

SLR Dirichlet Peng Shi

Stochastic Loss Reserving: A New Perspective from a Dirichlet Model

Peng Shi, University of Wisconsin-Madison

2020 Casualty Loss Reserve Seminar

Joint work with

Karthik Sriram, Indian Institute of Management Ahmedabad

Outline

Dirichlet

Method

Statistical Inference

Outline

SLR Dirichlet Peng Shi

Introduction Method

Statistical Inference Data

Analysis Conclusion

Statistical Inferen

Data Analys

Background

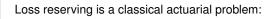
SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data

Analysis



- $\bullet~$ Balance sheet item \rightarrow solvency
- $\bullet \ Ratemaking \rightarrow profitability$

Background

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data Analysis

Conclusion

Loss reserving is a classical actuarial problem:

- $\bullet~$ Balance sheet item \rightarrow solvency
- $\bullet \ Ratemaking \rightarrow profitability$

Two components

- To estimate the outstanding liability
- To quantify the associated variability

Motivation

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference

Data Analysis

Conclusion

Two prominent macro-level stochastic loss reserving methods:

- Chain-Ladder method: development factors or age-to-age ratios
- Bornhuetter-Ferguson method: expected ultimate and unpaid quota

Motivation

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data

Analysis Conclusion Two prominent macro-level stochastic loss reserving methods:

- Chain-Ladder method: development factors or age-to-age ratios
- Bornhuetter-Ferguson method: expected ultimate and unpaid quota

Connections and disconnections:

- BF can be viewed as a credibility weighted average of CL and expected ultimate loss
- Different data generating process for the same run-off triangle

Contribution

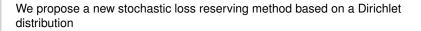
SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference

Data Analysis



Contribution

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference

Data Analysis

Conclusion

We propose a new stochastic loss reserving method based on a Dirichlet distribution

New perspective to view the relation between CL and BF:

- Both CL and BF prediction are derived from the same stochastic model
- The choice between the two depends on the type of information available
- It becomes an inference problem rather than model selection

Contribution

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data

Analysis Conclusion We propose a new stochastic loss reserving method based on a Dirichlet distribution

New perspective to view the relation between CL and BF:

- Both CL and BF prediction are derived from the same stochastic model
- The choice between the two depends on the type of information available
- It becomes an inference problem rather than model selection

Nice Properties:

- Same age-to-age factors as CL
- Generalize the credibility weight in the BF

Outline

SLR Dirichlet Peng Shi

Introductio

Introduction Method

Statistical Inference Data Analysis Conclusion

2 Method

Statistical Inferen

Data Analysi

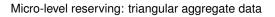
Data Structure

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data Analysis



- A triangle consists of *m* accident years and *n* development years (m > n)
- Let X_{ij} denote incremental paid loss in accident year i development year j
- We work with Y_{ij}/E_i , where E_i is the exposure for accident year *i*

Data Structure

Micro-level reserving: triangular aggregate data

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data Analysis Conclusior

	Accident		Development Year						
	Year	1	2		n-1	n			
	1	Y_{11}	Y_{12}		Y_{1n-1}	Y_{1n}			
Fully developed	:	:				:			
	m - n	$Y_{m-n,1}$	$Y_{m-n,2}$		$Y_{m-n,n-1}$	$Y_{m-n,n}$			
	m - n + 1	$Y_{m-n+1,1}$	$Y_{m-n+1,2}$	• • •	$Y_{m-n+1,n-1}$	$Y_{m-n+1,}$			
	m - n + 2	$Y_{m-n+2,1}$	$Y_{m-n+2,2}$		$Y_{m-n+2,n-1}$				
Run-off Triangle	:	:							
	m-1	$Y_{m-1,1}$	$Y_{m-1,2}$						
	m	$Y_{m,1}$							

• A triangle consists of *m* accident years and *n* development years (m > n)

