Stochastic Loss Reserving: A New Perspective from a Dirichlet Model

Peng Shi, University of Wisconsin-Madison

2020 Casualty Loss Reserve Seminar

Joint work with

Karthik Sriram, Indian Institute of Management Ahmedabad

Outline

Introduction

Method

Statistical Inference

Data Analysis

Conclusion

Background

Loss reserving is a classical actuarial problem:

- ▶ Balance sheet item → solvency
- ► Ratemaking → profitability

Two components

- To estimate the outstanding liability
- To quantify the associated variability

Motivation

Two prominent macro-level stochastic loss reserving methods:

- Chain-Ladder method: development factors or age-to-age ratios
- Bornhuetter-Ferguson method: expected ultimate and unpaid quota

Connections and disconnections:

- BF can be viewed as a credibility weighted average of CL and expected ultimate loss
- Different data generating process for the same run-off triangle

Contribution

We propose a new stochastic loss reserving method based on a Dirichlet distribution

New perspective to view the relation between CL and BF:

- Both CL and BF prediction are derived from the same stochastic model
- The choice between the two depends on the type of information available
- It becomes an inference problem rather than model selection

Nice Properties:

- Same age-to-age factors as CL
- Generalize the credibility weight in the BF

Data Structure

Micro-level reserving: triangular aggregate data

- A triangle consists of *m* accident years and *n* development years (m > n)
- Let X_{ij} denote incremental paid loss in accident year i development year j
- We work with Y_{ij}/E_i , where E_i is the exposure for accident year *i*

	Accident		Deve	lopme	ent Year	
	Year	1	2	• • •	n-1	n
	1	Y_{11}	Y_{12}	• • •	Y_{1n-1}	Y_{1n}
Fully developed	:	:				:
	m - n	$Y_{m-n,1}$	$Y_{m-n,2}$	• • •	$Y_{m-n,n-1}$	$Y_{m-n,n}$
	m - n + 1	$Y_{m-n+1,1}$	$Y_{m-n+1,2}$	• • •	$Y_{m-n+1,n-1}$	$Y_{m-n+1,n}$
	m - n + 2	$Y_{m-n+2,1}$	$Y_{m-n+2,2}$	• • •	$Y_{m-n+2,n-1}$	
Run-off Triangle	:	:				
	m-1	$Y_{m-1,1}$	$Y_{m-1,2}$			
	m	$Y_{m,1}$				

An Example

					Increi	nental Lo	osses by l	Develop	ment Ye	ear		
Year	Accident Year	Earned Premium	1	2	3	4	5	6	7	8	9	10
1	1989	1,65,339	41,891	32,156	20,520	15,256	8,170	5,317	3,415	2,504	1,967	940
2	1990	1,68,293	44,050	37,311	22,339	14,356	8,419	6,258	3,545	2,981	1,468	1,265
3	1991	1,83,529	47,778	39,354	21,232	16,132	10,632	6,754	4,311	2,407	1,620	993
4	1992	1,92,991	49,191	42,325	22,731	16,959	11,056	6,972	4,317	2,431	2,016	1,106
5	1993	2,22,666	47,035	38,662	20,081	15,923	10,621	6,266	3,552	2,744	1,513	1,308
6	1994	2,40,844	51,538	33,518	19,964	16,713	11,076	7,526	4,835	4,450	2,273	2,155
7	1995	2,58,703	46,934	31,827	21,236	15,846	11,288	6,317	5,615	4,261	2,798	2,150
8	1996	2,37,131	43,432	32,768	21,697	16,150	10,230	8,056	6,250	4,455	3,417	2,421
9	1997	2,08,179	38,915	28,463	19,494	13,361	10,211	7,176	5,401	3,453	2,551	1,844
10	1998	1,69,361	34,596	28,089	16,409	13,813	8,966	6,333	4,913	4,196	2,670	
11	1999	1,50,912	32,580	24,468	$17,\!672$	13,418	7,881	6,616	5,246	3,655		
12	2000	1,75,101	39,248	30,647	19,059	14,599	10,220	7,725	5,126			
13	2001	1,94,483	42,433	32,981	21,082	17,274	12,151	8,309				
14	2002	2,22,002	45,309	36,483	25,777	18,746	12,266					
15	2003	2,44,749	54,589	41,491	26,295	19,207						
16	2004	2,79,994	59,399	47,007	26,169							
17	2005	3,13,808	68,185	54,385								
18	2006	3,41,973	66,827									

Dirichlet Distribution

Consider an example of K = 3:

$$f(p_1, p_2, p_3) = \frac{\Gamma(p_1 + p_2 + p_3)}{\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_3)} p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} p_3^{\alpha_3 - 1},$$

where $p_1 + p_2 + p_3 = 1$.

