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Abstract

Actuaries use loglinear trend regularly. However, there are several aspects of trend that are
not common knowledge among actuaries. For example, the loglinear model for trend is not the
only model for trend. Two alternatives involving the effects of random drift on expected losses in
addition to the effects of trend are presented. One including the point-by-point error associated
with regression, and one without it, are presented. Further, there are alternate algorithms for
computing trend. Trend estimation is discussed in all three contexts and using those alternate
algorithms. Corresponding credibility formulas for trend are provided as well.

1 Introduction

The loglinear trend process is well established. But for certain situations, the standard algorithm
may be unwieldy. For example, when using the linear regression approach, determining the uncer-
tainty in the trend formula engendered by the underlying uncertainty the loss development may be
challenging. Further, the regression formula for determining trend using the logarithms of the data
points, involves a very specific model of trend. In effect, it assumes that there is a constant trend
effecting each year to year step, but the data points are affected by error values with a common vari-
ance σ2. That may not reflect the reality of the data. So, within this paper, optimum trend models
are presented, alternate algorithms for calculating the trend under each formula are presented, and
some situations in which the alternate algorithms are useful to actuaries are presented.

2 Models of Trend and the Corresponding Formulas for Estimat-
ing Trend

Many actuaries use regression-based loglinear trend. However, as mentioned earlier, it has several
features that may not be obvious.

2.1 A Comment on the “Log” Part of “Loglinear” Trend

Most of the common models of loss cost inflation/trend recognize that inflationary forces are better
modeled by nonlinear models. In effect, because trend is believe to compound, inflationary models
with assumptions like those used in compound interest are typically used. So, the cost level of the
losses at some time may be modeled by some C(t) = exp(a+ bt) (where, elsewhere in this paper, a
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may not be constant from time to time). Therefore, it is helpful to work with the natural logarithm
of the cost level ln(C(t)) = a+ bt to get data that has a simplified, linear, character.

Of course, in most cases, the actual values of C(t) for various t’s are not available. Rather the
(often) annual historical loss severities “f(t)”, loss frequencies “n(t)”, pure premiums “π(t)”, or
annual loss ratios “LR(t)”, present in the data are what is available. They can be expected to
differ from the true underlying expected severities, frequencies, etc. by some error amount.

The next issue to resolve would be deciding which probability distribution best reflects that
range of that error. The Central Limit Theorem provides a rationale for the normal distribution,
since a number of claim values are added together, then divided by the number of exposures.
However, the normal distribution produces negative as well as positive values, so it is not always a
realistic model for a trend driven by any sort of loss cost inflation. The lognormal distribution, on
the other hand, is based on a geometric rather than arithmetic version of the Central Limit Theorem.
Essentially, the lognormal error scenario is presumed to involve a large number of (positive) error
terms that are multiplied by, not added to, the true costs. Therefore, the lognormal approach
does not produce negative values. Further, the lognormal error is more consistent with trending
and loss development calculations. So it is used (via it’s σ parameter) throughout the remainder
of this paper. Additionally, the geometric/multiplicative lognormal error approach underlies the
loglinear trend that is used so often by so many actuaries1. Recognizing all those considerations,
the lognormal modelof the trend will be used in much of this analysis.

Since the lognormal generates random variables that are exponential functions of normal distri-
butions, one is left with a generalized trending equation, say for pure premium, of π(t) = exp(a+bt),
where the constant exp(a) and the growth factor exp(b) may each be subject to error and other
randomness. Taking logarithms of the π(t), etc. values produces a much-more tractable linear-type
model ln(π(t)) = a+bt. So, throughout the remainder of this paper the focus will be on the simpler,
linear type, algorithms.

2.2 The Loglinear Trend Model: Constant Trend with Process Error

Of course, the loglinear trend approach is the workhorse trend estimation method used by casualty
actuaries. Nevertheless, there are aspects of it that may be of interest.

