
2000 Annuity	Rated Age	11,117	121.2%	\$2,762,692	99.0%
2012 IAM Period with G2 Scale	Rated Age	8,998	149.8%	\$2,269,434	120.5%
SSA 2011 (midpoint)	Rated Age	16,136	83.5%	\$4,008,886	68.2%
Expected Bases		Expected Deaths	A/E Ratio	Expected Death Amount ('000)	A/E Ratio
1983 IAM plus 1983 IAM CED		17,334	77.7%	\$4,170,641	65.6%


willistowerswatson.com

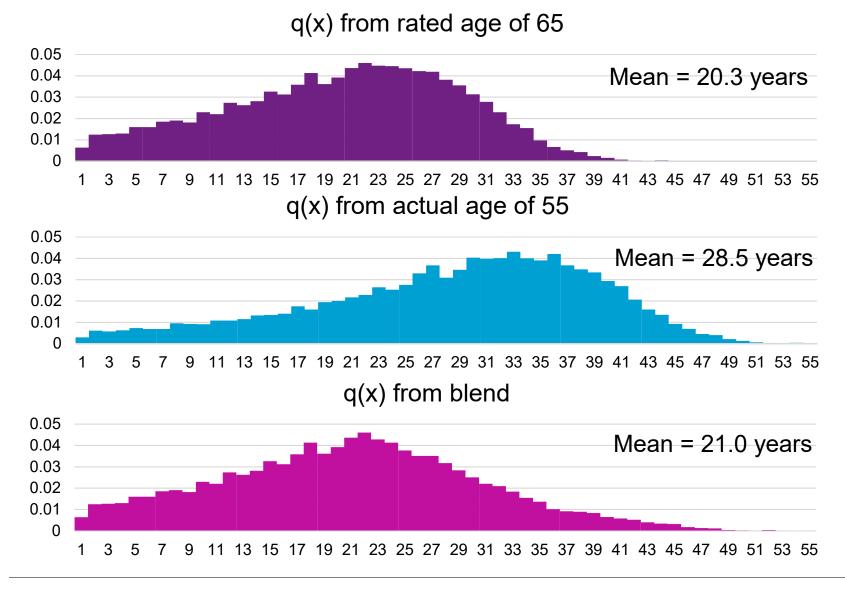
© 2020 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

WillisTowersWatson 111111 11


Lifetime Medical Claims - Four Modeling Steps

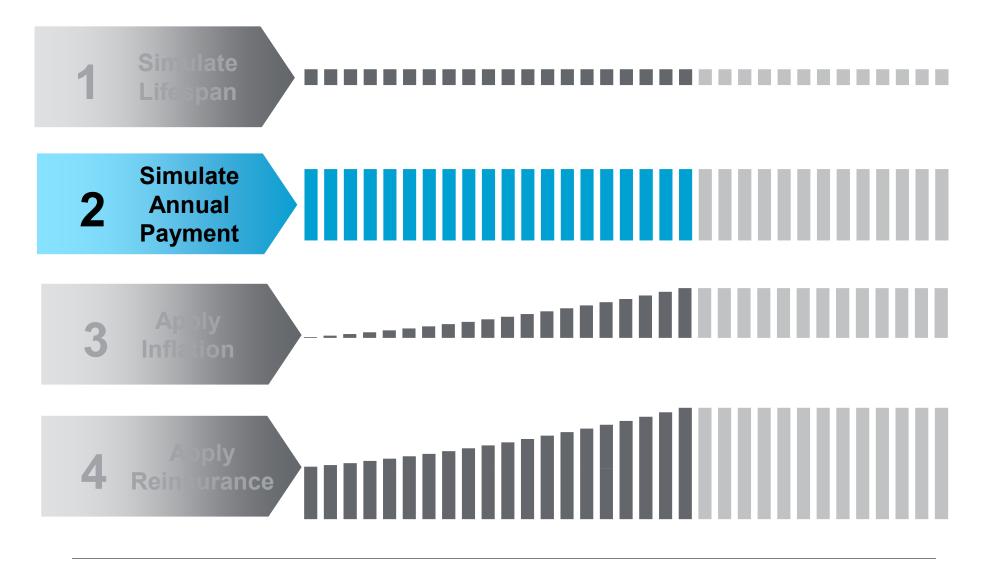
Two sample claims

Attribute	Claim 1	Claim 2
Gender	Female	Male
Actual Age	55	33
Rated Age	65	53
Average Annual Medical Payments	\$150,000	\$300,000
CV of Medical Payments	25%	25%
Payments since inception	\$500,000	\$2,300,000
Reinsurance	100% of \$5M xs \$5M	100% of \$5M xs \$5M