Let X_{ii} denote incremental paid loss in accident year i development year j

• We work with Y_{ii}/E_i , where E_i is the exposure for accident year i

An Example

SLR Dirichlet

				Incremental Losses by Development Year									
Introduction	Year	Accident Year	Earned Premium	1	2	3	4	5	6	7	8	9	10
	1	1989	1,65,339	41,891	32,156	20,520	15,256	8,170	5,317	3,415	2,504	1,967	940
Method	2	1990	1,68,293	44,050	37,311	22,339	14,356	8,419	6,258	3,545	2,981	1,468	1,265
Statistical	3	1991	1,83,529	47,778	39,354	21,232	16,132	10,632	6,754	4,311	2,407	1,620	993
Inference	4	1992	1,92,991	49,191	42,325	22,731	16,959	11,056	6,972	4,317	2,431	2,016	1,106
	5	1993	2,22,666	47,035	38,662	20,081	15,923	$10,\!621$	6,266	3,552	2,744	1,513	1,308
Data	6	1994	2,40,844	51,538	33,518	19,964	16,713	11,076	7,526	4,835	4,450	2,273	2,155
Analysis	7	1995	2,58,703	46,934	31,827	21,236	15,846	11,288	6,317	5,615	4,261	2,798	2,150
Conclusion	8	1996	2,37,131	43,432	32,768	$21,\!697$	16,150	10,230	8,056	6,250	4,455	3,417	2,421
	9	1997	2,08,179	38,915	28,463	19,494	13,361	10,211	7,176	5,401	3,453	2,551	1,844
	10	1998	1,69,361	34,596	28,089	16,409	13,813	8,966	6,333	4,913	4,196	2,670	
	11	1999	1,50,912	32,580	24,468	$17,\!672$	13,418	7,881	6,616	5,246	3,655		
	12	2000	1,75,101	39,248	$30,\!647$	19,059	14,599	10,220	7,725	5,126			
	13	2001	1,94,483	42,433	32,981	21,082	17,274	12,151	8,309				
	14	2002	2,22,002	45,309	36,483	25,777	18,746	12,266					
	15	2003	2,44,749	54,589	41,491	26,295	19,207						
	16	2004	2,79,994	59,399	47,007	26,169							
	17	2005	3,13,808	68,185	54,385								
	18	2006	3,41,973	66,827									

Dirichlet Distribution

SLR Dirichlet Peng Shi

Introduction

Method

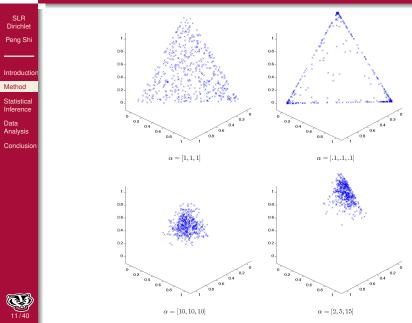
Statistical Inference Data Analysis Conclusion Consider an example of K = 3:

$$f(p_1, p_2, p_3) = \frac{\Gamma(p_1 + p_2 + p_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} p_3^{\alpha_3 - 1},$$

where $p_1 + p_2 + p_3 = 1$.

The support is the hyperplane $p_1 + p_2 + p_3 = 1$, and parameters $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ determines the values of p_1, p_2, p_3

Dirichlet Distribution

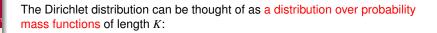


SLR Dirichlet Peng Shi

Introduction Method

Statistical Inference

Data Analysis



SLR Dirichlet Pena Shi

Introduction Method

Statistical Inference Data Analysis Conclusion The Dirichlet distribution can be thought of as a distribution over probability mass functions of length K:

Let $P = (P_1, ..., P_K)$ be a random vector with $K \ge 2$ components. Then P is said to follow the Dirichlet distribution of order $K \ge 2$, which we denote by $P = (P_1, ..., P_K) \sim \text{Dir}(\alpha_1, ..., \alpha_K)$, if its density is given by:

$$f(p; \boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_K) = \frac{\Gamma\left(\sum_{k=1}^K \boldsymbol{\alpha}_k\right)}{\prod_{k=1}^K \Gamma(\boldsymbol{\alpha}_k)} \prod_{k=1}^K p_k^{\boldsymbol{\alpha}_k - 1},$$

where $\alpha_1, \ldots, \alpha_K$ are parameters of the distribution with $\alpha_k > 0$ for each k, and $p = (p_1, \ldots, p_K)$ is on the (K - 1)-dimensional probability simplex, i.e. $\sum_{k=1}^{K} p_k = 1$ and $p_k \ge 0$ for $k = 1, \ldots, K$.

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data Analysis Conclusion We propose to model the incremental loss ratios $(Y_{ij} = X_{ij}/E_i)$ using a scaled Dirichlet distribution.

For accident year *i*, we assume:

$$\left(\frac{Y_{i1}}{\phi_i}, \cdots, \frac{Y_{in}}{\phi_i}, 1 - \frac{\sum_{j=1}^n Y_{ij}}{\phi_i}\right) \sim \operatorname{Dir}(a_1, \dots, a_n, b_n), \text{ with } 0 < \sum_{j=1}^n Y_{ij} < \phi_i,$$

where ϕ_i , a_1 ,..., a_n , and b_n are parameters to be estimated.