2.2.1 The Basic Approach Used in Loglinear Trend

To clarify the discussion in subsection 2.1, the classic loglinear trend involves the following under-
lying analysis:

1. There is an underlying constant geometric trend factor 1 + T that causes the underlying
expected pure premiums (E[π(t)]’s), expected severities, or whatever else is being analyzed
to grow exponentially (E[π(t+ 1)] = (1 + T )E[π(t)]) as t increases.

2. Of course, if the expected losses above from item 1 were known, determining the trend would
be trivial. However, in practice, few trend datasets are that perfect. So, it is then assumed
that even though the expected losses have a perfect pattern, the data are subject to some
error2 that acts independently, but with a common variance, on each value. So, each of the

1Admittedly, though, that is more of an endorsement by the crowd than the result of statistical principles.
2For example, this might be process or parameter error.
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π’s is considered to be the true data E[π(t)] multiplied by one of a series of equal independent
lognormal distributions “M(t)”, all with mean “1” (unity) and having identical coefficient of
variation “v”. So, each historic loss ratio, etc. value is π(t) = M(t)E[π(t)].

3. The logarithmic transfer reduces the results of number 2 to a set of ln (M(t)E[π(t)]) =
ln(π(0)) + t ln(1 + T ) + ln(M(t)). That is a constant, a slope multiplied by time t, and a set
of identical normally distributed process error3 terms, each with mean zero. After estimating
the optimum values of the slope and constant with regression, the projection of any future
point π(t+ s) may be found using that line formula and computing the exponential function
on the results.

4. That format involves fitting a constant and a slope so that the constant plus the product
of a slope and time minimizes the sum of squared differences between the fitted values at
the various times and the actual data points4. It amounts to using regression to determine
y = a + tb given the historical data points5 the y1, y2, ..., yk and independent time variables
t1, t2, ..., tk.

5. To simplify the notation, the remainder of this section will simply focus on expressing the
regression using t’s and y’s.

Then, the linear model with process error assumes that the logarithms of the expected cost
level, the E[yi]’s, indeed lie on a line and follow

E[yi] = a+ bti. (1)

But, the available historical data is different from the true expected cost levels, and each
regression data point yi differs from the underlying E[yi] by some normally distributed error,
err(i) = E[yi]− yi. The err(i)s, per the model, all are expected to be independent of one another
and have the same variance, σ2. So, yi = E[yi]− err(i) for all i, and

yi = a+ bti − err(i); for all i. (2)

Of course, much of the basics of linear regression are part of the basic education of casualty
actuaries. But the material above is presented in order to stress complete clarity on the exact
assumptions underlying loglinear regression. This will also set up the approach to be used for other
models of trend.

2.2.2 The “Weights” Assigned to the Regression Data Points

The next step is to look at the “objective” function that the trend estimate is designed to minimize.
The underlying likelihood that a set of points y1, ..., yk are generated from a given a and b, is a
constant, times the exponential function, of the negative of

3In the mathematics,this is referred to as “‘observation error”. This is potentially a broad definition of process
error that would include any independent error variables sharing a common variance and a common mean of zero.

4Minimizing the sum of squared differences would, per the mathematics of the normal distribution, amount to the
maximum likelihood estimator of the constant ln(π(0)) and the slope ln(1 + T )

5Normally, n would be used for the number of points, but it was already used to denote the number of points,
but it has already been used to represent the frequency. So, “k” will denote the the number of historical data points
used in the regression underlying the trend.
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k∑
i=1

(yi − a− bti)2

σ2
. (3)

So, minimizing that sum of squared differences maximizes the probability that the historical y’s
could arise from expected costs that follow the trend line.