The support is the hyperplane $p_1 + p_2 + p_3 = 1$, and parameters $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ determines the values of p_1, p_2, p_3

Dirichlet Distribution

The Dirichlet distribution can be thought of as a distribution over probability mass functions of length *K*:

Let $P = (P_1, ..., P_K)$ be a random vector with $K \ge 2$ components. Then P is said to follow the Dirichlet distribution of order $K \ge 2$, which we denote by $P = (P_1, ..., P_K) \sim \text{Dir}(\alpha_1, ..., \alpha_K)$, if its density is given by:

$$f(p; \alpha_1, \dots, \alpha_K) = \frac{\Gamma\left(\sum_{k=1}^K \alpha_k\right)}{\prod_{k=1}^K \Gamma(\alpha_k)} \prod_{k=1}^K p_k^{\alpha_k - 1},$$

where $\alpha_1, \ldots, \alpha_K$ are parameters of the distribution with $\alpha_k > 0$ for each k, and $p = (p_1, \ldots, p_K)$ is on the (K-1)-dimensional probability simplex, i.e. $\sum_{k=1}^{K} p_k = 1$ and $p_k \ge 0$ for $k = 1, \ldots, K$.

We propose to model the incremental loss ratios $(Y_{ij} = X_{ij}/E_i)$ using a scaled Dirichlet distribution.

For accident year *i*, we assume:

$$\left(\frac{Y_{i1}}{\phi_i}, \cdots, \frac{Y_{in}}{\phi_i}, 1 - \frac{\sum_{j=1}^n Y_{ij}}{\phi_i}\right) \sim \operatorname{Dir}(a_1, \dots, a_n, b_n), \text{ with } 0 < \sum_{j=1}^n Y_{ij} < \phi_i,$$

where ϕ_i , a_1 ,..., a_n , and b_n are parameters to be estimated.

Reserving Model

Define cumulative paid loss $S_{i,1:n} = Y_{i1} + ... Y_{in}$ and $a_0 = a_1 + ... + a_n$. For interpretation, we show an equivalent of representation of model as:

$$\begin{cases} \left(\frac{Y_{i1}}{S_{i,1:n}}, \frac{Y_{i2}}{S_{i,1:n}}, \cdots, \frac{Y_{in}}{S_{i,1:n}}\right) \middle| S_{i,1:n} \sim \operatorname{Dir}(a_1, \dots, a_n) \\ \frac{S_{i,1:n}}{\phi_i} \sim \operatorname{Beta}(a_0, b_n) \end{cases}$$

The Dirichlet model is about allocation given $S_{i,1:n}$:

$$x_{1} = \frac{Y_{i1}}{S_{i,1:n}}, x_{2} = \frac{Y_{i2}}{S_{i,1:n}}, \cdots, x_{n-1} = \frac{Y_{in-1}}{S_{i,1:n}}$$
$$x_{n} = \frac{Y_{in}}{S_{i,1:n}} = 1 - \sum_{j=1}^{n-1} x_{j}$$

Mathematical properties of Dirichlet distribution implies that past allocation does not inform future allocation.