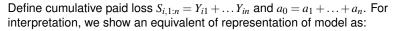
Reserving Model

SLR Dirichlet Peng Shi

Introduction

Method Statistical Inference

Data Analysis



$$\begin{cases} \left(\frac{Y_{i1}}{S_{i,1:n}}, \frac{Y_{i2}}{S_{i,1:n}}, \cdots, \frac{Y_{in}}{S_{i,1:n}}\right) \middle| S_{i,1:n} \sim \operatorname{Dir}(a_1, \dots, a_n) \\ \frac{S_{i,1:n}}{\phi_i} \sim \operatorname{Beta}(a_0, b_n) \end{cases}$$

Reserving Model

SLR Dirichlet Peng Shi

Introduction Method

Statistical Inference Data Analysis Conclusion Define cumulative paid loss $S_{i,1:n} = Y_{i1} + ... Y_{in}$ and $a_0 = a_1 + ... + a_n$. For interpretation, we show an equivalent of representation of model as:

$$\begin{cases} \left(\frac{Y_{i1}}{S_{i,1:n}}, \frac{Y_{i2}}{S_{i,1:n}}, \cdots, \frac{Y_{in}}{S_{i,1:n}}\right) \middle| S_{i,1:n} \sim \operatorname{Dir}(a_1, \dots, a_n) \\ \frac{S_{i,1:n}}{\phi_i} \sim \operatorname{Beta}(a_0, b_n) \end{cases}$$

The Dirichlet model is about allocation given $S_{i,1:n}$:

$$x_1 = \frac{Y_{i1}}{S_{i,1:n}}, x_2 = \frac{Y_{i2}}{S_{i,1:n}}, \cdots, x_{n-1} = \frac{Y_{in-1}}{S_{i,1:n}}$$
$$x_n = \frac{Y_{in}}{S_{i,1:n}} = 1 - \sum_{j=1}^{n-1} x_j$$

Reserving Model

SLR Dirichlet Peng Shi

Introduction Method

Statistical Inference Data Analysis Conclusion Define cumulative paid loss $S_{i,1:n} = Y_{i1} + ... Y_{in}$ and $a_0 = a_1 + ... + a_n$. For interpretation, we show an equivalent of representation of model as:

$$\begin{cases} \left(\frac{Y_{i1}}{S_{i,1:n}}, \frac{Y_{i2}}{S_{i,1:n}}, \cdots, \frac{Y_{in}}{S_{i,1:n}}\right) \middle| S_{i,1:n} \sim \operatorname{Dir}(a_1, \dots, a_n) \\ \frac{S_{i,1:n}}{\phi_i} \sim \operatorname{Beta}(a_0, b_n) \end{cases}$$

The Dirichlet model is about allocation given $S_{i,1:n}$:

$$x_{1} = \frac{Y_{i1}}{S_{i,1:n}}, x_{2} = \frac{Y_{i2}}{S_{i,1:n}}, \cdots, x_{n-1} = \frac{Y_{in-1}}{S_{i,1:n}}$$
$$x_{n} = \frac{Y_{in}}{S_{i,1:n}} = 1 - \sum_{j=1}^{n-1} x_{j}$$

Mathematical properties of Dirichlet distribution implies that past allocation does not inform future allocation.

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data Analysis Conclusion The model implies both past and future allocations given cumulative payments:

$$\begin{pmatrix} \frac{Y_{i1}}{S_{i,1:k}}, \cdots, \frac{Y_{ik}}{S_{i,1:k}} \end{pmatrix} | S_{i,1:k} \sim \operatorname{Dir}(a_1, \dots, a_k) \\ \left(\frac{Y_{ik+1}}{\phi_i - S_{i,1:k}}, \cdots, \frac{Y_{in}}{\phi_i - S_{i,1:k}}, \frac{\phi_i - S_{i,1:n}}{\phi_i - S_{i,1:k}} \right) | S_{i,1:k} \sim \operatorname{Dir}(a_{k+1}, \dots, a_n, b_n).$$

SLR Dirichlet Peng Shi

Introduction

Method

Age-to-age factor and unpaid percentage:

In CL and BF:

Statistical Inference Data Analysis Conclusion

 $\gamma_{k:k+1} = \frac{\mathrm{E}(S_{i,1:k+1})}{\mathrm{E}(S_{i,1:k})}, \text{ and } \eta_k = \frac{\mathrm{E}(S_{i,1:k})}{\mathrm{E}(S_{i,1:k})}.$

SLR Dirichlet Peng Shi

Age-to-age factor and unpaid percentage:

Introduction Method

Statistical Inference Data Analysis Conclusion

 $\gamma_{k:k+1} = \frac{\mathrm{E}(S_{i,1:k+1})}{\mathrm{E}(S_{i,1:k})}, \quad \mathrm{and} \quad \eta_k = \frac{\mathrm{E}(S_{i,1:k})}{\mathrm{E}(S_{i,1:n})}.$

Dirichlet model:

In CL and BF:

$$\gamma_{k:k+1} = \frac{a_1 + \dots + a_{k+1}}{a_1 + \dots + a_k}$$
$$\eta_k = \frac{a_1 + \dots + a_k}{a_1 + \dots + a_n}$$

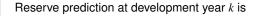
SLR Dirichlet Pena Shi

Introduction

Method

Statistical Inference

Data Analysis



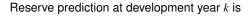
$$\widehat{R}_i = \widehat{S}_{i,1:n} - S_{i,1:k} = \mathbb{E}(S_{i,1:n}|S_{i,1:k}) - S_{i,1:k}$$