Simulate Lifespan

How to Simulate Lifespan

- Simulating the future lifespan is a relatively simple task once you have determined the mortality assumptions
- For each simulation
 - Draw a random uniform number
 - If it is less than q(x), the claimant does not survive the year
 - No more random numbers are required for this simulation
 - If it is greater than q(x), then the claimant survives that year
 - Continue drawing random numbers as long as they exceed q(x)
 - The number of draws is the number of future years the claimant survives
- Repeat the simulations 10,000 times

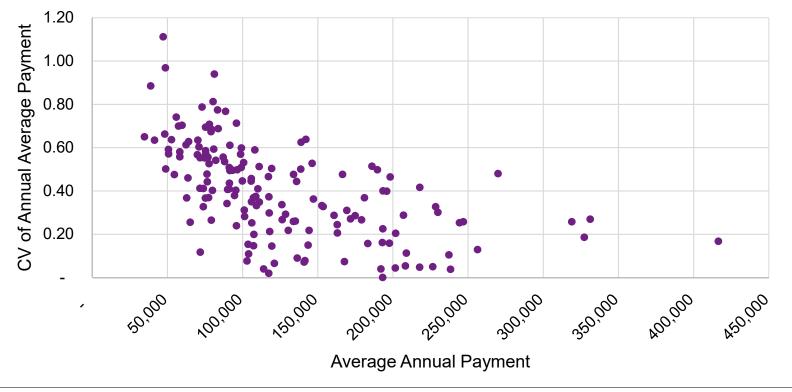

Year of Death Frequency – Claim 1

willistowerswatson.com

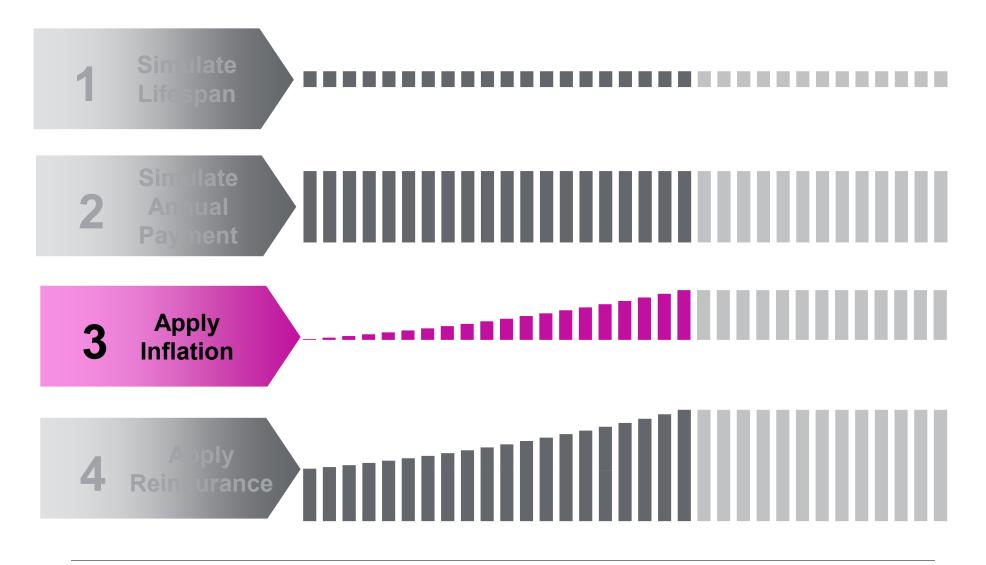
© 2020 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Lifetime Medical Claims - Four Modeling Steps

Simulate Annual Payment

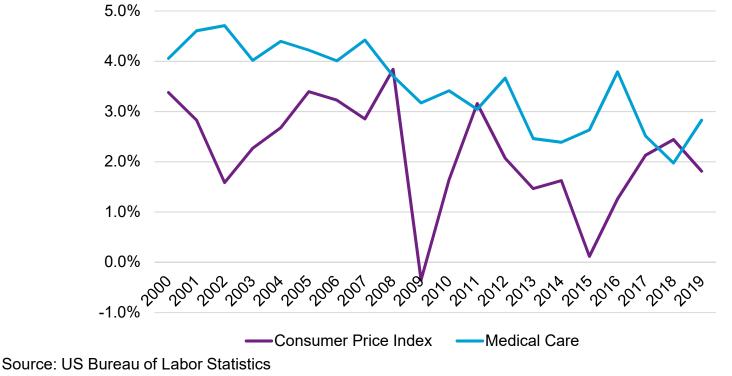

Estimating the Mean

- If you have a forward-looking cost estimate from a care manager or claims adjuster, you can incorporate this information, especially if it differs from historical costs
- If you have historical annual medical costs by claim
 - Adjust historical average to current inflation level
 - Select a mean current-level cost by claim
 - Can be based on recent n-year average
 - Judgmental adjustments are possible based on qualitative data