The model implies both past and future allocations given cumulative payments:

$$\begin{pmatrix} \frac{Y_{i1}}{S_{i,1:k}}, \cdots, \frac{Y_{ik}}{S_{i,1:k}} \end{pmatrix} | S_{i,1:k} \sim \operatorname{Dir}(a_1, \dots, a_k)$$
$$\begin{pmatrix} \frac{Y_{ik+1}}{\phi_i - S_{i,1:k}}, \cdots, \frac{Y_{in}}{\phi_i - S_{i,1:k}}, \frac{\phi_i - S_{i,1:n}}{\phi_i - S_{i,1:k}} \end{pmatrix} | S_{i,1:k} \sim \operatorname{Dir}(a_{k+1}, \dots, a_n, b_n).$$

Properties

Age-to-age factor and unpaid percentage:

In CL and BF:

$$\gamma_{k:k+1} = \frac{\mathrm{E}(S_{i,1:k+1})}{\mathrm{E}(S_{i,1:k})}, \text{ and } \eta_k = \frac{\mathrm{E}(S_{i,1:k})}{\mathrm{E}(S_{i,1:n})}.$$

Dirichlet model:

$$\gamma_{k:k+1} = \frac{a_1 + \dots + a_{k+1}}{a_1 + \dots + a_k}$$
$$\eta_k = \frac{a_1 + \dots + a_k}{a_1 + \dots + a_n}$$

Properties

Reserve prediction at development year k is

$$\widehat{R}_{i} = \widehat{S}_{i,1:n} - S_{i,1:k} = \mathbb{E}(S_{i,1:n}|S_{i,1:k}) - S_{i,1:k}$$

Recall the well-known results:

$$\begin{split} \widehat{R}_i^{EX} &= \mathrm{E}(S_{i,1:n}) - S_{i,1:k} \\ \widehat{R}_i^{CL} &= \left(\prod_{j=k}^{n-1} \gamma_{j:j+1} - 1\right) S_{i,1:k} \\ \widehat{R}_i^{BF} &= \eta_k \widehat{R}_i^{CL} + (1 - \eta_k) \widehat{R}_i^{EX} \end{split}$$

Properties

At development year *k*, the Dirichlet model predicts:

$$\widehat{R}_{i}^{D} = v_{k}\widehat{R}_{i}^{CL} + (1 - v_{k})\widehat{R}_{i}^{EX},$$

where

$$v_k = \left\{\frac{\operatorname{CV}(S_{i,1:n})}{\operatorname{CV}(S_{i,1:k})}\right\}^2 = \frac{\operatorname{Var}(S_{i,1:n})}{\operatorname{Var}(S_{i,1:k})} \left\{\frac{\operatorname{E}(S_{i,1:k})}{\operatorname{E}(S_{i,1:n})}\right\}^2$$

Compare with BF prediction:

$$\widehat{R}_{i}^{BF} = \eta_{k}\widehat{R}_{i}^{CL} + (1 - \eta_{k})\widehat{R}_{i}^{EX}$$

where

$$\eta_k = \frac{\mathrm{E}(S_{i,1:k})}{\mathrm{E}(S_{i,1:n})}$$

We note the limiting case:
$$v_k o \eta_k$$
 when $rac{\sum_{j=k+1}^n a_j}{b_n} o 0$

Estimation

To predict the outstanding payments, one needs the unknowns

$$\boldsymbol{\theta} = (a_1, a_2, \dots, a_n, b_n, \phi_1, \phi_2, \dots, \phi_m).$$

Two types of data:

- Fully developed accident year: for $1 \le i \le m - n$,

$$\left(\frac{Y_{i1}}{\phi_i}, \cdots, \frac{Y_{in}}{\phi_i}, 1 - \frac{S_{i,1:n}}{\phi_i}\right) \sim \operatorname{Dir}(a_1, \dots, a_n, b_n)$$

- Not fully developed accident year: for $m - n + 1 \le i \le m$,

$$\left(\frac{Y_{i1}}{\phi_i}, \cdots, \frac{Y_{im+1-i}}{\phi_i}, 1 - \frac{S_{i,1:m+1-i}}{\phi_i}\right) \sim \operatorname{Dir}\left(a_1, \dots, a_n, a_0 + b_n - \sum_{j=1}^{m+1-i} a_j\right)$$

Estimation

Frequentst estimation:

- Likelihood-based estimation
- When $a_0/(a_0+1) \approx 1$, we obtain CL estimates

Bayesian estimation:

- ▶ It allows for a hierarchical extension: $\phi_1, \phi_2, \dots, \phi_n \stackrel{iid}{\sim} uniform(0, \phi)$ with a flat hyper prior $p(\phi) \propto 1$ for $\phi \in (0, \infty)$
- Expert knowledge on development pattern could be incorporated into inference via informative priors
- It is straightforward to blend in collateral information in the model inference

Estimation

Estimation with a variance constraint: $b_n > a_0 (= a_1 + ... + a_n)$

This constraint ensures $Var(S_{i,1:k})$ increases in k:

$$\operatorname{Var}(S_{i,1:k}) = \frac{\left(\sum_{j=1}^{k} a_{j}\right) \left(a_{0} + b_{n} - \sum_{j=1}^{k} a_{j}\right)}{(a_{0} + b_{n})^{2} (a_{0} + b_{n} + 1)} \phi_{i}^{2}.$$

This constraint mimics a condition implied by the Chain-Ladder method: the variance in the cumulative paid loss ratio is increasing by development age.

Data

Data from the NAIC schedule P:

- We examine the paid losses for worker's compensation
- ▶ The data of each individual company contain incremental paid losses for 18 accident years (m = 18) from to 1989 to 2006, and for each accident year, losses are developed for the period of 10 years (n = 10).
- Data are split into two parts
 - Upper triangle is used to develop model
 - Lower triangle is for validation

Frequentist approach: MLE Dirichlet $\hat{a}_0/(\hat{a}_0+1) \approx 1$

Development		10 accie	lent years			18 accident years				
Factor	Dirichlet Model		Mack Chair	Mack Chain-Ladder		Dirichlet Model		-Ladder		
	Estimate	SE	Estimate	SE	Estimate	SE	Estimate	SE		
$\gamma_{1:2}$	1.778	0.0138	1.779	0.0087	1.775	0.0175	1.781	0.013		
$\gamma_{2:3}$	1.280	0.0055	1.281	0.0082	1.269	0.0072	1.269	0.006		
$\gamma_{3:4}$	1.169	0.0040	1.169	0.0039	1.161	0.0049	1.160	0.003		
$\gamma_{4:5}$	1.098	0.0029	1.098	0.0024	1.091	0.0034	1.090	0.003		
$\gamma_{5:6}$	1.066	0.0025	1.066	0.0012	1.057	0.0026	1.057	0.002		
$\gamma_{6:7}$	1.046	0.0023	1.046	0.0019	1.037	0.0020	1.037	0.003		
$\gamma_{7:8}$	1.033	0.0021	1.033	0.0026	1.025	0.0017	1.025	0.002		
$\gamma_{8:9}$	1.021	0.0020	1.022	0.0013	1.016	0.0014	1.016	0.002		
$\gamma_{9:10}$	1.014	0.0023	1.014	0.0008	1.011	0.0012	1.010	0.001		

Comparison of	of reserve	prediction:
---------------	------------	-------------

		MLE Dirichle	et Model			Hierarchical l	Bayes Diricl	nlet Model	
		(18 accident	years data)			(18 accident	years data)		
Acc	Actual	95% Inter-	Actual-	Interval	Interval	95% Inter-	Actual-	Interval	Interval
Year	Loss	val	Predicted	contains	Length	val	Predicted	$\operatorname{contains}$	Length
	Ratio			actual				actual	
1997	0.629	[0.629,0.629]	0.000	1	0.000	[0.629, 0.629]	0.000	1	0.000
1998	0.719	[0.709,0.720]	0.004	1	0.011	[0.718, 0.719]	0.000	1	0.001
1999	0.763	[0.749,0.765]	0.005	1	0.016	[0.763, 0.765]	0.001	1	0.002
2000	0.767	[0.747,0.772]	0.006	1	0.025	[0.764, 0.768]	0.001	1	0.004
2001	0.765	[0.736,0.767]	0.012	1	0.031	[0.757, 0.763]	0.005	0	0.006
2002	0.741	[0.698,0.739]	0.022	0	0.041	[0.722, 0.730]	0.015	0	0.008
2003	0.722	[0.699,0.752]	0.005	1	0.053	[0.723, 0.735]	0.007	0	0.012
2004	0.705	[0.657,0.723]	0.014	1	0.066	[0.682, 0.699]	0.014	0	0.017
2005	0.729	[0.676,0.771]	0.006	1	0.095	[0.715, 0.743]	0.001	1	0.028
2006	0.629	[0.576,0.708]	0.013	1	0.132	[0.624, 0.667]	0.016	1	0.043
Averag	ge		0.009	0.900	0.047		0.006	0.600	0.012