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data Analysis Conclusion



$$\widehat{R}_i = \widehat{S}_{i,1:n} - S_{i,1:k} = \mathbb{E}(S_{i,1:n}|S_{i,1:k}) - S_{i,1:k}$$

Recall the well-known results:

$$\begin{split} \widehat{R}_i^{EX} &= \mathrm{E}(S_{i,1:n}) - S_{i,1:k} \\ \widehat{R}_i^{CL} &= \left(\prod_{j=k}^{n-1} \gamma_{j:j+1} - 1\right) S_{i,1:k} \\ \widehat{R}_i^{BF} &= \eta_k \widehat{R}_i^{CL} + (1 - \eta_k) \widehat{R}_i^{EX} \end{split}$$

SLR Dirichlet

Introduction Method At development year *k*, the Dirichlet model predicts:

$$\widehat{R}_i^D = v_k \widehat{R}_i^{CL} + (1 - v_k) \widehat{R}_i^{EX},$$

where

$$v_k = \left\{\frac{\mathrm{CV}(S_{i,1:n})}{\mathrm{CV}(S_{i,1:k})}\right\}^2 = \frac{\mathrm{Var}(S_{i,1:n})}{\mathrm{Var}(S_{i,1:k})} \left\{\frac{\mathrm{E}(S_{i,1:k})}{\mathrm{E}(S_{i,1:n})}\right\}^2$$

Statistical Inference Data Analysis

Dirichlet Peng Shi

Introduction Method

Statistical Inference Data Analysis Conclusion At development year *k*, the Dirichlet model predicts:

$$\widehat{R}_i^D = v_k \widehat{R}_i^{CL} + (1 - v_k) \widehat{R}_i^{EX},$$

where

$$v_k = \left\{\frac{\mathrm{CV}(S_{i,1:n})}{\mathrm{CV}(S_{i,1:k})}\right\}^2 = \frac{\mathrm{Var}(S_{i,1:n})}{\mathrm{Var}(S_{i,1:k})} \left\{\frac{\mathrm{E}(S_{i,1:k})}{\mathrm{E}(S_{i,1:n})}\right\}^2$$

Compare with BF prediction:

$$\widehat{R}_i^{BF} = \eta_k \widehat{R}_i^{CL} + (1 - \eta_k) \widehat{R}_i^{EX}$$

where

$$\eta_k = \frac{\mathrm{E}(S_{i,1:k})}{\mathrm{E}(S_{i,1:n})}$$

Dirichlet Peng Shi

Introduction Method

Statistical Inference Data Analysis Conclusion At development year k, the Dirichlet model predicts:

$$\widehat{R}_i^D = v_k \widehat{R}_i^{CL} + (1 - v_k) \widehat{R}_i^{EX},$$

where

$$v_k = \left\{ \frac{\mathrm{CV}(S_{i,1:n})}{\mathrm{CV}(S_{i,1:k})} \right\}^2 = \frac{\mathrm{Var}(S_{i,1:n})}{\mathrm{Var}(S_{i,1:k})} \left\{ \frac{\mathrm{E}(S_{i,1:k})}{\mathrm{E}(S_{i,1:n})} \right\}^2$$

Compare with BF prediction:

$$\widehat{R}_i^{BF} = \eta_k \widehat{R}_i^{CL} + (1 - \eta_k) \widehat{R}_i^{EX}$$

where

$$\eta_k = \frac{\mathrm{E}(S_{i,1:k})}{\mathrm{E}(S_{i,1:n})}$$

We note the limiting case: $v_k o \eta_k$ when $rac{\sum_{j=k+1}^n a_j}{b_n} o 0$

Outline

SLR Dirichlet Pena Shi

Introduction

Method

Statistical Inference

Data Analysis Conclusion

3 Statistical Inference

Data Analysi

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference

Data Analysis

Conclusion

To predict the outstanding payments, one needs the unknowns

 $\boldsymbol{\theta} = (a_1, a_2, \dots, a_n, b_n, \phi_1, \phi_2, \dots, \phi_m).$

Two types of data:

- Fully developed accident year: for $1 \le i \le m - n$,

$$\left(\frac{Y_{i1}}{\phi_i}, \cdots, \frac{Y_{in}}{\phi_i}, 1 - \frac{S_{i,1:n}}{\phi_i}\right) \sim \operatorname{Dir}(a_1, \dots, a_n, b_n)$$

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference

Data Analysis Conclusion To predict the outstanding payments, one needs the unknowns

 $\boldsymbol{\theta} = (a_1, a_2, \dots, a_n, b_n, \phi_1, \phi_2, \dots, \phi_m).$

Two types of data:

- Fully developed accident year: for $1 \le i \le m - n$,

$$\left(\frac{Y_{i1}}{\phi_i}, \cdots, \frac{Y_{in}}{\phi_i}, 1 - \frac{S_{i,1:n}}{\phi_i}\right) \sim \operatorname{Dir}(a_1, \dots, a_n, b_n)$$