Unsurprisingly, this devolves to finding an a and b that minimize a sum of squared errors. But,
surprisingly, it does not depend on σ2. One may begin with the covariance formula for the slope,
and not yet specify that the times used in the regression are regular annual, quarterly, etc. Then,
focusing on the averages, ȳ of the yi’s and t̄ of the ti’s, the slope may be written as

b =

∑k
i=1(ti − t̄)(yi − ȳ)∑k

i=1(ti − t̄)2
=

∑k
i=1(ti − t̄)yi∑k
i=1(ti − t̄)2

=

k∑
i=1

ti − t̄∑k
j=1(tj − t̄)2

yi (4)

(noting that the constant ȳ in the first term is multiplied by some values that add to zero.)
Therefore, the slope b is just a linear combination of the values in the regression data. Further,

theory of sums of series indicates that the denominator is equal to k3−k
12 . The values from below

the mean t̄ of time are negative, the others are positive. The simpler expression for the slope is

b =

k∑
i=1

ti − t̄
k3−k
12

yi. (5)

Of course, in practice the ti’s are consecutive years, consecutive quarters, or something similar.
Hence, it makes sense to focus on examples using consecutive and evenly spaced times.

As an example, lets say the values from 2011, 2012, 2013, 2014, and 2015 are to be used to
estimate the slope. t̄ is clearly 2013=year 3. The value of the denominator is k3−k

12 is (53− 5)/12 =
10,treating 2011 as year one. Further, the “k” weights starting from that of 2011, are -2/10, -1/10,
0, 1/10, 2/10 = -.2, -.1, 0 ,.1, .2. Note the linear progression stemming from equation (4), and the
symmetry up to a minus sign. Both are general characteristics when the times are year to year,
quarter, to quarter, etc. without breaks.

It is easy to see that the midpoint t̄ of the numbers ti = i = 1, 2, ..., k is k+1
2 . So, the weights

for computing the slope from annual data may simply be stated as

12
i− k+1

2

k3 − k
= 6

2i− k − 1

k3 − k
. (6)

Thus, the slope is really just a difference of weighted sums6 average of the y values. One may

also note that the values 12
i− k+1

2
k3−k , 12

j− k+1
2

k3−k have constant denominators, so the points further from

the center, where |i − k+1
2 | is larger, have greater influence. Thus, one may readily see that the

endpoints receive the largest weight.

6The slope is not a weighted average of the values. It rather a difference between weighted sums. One may see
that the “weights” sum to zero, since the value i− (k + 1)/2 at i is always the negative of the value (k + 1)/2 − i on
the opposite side at (k + 1) − ii− (k + 1)/2 at the time on the opposite side (k + 1) − i− (k + 1)/2 of the center at
(k + 1)/2.
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2.2.3 The Impact of Loss Development Uncertainty

This provides insight into the impact of loss development uncertainty on trend. Consider a re-
gression slope computed using five points. The middle point has zero weight, the first two have
negative weight, and points four and five have positive weight. Arguably, either all the negative or
all the positive values can be thought of as determining the slope. Between points four and five,
the last, and the most developed7 data point is point five, which has two-thirds of the weight. For
a ten point slope, the last point has 36% of the weight.

If one has perspective on the development uncertainty in the data to be trended, and the
uncertainties in the various points are statistically independent, one may estimate the variance of
the slope due to development uncertainty. If there is a standard deviation in an ultimate loss of φ,
then the the standard deviation of its logarithm may be estimated by γ = φ× dlog

dx (µ) = φ
µ , or the

coefficient of variation of the distribution of possible ultimate losses. Given that the various points’
uncertainties are independent, one need only multiply the resulting values (squared, for variance)
by the squares of the weights in equation (9) to get the consequential variance of the trend estimate
across possible actual values of the ultimate losses.

In many cases, the variances of the logarithms of the ultimate losses, etc. may be directly
estimated (and be statistically independent), perhaps by using the approach in Hayne 1985. Then
the total variance of the error in the slope estimate due to loss development uncertainty is simply
the sum of the variances due to development at the various years, etc., each multiplied by the
square of the corresponding ”weight”

36

∑k
i=1 γ

2
i (2i− k − 1)2

(k3 − k)2
(7)

(where each γ2i is the variance of the logarithm of the ith data point.)
As one may see, this could be quite substantial sometimes. Consider though, that the result

above does not represent the entire error variance associated with the resulting slope. The regression
result is also an estimate, thus it is also part of the total error variance of the resulting slope.

