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Background

Loss reserving is a classical actuarial problem:

I Balance sheet item→ solvency
I Ratemaking→ profitability

Two components

I To estimate the outstanding liability
I To quantify the associated variability



Motivation

Two prominent macro-level stochastic loss reserving methods:

I Chain-Ladder method: development factors or age-to-age ratios
I Bornhuetter-Ferguson method: expected ultimate and unpaid quota

Connections and disconnections:

I BF can be viewed as a credibility weighted average of CL and expected
ultimate loss

I Different data generating process for the same run-off triangle



Contribution

We propose a new stochastic loss reserving method based on a Dirichlet
distribution

New perspective to view the relation between CL and BF:

I Both CL and BF prediction are derived from the same stochastic model
I The choice between the two depends on the type of information available
I It becomes an inference problem rather than model selection

Nice Properties:

I Same age-to-age factors as CL
I Generalize the credibility weight in the BF



Data Structure

Micro-level reserving: triangular aggregate data

I A triangle consists of m accident years and n development years (m > n)
I Let Xij denote incremental paid loss in accident year i development year j
I We work with Yij/Ei, where Ei is the exposure for accident year i



An Example



Dirichlet Distribution

Consider an example of K = 3:

f (p1,p2,p3) =
Γ(p1 +p2 +p3)

Γ(α1)Γ(α2)Γ(α3)
pα1−1

1 pα2−1
2 pα3−1

3 ,

where p1 +p2 +p3 = 1.

The support is the hyperplane p1 +p2 +p3 = 1, and parameters
α = (α1,α2,α3) determines the values of p1,p2,p3



Dirichlet Distribution



Dirichlet Distribution

The Dirichlet distribution can be thought of as a distribution over probability
mass functions of length K:

Let P = (P1, . . . ,PK) be a random vector with K ≥ 2 components. Then P is
said to follow the Dirichlet distribution of order K ≥ 2, which we denote by
P = (P1, . . . ,PK)∼ Dir(α1, . . . ,αK), if its density is given by:

f (p;α1, . . . ,αK) =
Γ
(
∑

K
k=1 αk

)
∏

K
k=1 Γ(αk)

K

∏
k=1

pαk−1
k ,

where α1, . . . ,αK are parameters of the distribution with αk > 0 for each k, and
p = (p1, . . . ,pK) is on the (K−1)-dimensional probability simplex, i.e.
∑

K
k=1 pk = 1 and pk ≥ 0 for k = 1, . . . ,K.



Reserving Model

We propose to model the incremental loss ratios (Yij = Xij/Ei) using a scaled
Dirichlet distribution.

For accident year i, we assume:(
Yi1

φi
, · · · , Yin

φi
,1−

∑
n
j=1 Yij

φi

)
∼ Dir(a1, . . . ,an,bn), with 0 <

n

∑
j=1

Yij < φi,

where φi, a1, . . . ,an, and bn are parameters to be estimated.



Reserving Model

Define cumulative paid loss Si,1:n = Yi1 + . . .Yin and a0 = a1 + . . .+an. For
interpretation, we show an equivalent of representation of model as:

(
Yi1

Si,1:n
,

Yi2

Si,1:n
, · · · ,

Yin

Si,1:n

)∣∣∣∣Si,1:n ∼ Dir(a1, . . . ,an)

Si,1:n

φi
∼ Beta(a0,bn)

The Dirichlet model is about allocation given Si,1:n:

x1 =
Yi1

Si,1:n
,x2 =

Yi2

Si,1:n
, · · · ,xn−1 =

Yin−1

Si,1:n

xn =
Yin

Si,1:n
= 1−

n−1

∑
j=1

xj

Mathematical properties of Dirichlet distribution implies that past allocation
does not inform future allocation.



Reserving Model

The model implies both past and future allocations given cumulative
payments:

(
Yi1

Si,1:k
, · · · , Yik

Si,1:k

)
|Si,1:k ∼ Dir(a1, . . . ,ak)(

Yik+1

φi−Si,1:k
, · · · , Yin

φi−Si,1:k
,

φi−Si,1:n

φi−Si,1:k

)
|Si,1:k ∼ Dir(ak+1, . . . ,an,bn).



Properties

Age-to-age factor and unpaid percentage:

In CL and BF:

γk:k+1 =
E(Si,1:k+1)

E(Si,1:k)
, and ηk =

E(Si,1:k)

E(Si,1:n)
.

Dirichlet model:

γk:k+1 =
a1 + · · ·+ak+1

a1 + · · ·+ak

ηk =
a1 + · · ·+ak

a1 + · · ·+an



Properties

Reserve prediction at development year k is

R̂i = Ŝi,1:n−Si,1:k = E(Si,1:n|Si,1:k)−Si,1:k

Recall the well-known results:

R̂EX
i = E(Si,1:n)−Si,1:k

R̂CL
i =

(
n−1

∏
j=k

γj:j+1−1

)
Si,1:k

R̂BF
i = ηkR̂CL

i +(1−ηk)R̂EX
i



Properties

At development year k, the Dirichlet model predicts:

R̂D
i = vkR̂CL

i +(1− vk)R̂EX
i ,

where

vk =

{
CV(Si,1:n)

CV(Si,1:k)

}2

=
Var(Si,1:n)

Var(Si,1:k)

{
E(Si,1:k)

E(Si,1:n)

}2

Compare with BF prediction:

R̂BF
i = ηkR̂CL

i +(1−ηk)R̂EX
i

where

ηk =
E(Si,1:k)

E(Si,1:n)

We note the limiting case: vk→ ηk when ∑
n
j=k+1 aj

bn
→ 0



Estimation

To predict the outstanding payments, one needs the unknowns

θθθ = (a1,a2, . . . ,an,bn,φ1,φ2, . . . ,φm) .