- Not fully developed accident year: for $m - n + 1 \le i \le m$,

$$\left(\frac{Y_{i1}}{\phi_i}, \cdots, \frac{Y_{im+1-i}}{\phi_i}, 1 - \frac{S_{i,1:m+1-i}}{\phi_i}\right) \sim \operatorname{Dir}\left(a_1, \dots, a_n, a_0 + b_n - \sum_{j=1}^{m+1-i} a_j\right)$$

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data Analysis Conclusion

Frequentst estimation:

- Likelihood-based estimation
- When $a_0/(a_0+1) \approx 1$, we obtain CL estimates

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference Data Analysis

Conclusion

Frequentst estimation:

- Likelihood-based estimation
- When $a_0/(a_0+1) \approx 1$, we obtain CL estimates

Bayesian estimation:

- It allows for a hierarchical extension: $\phi_1, \phi_2, \dots, \phi_n \stackrel{iid}{\sim} uniform(0, \phi)$ with a flat hyper prior $p(\phi) \propto 1$ for $\phi \in (0, \infty)$
- Expert knowledge on development pattern could be incorporated into inference via informative priors
- It is straightforward to blend in collateral information in the model inference

SLR Dirichlet Peng Shi

Introduction

Method

Statistical Inference

Data Analysis Conclusion Estimation with a variance constraint: $b_n > a_0 (= a_1 + ... + a_n)$

This constraint ensures $Var(S_{i,1:k})$ increases in k:

$$\operatorname{Var}(S_{i,1:k}) = \frac{\left(\sum_{j=1}^{k} a_j\right) \left(a_0 + b_n - \sum_{j=1}^{k} a_j\right)}{(a_0 + b_n)^2 (a_0 + b_n + 1)} \phi_i^2.$$

This constraint mimics a condition implied by the Chain-Ladder method: the variance in the cumulative paid loss ratio is increasing by development age.

Outline

SLR Dirichlet Pena Shi

Introduction Method

Statistical Inference

Data Analysis

Conclusion

Metho

Statistical Inferen

4 Data Analysis

Conclusion

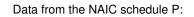
Introduction

Method

Statistical Inference

Data Analysis

Conclusion



• We examine the paid losses for worker's compensation

- Introduction
- Method Statistical Inference
- Data Analysis
- Conclusion

- We examine the paid losses for worker's compensation
- The data of each individual company contain incremental paid losses for 18 accident years (m = 18) from to 1989 to 2006, and for each accident year, losses are developed for the period of 10 years (n = 10).

- Introduction Method
- Statistical Inference
- Data Analysis
- Conclusion

- Data from the NAIC schedule P:
 - We examine the paid losses for worker's compensation
 - The data of each individual company contain incremental paid losses for 18 accident years (m = 18) from to 1989 to 2006, and for each accident year, losses are developed for the period of 10 years (n = 10).
 - Data are split into two parts
 - Upper triangle is used to develop model
 - Lower triangle is for validation

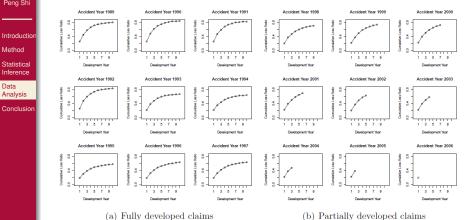
Case Study Using One Insurer

Method

Statistical

Inference

Data Analysis



Introduction

Method

Statistical Inference

Data Analysis

Conclusion

Frequentist approach: MLE Dirichlet $\hat{a}_0/(\hat{a}_0+1) \approx 1$

Development		10 accid	lent years		18 accident years				
Factor	Dirichlet Model		Mack Chain-Ladder		Dirichlet M	Dirichlet Model		-Ladder	
	Estimate	SE	Estimate	SE	Estimate	SE	Estimate	SE	
$\gamma_{1:2}$	1.778	0.0138	1.779	0.0087	1.775	0.0175	1.781	0.013	
$\gamma_{2:3}$	1.280	0.0055	1.281	0.0082	1.269	0.0072	1.269	0.006	
$\gamma_{3:4}$	1.169	0.0040	1.169	0.0039	1.161	0.0049	1.160	0.003	
$\gamma_{4:5}$	1.098	0.0029	1.098	0.0024	1.091	0.0034	1.090	0.003	
$\gamma_{5:6}$	1.066	0.0025	1.066	0.0012	1.057	0.0026	1.057	0.002	
$\gamma_{6:7}$	1.046	0.0023	1.046	0.0019	1.037	0.0020	1.037	0.003	
$\gamma_{7:8}$	1.033	0.0021	1.033	0.0026	1.025	0.0017	1.025	0.002	
$\gamma_{8:9}$	1.021	0.0020	1.022	0.0013	1.016	0.0014	1.016	0.002	
$\gamma_{9:10}$	1.014	0.0023	1.014	0.0008	1.011	0.0012	1.010	0.001	