Reserve prediction with variance constraints:

		MLE	Dirichle	et Model			Hiera	rchical l	Bayes Dirich	nlet Model	
		(18 a)	ccident ;	years data)			(18 ac	cident	years data)		
Acc	Actual	95%	Inter-	Actual-	Interval	Interval	95%	Inter-	Actual-	Interval	Interval
Year	Loss	val		Predicted	contains	Length	val		Predicted	$\operatorname{contains}$	Length
	Ratio				actual					actual	
1997	0.629	[0.629	0,0.629	0.000	1	0.000	[0.629	,0.629]	0.000	1	0.000
1998	0.719	[0.712	2,0.722]	0.003	1	0.010	[0.713	3,0.722	0.002	1	0.009
1999	0.763	[0.752	2,0.768]	0.004	1	0.016	[0.754	[,0.769]	0.002	1	0.015
2000	0.767	[0.75]	,0.774]	0.006	1	0.023	[0.754]	[,0.774]	0.004	1	0.020
2001	0.765	[0.740]	0,0.768]	0.012	1	0.028	[0.745]	[,0.771]	0.008	1	0.026
2002	0.741	[0.702	2,0.739]	0.021	0	0.037	[0.710]	[,0.740]	0.016	0	0.030
2003	0.722	[0.705	5,0.754	0.006	1	0.049	[0.712	2,0.751	0.009	1	0.039
2004	0.705	0.661	,0.724]	0.013	1	0.063	[0.671]	,0.721]	0.010	1	0.050
2005	0.729	0.682	2,0.770]	0.005	1	0.088	[0.698]	[,0.776]	0.006	1	0.078
2006	0.629	[0.577]	7,0.716]	0.014	1	0.139	[0.603	3,0.718]	0.027	1	0.115
Averag	е			0.008	0.900	0.047			0.008	0.900	0.038

Some observations for this specific insurer:

- ▶ Both point and interval predictions are comparable between the CL and MLE Dirichlet model. Recall that $\hat{a}_0/(\hat{a}_0+1) \approx 1$.
- Additional 8 years fully developed claims data help improve prediction in terms of coverage probability. It is not true in general.
 - The insurer has stable underwriting criterion and business mix.
 - It focuses on assigned risk market.
- Prediction interval from the MLE is wider than the Bayesian approach, and variance constraint further improves the hierarchical model performance.

We focus on large insurers. Limit to earned premium \geq 10 million dollars. This leaves us 139 insurers in the analysis.

Performance of prediction is assessed using out-of-sample validation, and we compute three metrics:

- Root mean squared error (RMSE)
- Coverage probability of the 95% prediction interval (Coverage)
- Average length of the 95% prediction interval (Length)

MLE Dirichlet Model:

- The usage of additional 8 years of claims data provide worse prediction
- Variance constraint improves coverage at the price of RMSE and interval length

			10-year	Triangle			
	Une	constraine	ed	Constrained			
AY	Coverage	Length	RMSE	Coverage	Length	RMSE	
1998	0.950	0.037	0.007	0.942	0.061	0.015	
1999	0.871	0.084	0.052	0.914	0.111	0.067	
2000	0.871	0.102	0.059	0.892	0.130	0.083	
2001	0.813	0.109	0.053	0.784	0.149	0.068	
2002	0.763	0.114	0.057	0.799	0.152	0.080	
2003	0.791	0.118	0.050	0.784	0.157	0.075	
2004	0.791	0.135	0.059	0.849	0.182	0.081	
2005	0.806	0.203	0.120	0.856	0.260	0.146	
2006	0.871	0.417	0.219	0.849	0.464	0.225	
Overall	0.836	0.147	0.075	0.852	0.185	0.093	

Bayesian Inference with informative priors:

We employ prior knowledge on the expected unpaid loss ratio for the *i*th accident year:

$$E(S_{i,m+2-i:n}|S_{i,1:m+1-i} = s_{i,1:m+1-i}) = \frac{\sum_{j=m+2-i}^{n} a_j}{\sum_{j=m+2-i}^{n} a_j + b_n} (\phi_i - s_{i,1:m+1-i}), \ i = m - n + 2, \dots, m.$$

Consider two different levels of uncertainty on the information:

(a)

$$\mathbf{E}(S_{i,m+2-i:n}|S_{i,1:m+1-i}) \in [0.5(CLR_i - S_{i,m+2-i:n}), 1.5(CLR_i - S_{i,m+2-i:n})]$$
(b)

$$\mathsf{E}(S_{i,m+2-i:n}|S_{i,1:m+1-i}) \in [0.9(CLR_i - S_{i,m+2-i:n}), 1.1(CLR_i - S_{i,m+2-i:n})]$$

Scenario #1: CLR is the actual cumulative loss ratio

	Scer	nario $\#1(a$	a)	Scenario $\#1(b)$			
AY	Coverage	Length	RMSE	Coverage	Length	RMSE	
1998	1.000	0.045	0.005	1.000	0.035	0.001	
1999	1.000	0.089	0.013	1.000	0.070	0.002	
2000	1.000	0.116	0.019	1.000	0.088	0.003	
2001	1.000	0.145	0.028	1.000	0.110	0.004	
2002	1.000	0.172	0.036	1.000	0.129	0.005	
2003	1.000	0.186	0.045	1.000	0.138	0.006	
2004	1.000	0.247	0.062	1.000	0.182	0.007	
2005	1.000	0.317	0.075	1.000	0.232	0.007	
2006	1.000	0.543	0.069	1.000	0.374	0.004	
Overall	1.000	0.207	0.039	1.000	0.151	0.004	

Scenario #2: *CLR* is estimated from industry-level loss development factor Sherman and Diss (2005).

	Scer	nario $\#2(a$	a)	Scer	nario $\#2(1)$	b)
AY	Coverage	Length	RMSE	Coverage	Length	RMSE
1998	0.964	0.060	0.011	0.971	0.051	0.009
1999	0.942	0.105	0.024	0.950	0.087	0.018
2000	0.871	0.135	0.036	0.878	0.111	0.026
2001	0.863	0.165	0.064	0.906	0.133	0.054
2002	0.827	0.175	0.067	0.835	0.142	0.055
2003	0.842	0.182	0.062	0.914	0.147	0.043
2004	0.914	0.205	0.057	0.899	0.165	0.048
2005	0.906	0.226	0.069	0.655	0.181	0.081
2006	0.942	0.375	0.140	0.719	0.293	0.161
Overall	0.897	0.181	0.059	0.859	0.146	0.055

Scenario #3: CLR is estimated using growth curve model Clark (2003).

	Scer	nario $\#3(a$	a)	Scenario $#3(b)$			
AY	Coverage	Length	RMSE	Coverage	Length	RMSE	
1998	1.000	0.051	0.009	0.993	0.042	0.007	
1999	0.957	0.092	0.021	0.950	0.076	0.017	
2000	0.957	0.122	0.033	0.935	0.100	0.026	
2001	0.914	0.146	0.054	0.892	0.119	0.048	
2002	0.906	0.165	0.055	0.878	0.134	0.046	
2003	0.957	0.186	0.059	0.986	0.151	0.038	
2004	0.928	0.235	0.070	0.928	0.189	0.045	
2005	0.914	0.314	0.115	0.935	0.250	0.091	
2006	0.957	0.549	0.204	0.906	0.413	0.195	
Overall	0.943	0.207	0.069	0.934	0.164	0.057	

Comparison with existing methods:

- Mack Chain-Ladder
- Bootstrap Chain-Ladder
- Clark's growth curve
- GLM: Poisson, gamma, and Tweedie