Simulate Annual Payment

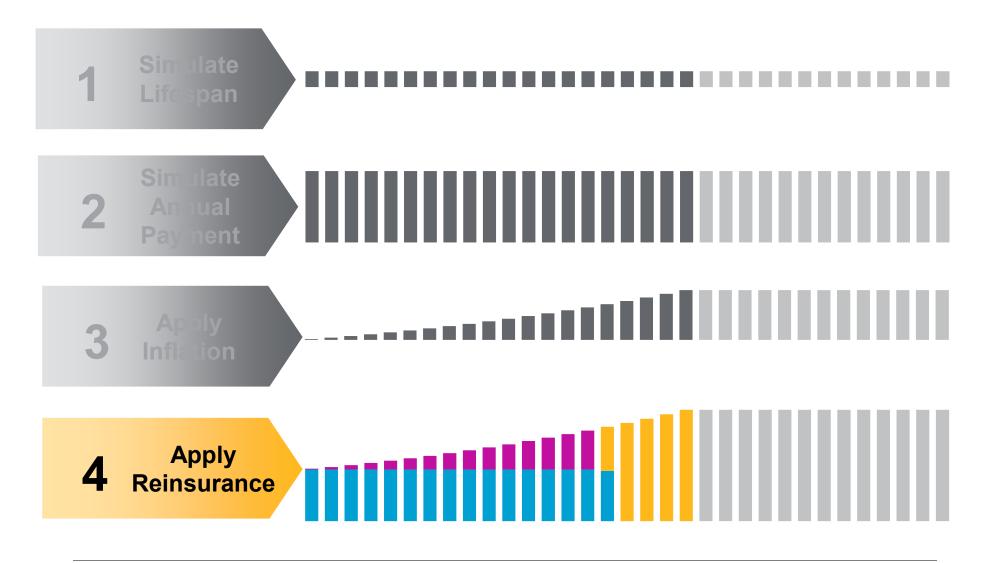
Estimating the Variance

- Coefficient of Variation (CV) can be measured directly from historical payment stream
- If you have a large cohort of claims, you can measure and select the CV by size
 - Larger claims are likely to have a smaller CV as the claimant is generally in a facility with relatively stable costs
 - Smaller claims require a larger CV to cover the possibility of a claimant moving from family care to a more expensive facility



Lifetime Medical Claims - Four Modeling Steps

Apply Inflation


- US Medical cost inflation has historically been higher than general price inflation
- An Economic Scenario Generator (ESG) can provide sample future inflation paths which can be applied to the simulated payments from step 2
- The US Congressional Budget Office publishes inflation forecasts that extend 10 years into the future
 - current forecasts have a CPI of 2.2% for 2023-2030; medical inflation should be one or two points higher

willistowerswatson.com

© 2020 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

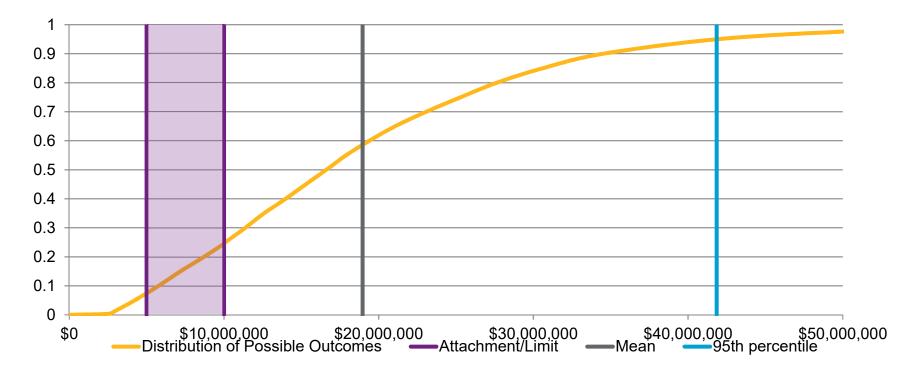
Lifetime Medical Claims - Four Modeling Steps