Peng Shi

Introduction Method Statistical Inference Data Analysis Conclusion

Comparison of reserve prediction:

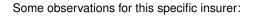
		MLE Dirich	let Model			Hierarchical Bayes Dirichlet Model				
		(18 accident	years data)		(18 accident years data)				
Acc	Actual	95% Inter-	Actual-	Interval	Interval	95% Inter-	Actual-	Interval	Interval	
Year	Loss	val	Predicted	l contains	Length	val	Predicted	contains	Length	
	Ratio			actual				actual		
1997	0.629	[0.629,0.629	0.000	1	0.000	[0.629, 0.629]	0.000	1	0.000	
1998	0.719	[0.709,0.720	0.004	1	0.011	[0.718, 0.719]	0.000	1	0.001	
1999	0.763	[0.749,0.765	0.005	1	0.016	[0.763, 0.765]	0.001	1	0.002	
2000	0.767	0.747,0.772	0.006	1	0.025	[0.764, 0.768]	0.001	1	0.004	
2001	0.765	0.736,0.767	0.012	1	0.031	[0.757, 0.763]	0.005	0	0.006	
2002	0.741	0.698,0.739	0.022	0	0.041	[0.722, 0.730]	0.015	0	0.008	
2003	0.722	0.699,0.752	0.005	1	0.053	[0.723, 0.735]	0.007	0	0.012	
2004	0.705	0.657,0.723	0.014	1	0.066	[0.682, 0.699]	0.014	0	0.017	
2005	0.729	0.676,0.771	0.006	1	0.095	[0.715, 0.743]	0.001	1	0.028	
2006	0.629	[0.576,0.708	0.013	1	0.132	[0.624, 0.667]	0.016	1	0.043	
Averag	ge		0.009	0.900	0.047		0.006	0.600	0.012	

Introduction Method Statistical Inference Data Analysis Conclusion

Reserve prediction with variance constraints:

		MLE Dirichl	et Model			Hierarchical Bayes Dirichlet Model				
		(18 accident	years data)			(18 accident	years data)			
Acc	Actual	95% Inter-	Actual-	Interval	Interval	95% Inter-	Actual-	Interval	Interval	
Year	Loss	val	Predicted	contains	Length	val	Predicted	contains	Length	
	Ratio			actual				actual		
1997	0.629	[0.629, 0.629]	0.000	1	0.000	[0.629, 0.629]	0.000	1	0.000	
1998	0.719	[0.712, 0.722]	0.003	1	0.010	[0.713,0.722]	0.002	1	0.009	
1999	0.763	[0.752, 0.768]	0.004	1	0.016	[0.754,0.769]	0.002	1	0.015	
2000	0.767	[0.751, 0.774]	0.006	1	0.023	[0.754,0.774]	0.004	1	0.020	
2001	0.765	[0.740, 0.768]	0.012	1	0.028	[0.745,0.771]	0.008	1	0.026	
2002	0.741	[0.702, 0.739]	0.021	0	0.037	[0.710,0.740]	0.016	0	0.030	
2003	0.722	[0.705, 0.754]	0.006	1	0.049	[0.712,0.751]	0.009	1	0.039	
2004	0.705	[0.661, 0.724]	0.013	1	0.063	[0.671,0.721]	0.010	1	0.050	
2005	0.729	[0.682, 0.770]	0.005	1	0.088	[0.698,0.776]	0.006	1	0.078	
2006	0.629	[0.577, 0.716]	0.014	1	0.139	[0.603,0.718]	0.027	1	0.115	
Averag	ge		0.008	0.900	0.047		0.008	0.900	0.038	

- Introduction
- Method
- Statistical Inference
- Data Analysis
- Conclusion



• Both point and interval predictions are comparable between the CL and MLE Dirichlet model. Recall that $\hat{a}_0/(\hat{a}_0+1) \approx 1$.

Introduction

Method Statistical Inference

Data Analysis

Conclusion

Some observations for this specific insurer:

- Both point and interval predictions are comparable between the CL and MLE Dirichlet model. Recall that â₀/(â₀ + 1) ≈ 1.
- Additional 8 years fully developed claims data help improve prediction in terms of coverage probability. It is not true in general.
 - The insurer has stable underwriting criterion and business mix.
 - It focuses on assigned risk market.

Introduction Method

Statistical Inference

Data Analysis

Conclusion

Some observations for this specific insurer:

- Both point and interval predictions are comparable between the CL and MLE Dirichlet model. Recall that $\hat{a}_0/(\hat{a}_0+1) \approx 1$.
- Additional 8 years fully developed claims data help improve prediction in terms of coverage probability. It is not true in general.
 - The insurer has stable underwriting criterion and business mix.
 - It focuses on assigned risk market.
- Prediction interval from the MLE is wider than the Bayesian approach, and variance constraint further improves the hierarchical model performance.