	Mack	Chain-La	lder	Bootstra	p Chain-I	Ladder		Clark	
AY	Coverage	Length	RMSE	Coverage	Length	RMSE	Coverage	Length	RMSE
1998	0.446	0.011	0.007	0.971	0.042	0.014	0.921	0.032	0.007
1999	0.496	0.029	0.062	0.899	0.081	0.088	0.835	0.049	0.016
2000	0.619	0.045	0.068	0.885	0.092	0.097	0.799	0.063	0.024
2001	0.712	0.061	0.056	0.799	0.091	0.064	0.770	0.075	0.047
2002	0.691	0.074	0.056	0.827	0.098	0.071	0.885	0.087	0.045
2003	0.770	0.092	0.042	0.849	0.109	0.053	0.899	0.101	0.034
2004	0.856	0.134	0.061	0.878	0.133	0.074	0.906	0.125	0.044
2005	0.871	0.186	0.116	0.871	0.196	0.144	0.871	0.174	0.090
2006	0.835	0.582	0.219	0.856	0.398	0.267	0.899	0.353	0.196
Overall	0.699	0.135	0.076	0.871	0.138	0.097	0.865	0.118	0.056
	Tweedie $p = 1$								
	Tw	eedie $p =$	1	Two	eedie $p =$	2	Twee	die $1 < p$	< 2
AY	Two Coverage	eedie $p =$ Length	1 RMSE	Two Coverage	eedie $p =$ Length	2 RMSE	Twee Coverage	die $1 < p$ Length	< 2 RMSE
AY 1998	Two Coverage 0.871	eedie $p =$ Length 0.036	1 RMSE 0.007	Two Coverage 0.604	eedie $p =$ Length 0.019	2 RMSE 0.009	Twee Coverage 0.777	die $1 < p$ Length 0.025	< 2 RMSE 0.008
AY 1998 1999	Two Coverage 0.871 0.813	eedie $p =$ Length 0.036 0.066	1 RMSE 0.007 0.062	Two Coverage 0.604 0.511	eedie $p =$ Length 0.019 0.042	2 RMSE 0.009 0.056	Twee Coverage 0.777 0.669	$\begin{array}{c} \text{die } 1$	< 2 RMSE 0.008 0.053
AY 1998 1999 2000	Two Coverage 0.871 0.813 0.899	eedie $p =$ Length 0.036 0.066 0.077	1 RMSE 0.007 0.062 0.068	Two Coverage 0.604 0.511 0.633	eedie $p =$ Length 0.019 0.042 0.056	2 RMSE 0.009 0.056 0.081	Twee Coverage 0.777 0.669 0.705	$\begin{array}{c} {\rm die} \ 1$	< 2 RMSE 0.008 0.053 0.071
AY 1998 1999 2000 2001	Two Coverage 0.871 0.813 0.899 0.806	eedie $p =$ Length 0.036 0.066 0.077 0.083	1 RMSE 0.007 0.062 0.068 0.056	Two Coverage 0.604 0.511 0.633 0.633	eedie $p =$ Length 0.019 0.042 0.056 0.061	2 RMSE 0.009 0.056 0.081 0.066	Twee Coverage 0.777 0.669 0.705 0.727	$\begin{array}{c} {\rm die} \ 1$	< 2 <u>RMSE</u> 0.008 0.053 0.071 0.060
AY 1998 1999 2000 2001 2002	Two Coverage 0.871 0.813 0.899 0.806 0.784	eedie $p =$ Length 0.036 0.066 0.077 0.083 0.092	1 RMSE 0.007 0.062 0.068 0.056 0.056	Two Coverage 0.604 0.511 0.633 0.633 0.734	eedie $p =$ Length 0.019 0.042 0.056 0.061 0.075	2 RMSE 0.009 0.056 0.081 0.066 0.066	Twee Coverage 0.777 0.669 0.705 0.727 0.727	$\begin{array}{c} \text{die } 1$	< 2 <u>RMSE</u> 0.008 0.053 0.071 0.060 0.060
AY 1998 1999 2000 2001 2002 2003	Two Coverage 0.871 0.813 0.899 0.806 0.784 0.885	eedie $p =$ Length 0.036 0.066 0.077 0.083 0.092 0.102	1 RMSE 0.007 0.062 0.068 0.056 0.056 0.042	Two Coverage 0.604 0.511 0.633 0.633 0.734 0.806	eedie $p =$ Length 0.019 0.042 0.056 0.061 0.075 0.093	2 RMSE 0.009 0.056 0.081 0.066 0.066 0.060	Twee Coverage 0.777 0.669 0.705 0.727 0.727 0.727 0.784	$\begin{array}{c} \mbox{die } 1$	< 2 RMSE 0.008 0.053 0.071 0.060 0.060 0.050