If one has a fairly good handle on the variance of the process error, the results may be improved
some by switching from the standard regression to “weighted regression”. Weighted regression
in this case maybe illustrated by the goal it seeks. Standard regression minimizes the squared
differences between the points on the line and the data values. Weighted regression, weights are
assigned to each of the squared differences. They correspond to the total variance (process and loss
development) affecting each point. Thus one would seek8

k∑
i=1

(a+ bi− yi)2

σ2 + γ2i
= min. (8)

One alternative is to use calendar year trend, which requires no loss development. However,
one must weigh that against its susceptibility to say, a claims department’s decision to close a large
percentage of their inventory in one of the calendar years (and how much that might distort the
trend) and the fact that the data is from somewhat older accident/report years.

7Exactly how much development is involved of course depends on the line of business, perhaps the class of business,
etc.

8As information, extensions to some popular spreadsheet software packages that perform this calculation are
available at present if one does not wish to use a goal seek solution routine to compute this.
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2.2.4 The Weights (Yes Weights) of the Year-to-Year Differences in the Regression
Data

Section 2.2.2 provided the “weights” for determining the slope as a linear combination of the data
points. The next step is to show that the estimated slope from consecutive times t = 1, 2, ...., k is
a weighted average of the year-to-year increases yi+1 − yi. The first step in computing the weights
involves noting that, when k is odd, the weight w1 for y2 − y1 must match the subsection 2.2.2
point-by-point type weight for y1 of

−6
k − 1

k3 − k
. (9)

A moment’s review of the sums will show that the weight wi applied to yi − yi−1 must equal the

weight for just the point yi

(
i.e. 62i−k+1

k3−k

)
less wi−1. The provides a point-by-point formula for the

wi’s.
That formula for the wi’s may be solved, and the resulting weights for the one year slopes are

wi = 6
i(k − i)
k3 − k

for each yi+1 − yi. (10)

These weights (wi’s) have a very important property—they sum to unity. Thus, the projected
linear trend (slope) b is really just a weighted average of the year-to-year slopes in the data. So the
original external projected trend ratio T+1 = exp(b) will be a geometric average of the year-to-year
growth values in that data. The same weights will be used, but they will represent exponents for
the various year-to-year growth values within the geometric average. Further, one should note that
although the weights for individual points yi are larger as one moves away from the center of the
experience period, the weights for the yi+1 − yi’s are larger near the center of the period.

2.2.5 Summary of the Results for Regression

In conclusion, the regression slope (logarithm of the trend value) may be expressed as a difference
between weighted sums of the loss, etc. values, or as a weighted average of the year-to-year changes.
That leads to an estimate of the effect of loss development uncertainty on the fitted slope. Further,
it is well known that the optimum prediction under regression to some period k + j is a straight
average (identical weights of 1/k) of the y values, plus the calculated slope times the number of
years from the mean time t̄ to the future period. As shown above, for this annual data, both
the beginning point and the slope to future periods are weighted values of the y’s. So any linear
projection to some future period k + j may be expressed as a weighted sum/linear function of the
y’s.

est(yk+j) =

k∑
i=1

[
1

k
+

(
k + 1

2
+ j

)
6(2i− k + 1)

k3 − k

]
ŷi. (11)

(Essentially, the yi
k sum to the mean of the yi’s. The k+1

2 trends from the mean time associated
with the mean of the yi’s to the time associated with the last data point. Lastly, the j term moves
it to the future time period desired for the projection.)

Overall, one may see that the standard loglinear trend algorithm is based on computing a
straight average for the starting point and a weighted average for the trend.
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2.3 The Trend with Random Drift Model: Varying Trend but no Process Error

The loglinear approach deals with situations where the true underlying expected loss values for
each year are not completely known, but the underlying trend is constant. The trend with random
drift case involves perfectly known expected loss values. However, in addition to the trend, those
expected losses“‘drift” in a random way.