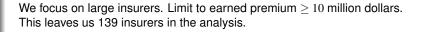
Introduction

Method

Statistical Inference

Data Analysis

Conclusion



Introduction Method

Statistical Inference

Data Analysis

Conclusion

We focus on large insurers. Limit to earned premium ≥ 10 million dollars. This leaves us 139 insurers in the analysis.

Performance of prediction is assessed using out-of-sample validation, and we compute three metrics:

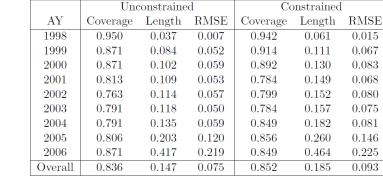
- Root mean squared error (RMSE)
- Coverage probability of the 95% prediction interval (Coverage)
- Average length of the 95% prediction interval (Length)

MLF Dirichlet Model:

length

SLR Dirichlet Peng Shi

- Introduction
- Method
- Statistical Inference
- Data Analysis
- Conclusion



The usage of additional 8 years of claims data provide worse prediction
Variance constraint improves coverage at the price of RMSE and interval

10-year Triangle

Introduction

Method

Statistical Inference

Data Analysis

Conclusion

Bayesian Inference with informative priors:

Introduction Method

Statistical Inference

Data Analysis

Conclusion

Bayesian Inference with informative priors:

We employ prior knowledge on the expected unpaid loss ratio for the *i*th accident year:

$$\begin{split} & \mathrm{E}(S_{i,m+2-i:n}|S_{i,1:m+1-i} = s_{i,1:m+1-i}) \\ = & \frac{\sum_{j=m+2-i}^{n} a_j}{\sum_{j=m+2-i}^{n} a_j + b_n} (\phi_i - s_{i,1:m+1-i}), \ i = m-n+2, \dots, m. \end{split}$$

Introduction Method

Statistical Inference

Data Analysis

Conclusion

Bayesian Inference with informative priors:

We employ prior knowledge on the expected unpaid loss ratio for the *i*th accident year:

$$E(S_{i,m+2-i:n}|S_{i,1:m+1-i} = s_{i,1:m+1-i}) = \frac{\sum_{j=m+2-i}^{n} a_j}{\sum_{j=m+2-i}^{n} a_j + b_n} (\phi_i - s_{i,1:m+1-i}), \ i = m - n + 2, \dots, m.$$

Consider two different levels of uncertainty on the information:

(a)

$$\mathbf{E}(S_{i,m+2-i:n}|S_{i,1:m+1-i}) \in [0.5(CLR_i - S_{i,m+2-i:n}), 1.5(CLR_i - S_{i,m+2-i:n})]$$

(b)

$$\mathbf{E}(S_{i,m+2-i:n}|S_{i,1:m+1-i}) \in [0.9(CLR_i - S_{i,m+2-i:n}), 1.1(CLR_i - S_{i,m+2-i:n})]$$

Introduction Method Statistical Inference Data Analysis Conclusion

Scenario #1: CLR is the actual cumulative loss ratio

	Scer	nario $\#1(a$	a)	Scenario $\#1(b)$			
AY	Coverage	Length	RMSE	Coverage	Length	RMSE	
1998	1.000	0.045	0.005	1.000	0.035	0.001	
1999	1.000	0.089	0.013	1.000	0.070	0.002	
2000	1.000	0.116	0.019	1.000	0.088	0.003	
2001	1.000	0.145	0.028	1.000	0.110	0.004	
2002	1.000	0.172	0.036	1.000	0.129	0.005	
2003	1.000	0.186	0.045	1.000	0.138	0.006	
2004	1.000	0.247	0.062	1.000	0.182	0.007	
2005	1.000	0.317	0.075	1.000	0.232	0.007	
2006	1.000	0.543	0.069	1.000	0.374	0.004	
Overall	1.000	0.207	0.039	1.000	0.151	0.004	

Introduction Method Statistical Inference Data Analysis Conclusion Scenario #2: *CLR* is estimated from industry-level loss development factor Sherman and Diss (2005).

		Scer	nario $\#2(a$	a)	Scenario $\#2(b)$				
	AY	Coverage	Length	RMSE	Coverage	Length	RMSE		
	1998	0.964	0.060	0.011	0.971	0.051	0.009		
	1999	0.942	0.105	0.024	0.950	0.087	0.018		
	2000	0.871	0.135	0.036	0.878	0.111	0.026		
	2001	0.863	0.165	0.064	0.906	0.133	0.054		
	2002	0.827	0.175	0.067	0.835	0.142	0.055		
	2003	0.842	0.182	0.062	0.914	0.147	0.043		
	2004	0.914	0.205	0.057	0.899	0.165	0.048		
	2005	0.906	0.226	0.069	0.655	0.181	0.081		
	2006	0.942	0.375	0.140	0.719	0.293	0.161		
1	Overall	0.897	0.181	0.059	0.859	0.146	0.055		

Introduction

Method

Statistical Inference

Data

Analysis

Conclusion

Scenario #3: CLR is estimated using growth curve model Clark (2003).