Two types of data:

- Fully developed accident year: for 1≤ i≤ m−n,(
Yi1

φi
, · · · , Yin

φi
,1−

Si,1:n

φi

)
∼ Dir(a1, . . . ,an,bn)

- Not fully developed accident year: for m−n+1≤ i≤ m,(
Yi1

φi
, · · · , Yim+1−i

φi
,1−

Si,1:m+1−i

φi

)
∼ Dir

(
a1, . . . ,an,a0 +bn−

m+1−i

∑
j=1

aj

)



Estimation

Frequentst estimation:

I Likelihood-based estimation
I When a0/(a0 +1)≈ 1, we obtain CL estimates

Bayesian estimation:

I It allows for a hierarchical extension: φ1,φ2, . . . ,φn
iid∼ uniform(0,φ) with a

flat hyper prior p(φ) ∝ 1 for φ ∈ (0,∞)

I Expert knowledge on development pattern could be incorporated into
inference via informative priors

I It is straightforward to blend in collateral information in the model
inference



Estimation

Estimation with a variance constraint: bn > a0(= a1 + . . .+an)

This constraint ensures Var(Si,1:k) increases in k:

Var(Si,1:k) =

(
∑

k
j=1 aj

)(
a0 +bn−∑

k
j=1 aj

)
(a0 +bn)2(a0 +bn +1)

φ
2
i .

This constraint mimics a condition implied by the Chain-Ladder method: the
variance in the cumulative paid loss ratio is increasing by development age.



Data

Data from the NAIC schedule P:

I We examine the paid losses for worker’s compensation

I The data of each individual company contain incremental paid losses for
18 accident years (m = 18) from to 1989 to 2006, and for each accident
year, losses are developed for the period of 10 years (n = 10).

I Data are split into two parts
I Upper triangle is used to develop model
I Lower triangle is for validation



Case Study Using One Insurer



Case Study Using One Insurer

Frequentist approach: MLE Dirichlet â0/(â0 +1)≈ 1



Case Study Using One Insurer

Comparison of reserve prediction:



Case Study Using One Insurer

Reserve prediction with variance constraints:



Case Study Using One Insurer

Some observations for this specific insurer:

I Both point and interval predictions are comparable between the CL and
MLE Dirichlet model. Recall that â0/(â0 +1)≈ 1.

I Additional 8 years fully developed claims data help improve prediction in
terms of coverage probability. It is not true in general.
I The insurer has stable underwriting criterion and business mix.
I It focuses on assigned risk market.

I Prediction interval from the MLE is wider than the Bayesian approach,
and variance constraint further improves the hierarchical model
performance.



Comparative Study Using Many Insurers

We focus on large insurers. Limit to earned premium ≥ 10 million dollars.
This leaves us 139 insurers in the analysis.

Performance of prediction is assessed using out-of-sample validation, and we
compute three metrics:

I Root mean squared error (RMSE)
I Coverage probability of the 95% prediction interval (Coverage)
I Average length of the 95% prediction interval (Length)



Comparative Study Using Many Insurers

MLE Dirichlet Model:

I The usage of additional 8 years of claims data provide worse prediction
I Variance constraint improves coverage at the price of RMSE and interval

length



Comparative Study Using Many Insurers

Bayesian Inference with informative priors:

We employ prior knowledge on the expected unpaid loss ratio for the ith
accident year:

E(Si,m+2−i:n|Si,1:m+1−i = si,1:m+1−i)

=
∑

n
j=m+2−i aj

∑
n
j=m+2−i aj +bn

(φi− si,1:m+1−i), i = m−n+2, . . . ,m.

Consider two different levels of uncertainty on the information:

(a)

E(Si,m+2−i:n|Si,1:m+1−i) ∈ [0.5(CLRi−Si,m+2−i:n),1.5(CLRi−Si,m+2−i:n)]

(b)

E(Si,m+2−i:n|Si,1:m+1−i) ∈ [0.9(CLRi−Si,m+2−i:n),1.1(CLRi−Si,m+2−i:n)]



Comparative Study Using Many Insurers

Scenario #1: CLR is the actual cumulative loss ratio



Comparative Study Using Many Insurers

Scenario #2: CLR is estimated from industry-level loss development factor
Sherman and Diss (2005).



Comparative Study Using Many Insurers

Scenario #3: CLR is estimated using growth curve model Clark (2003).



Comparative Study Using Many Insurers

Comparison with existing methods:

I Mack Chain-Ladder
I Bootstrap Chain-Ladder
I Clark’s growth curve
I GLM: Poisson, gamma, and Tweedie



Comparative Study Using Many Insurers



Conclusion

We proposed a stochastic loss reserving method based on Dirichlet
distribution

I A new perspective to view CL and BF as inference issue
I Prediction from the Dirichlet model is a credibility weighted average of

CL and expected payments
I Good performance was supported by comparison with existing methods

using out-of-sample validation

For more details, check out our paper:

Sriram, K. and Shi, P. (2020+) Stochastic loss reserving: A new perspective
from a Dirichlet model, Journal of Risk and Insurance.



Conclusion

Thank you for your attention!!!

Contact Info:

Peng Shi can be reached by pshi@bus.wisc.edu.
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