AY 1998 1999 2000 2001 2002 2003 2004	Two Coverage 0.871 0.813 0.899 0.806 0.784 0.885 0.849	eedie $p =$ Length 0.036 0.066 0.077 0.083 0.092 0.102 0.128	1 RMSE 0.007 0.062 0.068 0.056 0.056 0.042 0.061	Two Coverage 0.604 0.511 0.633 0.633 0.734 0.806 0.871	eedie $p =$ Length 0.019 0.042 0.056 0.061 0.075 0.093 0.137	2 RMSE 0.009 0.056 0.081 0.066 0.066 0.060 0.085	Twee Coverage 0.777 0.669 0.705 0.727 0.727 0.727 0.784 0.799	$\begin{array}{c} \mbox{die } 1$	< 2 RMSE 0.008 0.053 0.071 0.060 0.060 0.050 0.071
AY 1998 1999 2000 2001 2002 2003 2004 2005	Two Coverage 0.871 0.813 0.899 0.806 0.784 0.885 0.849 0.878	eedie $p =$ Length 0.036 0.066 0.077 0.083 0.092 0.102 0.128 0.183	1 RMSE 0.007 0.062 0.068 0.056 0.056 0.042 0.061 0.116	Two Coverage 0.604 0.511 0.633 0.633 0.734 0.806 0.871 0.957	$\begin{array}{l} \text{eedie } p = \\ \hline \text{Length} \\ \hline 0.019 \\ 0.042 \\ 0.056 \\ 0.061 \\ 0.075 \\ 0.093 \\ 0.137 \\ 0.239 \end{array}$	2 RMSE 0.009 0.056 0.081 0.066 0.066 0.060 0.085 0.158	Twee Coverage 0.777 0.669 0.705 0.727 0.727 0.727 0.784 0.799 0.863	$\begin{array}{c} \mbox{die } 1$	< 2 RMSE 0.008 0.053 0.071 0.060 0.060 0.050 0.050 0.071 0.136
AY 1998 1999 2000 2001 2002 2003 2004 2005 2006	Two Coverage 0.871 0.813 0.899 0.806 0.784 0.885 0.849 0.878 0.871	eedie $p =$ Length 0.036 0.066 0.077 0.083 0.092 0.102 0.128 0.183 0.361	1 RMSE 0.007 0.062 0.068 0.056 0.056 0.042 0.061 0.116 0.219	Two Coverage 0.604 0.511 0.633 0.734 0.806 0.871 0.957 0.935	$\begin{array}{c} \text{eedie } p = \\ \text{Length} \\ \hline 0.019 \\ 0.042 \\ 0.056 \\ 0.061 \\ 0.075 \\ 0.093 \\ 0.137 \\ 0.239 \\ 0.524 \end{array}$	2 RMSE 0.009 0.056 0.081 0.066 0.066 0.060 0.085 0.158 0.248	Twee Coverage 0.777 0.669 0.705 0.727 0.727 0.727 0.784 0.799 0.863 0.863	$\begin{array}{c} \mbox{die } 1$	< 2 RMSE 0.008 0.053 0.071 0.060 0.060 0.050 0.071 0.136 0.229

Conclusion

We proposed a stochastic loss reserving method based on Dirichlet distribution

- A new perspective to view CL and BF as inference issue
- Prediction from the Dirichlet model is a credibility weighted average of CL and expected payments
- Good performance was supported by comparison with existing methods using out-of-sample validation

For more details, check out our paper:

Sriram, K. and Shi, P. (2020+) Stochastic loss reserving: A new perspective from a Dirichlet model, *Journal of Risk and Insurance*.

Conclusion

Thank you for your attention!!!

Contact Info:

Peng Shi can be reached by pshi@bus.wisc.edu.