Scenario #3(a)Scenario #3(b)AY Coverage Length RMSE Coverage Length RMSE 1998 1.0000.0510.0090.9930.042 0.00719990.9570.0920.0210.9500.076 0.01720000.9570.1220.0330.9350.100 0.026 20010.9140.1460.0540.8920.119 0.0482002 0.906 0.1650.0550.8780.1340.046 20030.9570.1860.0590.9860.1510.0382004 0.9280.2350.0700.9280.1890.04520050.9140.3140.1150.9350.2500.09120060.9570.2040.906 0.4130.1950.549Overall 0.9430.2070.0690.9340.1640.057

Introduction Method

Statistical Inference

Data Analysis

Conclusion

Comparison with existing methods:

- Mack Chain-Ladder
- Bootstrap Chain-Ladder
- Clark's growth curve
- GLM: Poisson, gamma, and Tweedie

Dirichlet Peng Shi

Introduction

Method Statistical Inference

Data Analysis

Conclusion

	Mack Chain-Ladder			Bootstra	p Chain-I	Ladder	Clark		
AY	Coverage	Length	RMSE	Coverage	Length	RMSE	Coverage	Length	RMSE
1998	0.446	0.011	0.007	0.971	0.042	0.014	0.921	0.032	0.007
1999	0.496	0.029	0.062	0.899	0.081	0.088	0.835	0.049	0.016
2000	0.619	0.045	0.068	0.885	0.092	0.097	0.799	0.063	0.024
2001	0.712	0.061	0.056	0.799	0.091	0.064	0.770	0.075	0.047
2002	0.691	0.074	0.056	0.827	0.098	0.071	0.885	0.087	0.045
2003	0.770	0.092	0.042	0.849	0.109	0.053	0.899	0.101	0.034
2004	0.856	0.134	0.061	0.878	0.133	0.074	0.906	0.125	0.044
2005	0.871	0.186	0.116	0.871	0.196	0.144	0.871	0.174	0.090
2006	0.835	0.582	0.219	0.856	0.398	0.267	0.899	0.353	0.196
Overall	0.699	0.135	0.076	0.871	0.138	0.097	0.865	0.118	0.056
	Tweedie $p = 1$		Tweedie $p = 2$			Tweedie 1			
AY	Coverage	Length	RMSE	Coverage	Length	RMSE	Coverage	Length	RMSE
1998	0.871	0.036	0.007	0.604	0.019	0.009	0.777	0.025	0.008
1999	0.813	0.066	0.062	0.511	0.042	0.056	0.669	0.049	0.053
2000	0.899	0.077	0.068	0.633	0.056	0.081	0.705	0.060	0.071
2001	0.806	0.083	0.056	0.633	0.061	0.066	0.727	0.065	0.060
2002	0.784	0.092	0.056	0.734	0.075	0.066	0.727	0.072	0.060
2003	0.885	0.102	0.042	0.806	0.093	0.060	0.784	0.084	0.050
2004	0.849	0.128	0.061	0.871	0.137	0.085	0.799	0.112	0.071
2005	0.878	0.183	0.116	0.957	0.239	0.158	0.863	0.180	0.136
2006	0.871	0.361	0.219	0.935	0.524	0.248	0.863	0.378	0.229
Overall	0.851	0.125	0.076	0.743	0.138	0.092	0.768	0.114	0.082

Outline

Dirichlet

Introduction Method

Statistical Inference

Data Analysis

Conclusion

Conclusion

SLR Dirichlet Peng Shi

Introduction Method

Statistical Inference

Data Analysis

Conclusion

We proposed a stochastic loss reserving method based on Dirichlet distribution

- A new perspective to view CL and BF as inference issue
- Prediction from the Dirichlet model is a credibility weighted average of CL and expected payments
- Good performance was supported by comparison with existing methods using out-of-sample validation

Conclusion

SLR Dirichlet Peng Shi

Introduction Method

Statistical Inference

Data Analysis

Conclusion

We proposed a stochastic loss reserving method based on Dirichlet distribution

- A new perspective to view CL and BF as inference issue
- Prediction from the Dirichlet model is a credibility weighted average of CL and expected payments
- Good performance was supported by comparison with existing methods using out-of-sample validation

For more details, check out our paper:

Sriram, K. and Shi, P. (2020+) Stochastic loss reserving: A new perspective from a Dirichlet model, *Journal of Risk and Insurance*.

Conclusion

SLR Dirichlet Peng Shi

Introduction Method

Statistical Inference

Data Analysis

Conclusion

Thank you for your attention!!!

Contact Info:

Peng Shi can be reached by pshi@bus.wisc.edu.