Apply Reinsurance

Claim 1

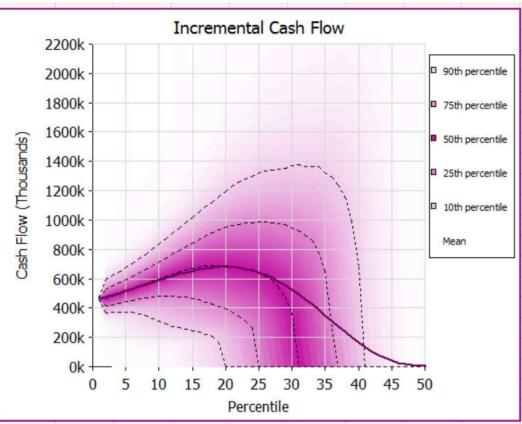
- Add future inflated payments and cumulative historical payments to estimate gross ultimate
- Apply reinsurance terms by layer
- Need attachment, limit, share by claim

Probability of Losses Exceeding: Attachment: 51% Attachment + Limit : 14%

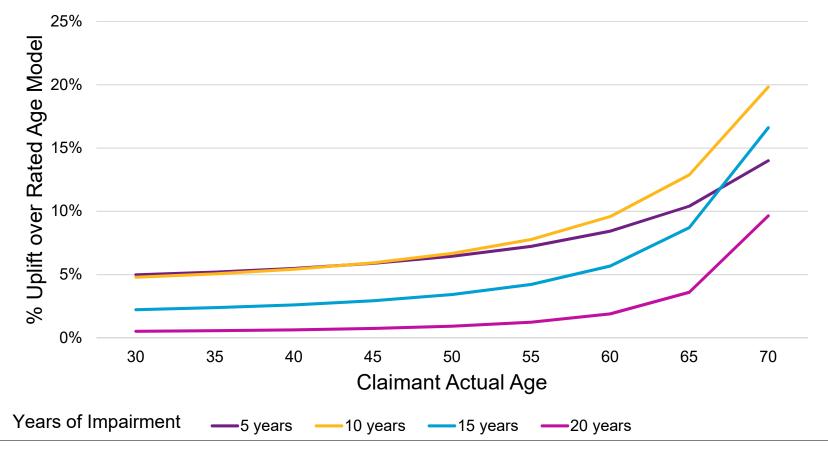


Apply Reinsurance

Claim 2


- Add future inflated payments and cumulative historical payments to estimate gross ultimate
- Apply reinsurance terms by layer
- Need attachment, limit, share by claim

Probability of Losses Exceeding: Attachment: 93% Attachment + Limit: 75%


Results: Model Outputs

- The model produces a full set of future cash flows on both a gross and net basis
 - Results can also be discounted using yield curves that correspond with the economic scenarios driving inflation
- Number of simulations can be increased if needed for greater precision at the 95th and higher percentiles

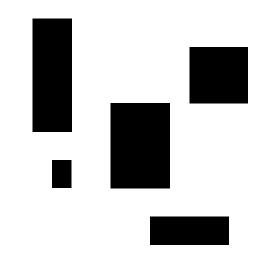
Results: Impact of Blended Mortality

- The blended model will produce a higher liability estimate than the rated age model, and the impact will vary depending on claimant age and years of impairment
 - Older claimants generally have a higher uplift than younger claimants

willistowerswatson.com

© 2020 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Recap


- Lifetime medical claims can be modeled using mortality assumptions
 - It is important to consider the risk that the impairment is overestimated (and therefore that the liability is underestimated)
 - Blending rated with population mortality can help mitigate this risk
- Modeling lifetime claims requires four steps
 - Simulating life span
 - Simulating Annual Payment
 - Apply Inflation
 - Apply Reinsurance
- The impact of blending rated and actual mortality depends on two main factors
 - Actual age of the claimant
 - Amount of impairment

Speaker Contact Details

	WillisTowersWatson
Lori Helge, FSA, MAAA Director	
233 South Wacker Drive Suite 1800 Chicago, IL 60606	T +1 312 873 5085
lori.helge@willistowerswatso	n.com
	WillisTowersWatson

	WillisTowersWatson III'I'III	
Jonathan R. Sappington Manager	, FCAS, MAAA	
1735 Market Street Philadelphia, PA 19102	⊤ +1 215 246 7340	
jon.sappington@willistowerswatson.com		

Thank You

