## Stochastic Cape Cod An Old Friend in a New Suit

Casualty Loss Reserve Seminar September 16, 2020

Jon Sappington, FCAS, MAAA Enbo Jiang, ACAS



# Review of Generalized Cape Cod (GCC)

- A method to estimate a priori loss ratio
- Similar to traditional Cape Cod (CC) but more flexible with the addition of  $Decay \in [0, 1]$
- Bridges between Development Factor Method (DFM) and traditional Cape Cod (CC) with a decay factor

• 
$$GCC = \begin{cases} DFM \text{ , if } Decay = 0 \\ Something in between \\ CC \text{ , if } Decay = 1 \end{cases}$$



### Review of GCC (Cont.)

Mathematically:

$$E[LR_i] = \frac{\sum_j D_j \times F^{|i-j|}}{\sum_j (EXP_j/CDF_j) \times F^{|i-j|}}$$

- where
  - $E[LR_i] = expected loss ratio for origin period i$
  - $F = decay \ factor \ (0 \le F \le 1)$
  - $D_j$  = trended latest losses for origin period i
  - $CDF_j = cumulative\ development\ factor\ for\ origin\ period\ i$
  - $EXP_i = exposure for origin period j$
- $E_j/CDF_j$  is sometimes called the "used-up exposure"



## Review of DFM Bootstrap (Over-Dispersed Poisson)

- $C_{ij} \sim ODP(\mu_{ij}, \phi_j)$
- where
  - $C_{ij}$  is the incremental claim amount in origin period i and development period j
  - $E[C_{ij}] = \mu_{ij}$
  - $Var(C_{ij}) = \phi_j \times \mu_{ij}$
- $log(\mu_{ij}) = \alpha_i + \beta_j + c$ 
  - Log link function
  - The RHS is the linear predictor, estimated via GLM
  - Reproduces the DFM results



# Review of DFM Bootstrap (Cont.)

- $\bullet \phi_j$ 
  - The scale parameter
  - Estimated during the fitting process but assumed to be known (i.e., not variable) for practicality
  - Used to normalize residuals

• 
$$r_{ij} = \frac{c_{ij} - \mu_{ij}}{\sqrt{\phi_j \times \mu_{ij}}}$$

 Then used to convert sampled normalized residuals to crude for pseudo-data

• 
$$C_{ij}^* = r_{ij}^* \times \sqrt{\phi_j \times \mu_{ij}} + \mu_{ij}$$

Can be used to add process variance



## Map of DFM Bootstrap (ODP)

#### 1. Create standard DFM



2. Fit ODP via GLM



3. Create normalized residuals



6. Convert crude residuals to pseudo-data



5. Convert residuals back to crude



4. Sample with replacement



7. Re-calculate pattern using the same DFM



8. Square up triangle of losses using link ratios and incorporating process variance



9. Repeat steps 4-8 many times



### Birthing the GCC Bootstrap

- Knowing:
  - Traditional Bootstrap is based on DFM
  - DFM is a special case of GCC
- Replace DFM with GCC in the DFM Bootstrap Map gives the GCC Bootstrap method



## Map of GCC Bootstrap (ODP)

#### 1. Create standard DFM



2. Fit ODP via GLM



3. Create normalized residuals



6. Convert crude residuals to pseudo-data



5. Convert residuals back to crude



4. Sample with replacement



7. Re-calculate pattern and GCC a priori LR
Link Ratios GCC a priori LR



8. Square up triangle of losses with GCC reserves, selected pattern, and process variance



9. Repeat steps 4-8 many times



# Implementing in Excel (Ingredients and Recipe)

- Use proprietary or open-source software to obtain DFM Bootstrap results by simulation, including:
  - 1. Exposure measure (same for all simulations)
  - 2. Simulated latest diagonal of loss (Step 6 in Map)
  - 3. Simulated selected link ratios (Step 7)
- Excel macro loops through each DFM Bootstrap simulation:
  - For a given decay factor, calculate the GCC a priori LR
  - Calculate B-F reserves using GCC a priori LR
  - Project incremental cash flows
  - Add process variance using Scale Parameter (Step 8)

# Implementing in Excel (Sample Results)

- Note that "CC.01" (GCC Bootstrap with decay factor = 0.01) almost reproduces the DFM Bootstrap results
- As decay factor increases (CC.01 => CC.99), CV decreases, because effectively more data is being weighted together

#### CV (PARAMETER RISK)





# Implementing in Excel (Sample Results Cont.)

 CVs are higher across the board with the addition of process risk, as expected

#### CV (PARAMETER + PROCESS RISKS)





# Implementing in Excel (Sample Results Cont.)

- $Process\ Var = Total\ Var Parameter\ Var$
- Process Risk  $CV = \frac{\sqrt{Process \, Var}}{Mean}$
- Indentical Process Risk CV for all decay factors, which is expected because  $\phi_i$  is fixed **cv** (**PROCESS RISK**)





## Implementing in R

• LIVE demo



### Compared to DFM Bootstrap

#### **Pros**

- Can reproduce DFM Bootstrap with F=0
- Additional flexibility through decay factor  $F \in [0, 1]$
- If an origin period has no latest loss, DFM Bootstrap CV = N/A, but GCC Bootstrap can advise a CV based on the other origin periods and decay factor
- Can provide stability to lines with sparse/volatile data, where DFM Bootstrap yields unrealistically high CVs.

#### Cons

- Not readily available in existing software solutions, requiring additional upfront work to set up the algorithm
- Inappropriate decay factor selection can understate variability



### Related Research

- Spencer Gluck's seminal paper Balancing
   Development and Trend in Loss Reserve Analysis
   offers insights to deriving GCC reserve estimates'
   variance analytically
- Glenn Meyer's recent CAS Monograph 8 explores stochastic Cape Cod in the Bayesian MCMC framework



### **Future Research**

- Extend the GCC Bootstrap to the Mack flavor
- Test the model's "reputation" (as Meyers defines it in CAS Monograph 8) based on CAS Loss Reserve Database
- Incorporate a way of suggesting an optimal decay factor as part of the algorithm
  - Gluck's appendix presents a path



### References

- Generalized Cape Cod:
  - https://www.casact.org/pubs/proceed/proceed97/97482.pdf
  - https://www.casact.org/pubs/forum/98fforum/struhuss.pdf
- ODP Bootstrap:
  - <a href="https://www.casact.org/pubs/monographs/papers/04-shapland.pdf">https://www.casact.org/pubs/monographs/papers/04-shapland.pdf</a>
- Related Research:
  - https://www.casact.org/pubs/monographs/papers/08-Meyers.pdf
  - https://www.actuaries.org.uk/system/files/documents/pdf/sm0201.pdf



## Q&A

## Thank you!

#### Get in touch:



Jon Sappington
Philadelphia
jon.sappington@willistowerswatson.com



**Enbo Jiang**Philadelphia
enbo.jiang@willistowerswatson.com



## Casualty Actuarial Society 4350 North Fairfax Drive, Suite 250 Arlington, Virginia 22203

www.casact.org