This is really another use for a model that is widely employed by some other financial service
providers. Use of that model, geometric Brownian motion,to reflect changing costs is not new. It
is commonly used in the investment community as a model of risk-adjusted stock price evolution.
It has already been used in the actuarial world in Boor 1993 and McNichols and Rizzo 2012.

Basically, it assumes that the cost, etc. levels C(t) are affected by a constant trend (T as
always). However, the cost level is also buffeted by constant but random changes, so that from year
to year its logarithm is changed by a random selection from a normal distribution (in addition to
the slope). The effects of these changes are cumulative in that all the prior changes are embedded
in each value. In the transformed distribution ln(C(t)) values at time s and time t differ not only by
the logarithm of the trend, but also by some value from a normal distribution with some variance
parameter δ2. It may be written

ln(C(t))− ln(C(s)) = (t− s) ln(1 + T ) + (t− s)δN(0, 1) (12)

(where N(0, 1), in a slight abuse of notation (for clarity), represents a sample from the standard
normal distribution). One may describe δN(0, 1) as random drift. Since it is linear now, it is
associated with the slope of a line rather than with the compounding trend in the original trend
data. So, this is “slope with random drift” rather than “trend with random drift”. Notably in
this linear case, in each set of intervals (s, t) and (u, v) that do not overlap (other than at the
endpoints), the samples from the normal distribution are independent.

That means that the yearly slopes y2−y1, y3−y2, ..., yk−yk−1, (yi = ln(C(i)) are all independent
samples of the slope b = ln(1 + T ). Since there are k − 1 samples, the slope estimate using the
year-to-year changes is clearly

est(b) =
1

k − 1

k∑
i=2

yi − yi−1 (13)

One may note that any i not on the top or bottom of the range, is included in both yi+1 − yi
and yi−yi−1. So most of the terms cancel, leaving a slope estimate for these historical points under
slope with random drift of

est(b) =
1

k − 1
(yk − y1). (14)

In effect, the weights for the points are − 1
k−1 for y1,

1
k−1 for yk, and zero for the other points.

To finish the linear portion of this analysis, one may note that slope with random drift is well-
known to be “Markov” or “memoryless”. That means that for times after the last data point at k,
yk alone is the best point for making future predictions. y1, y2, ...yk−1 would only be useful when yk
and perhaps additional values are not known. So, whereas predicting future values using regression
in equation (11) involved using middle of the time values at the starting point, slope with random
drift predictions begin with the most recent data point yk. So the linear slope with random drift
estimate for y at time k + j is

est(yk+j) = yk +
j

k − 1
(yk − y1) =

j + k − 1

k − 1
yk −

j

k − 1
y1 (15)
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Unlike the regression system, translating the slope with random drift formulas back to the
needed trend with random drift values (C(i)’s) is easy. Equation (15), based on the difference
between the last point and the first point becomes a ratio, And the multiplier 1

k−1 becomes an

exponent, generating the k − 1st root of 1 + T =
(
C(k)
C(1)

) 1
k−1

. And per the Markov property

est (C(t+ j)) = C(k)×
(
C(k)
C(1)

) j
k−1

.

2.4 Trend with Both Random Drift and Process Error

Contrary to the assumptions of the last two sections, sometimes trend is influenced both by volatility
in the trend (or slope) and process error. This section presents a model to use in such a situation.

2.4.1 Explanation of the Model

The previous models each include a core assumption that could sometimes be an unrealistic . Often
trend data from very large datasets that would seem to be susceptible to the trend with random
drift view of subsection 2.3 appear to be a little different from what the theory would suggest. For
example, consider the consumer price index data in Table 1, where one would expect little process
error. Process error would create a situation where very large increases or decreases in the trend
could come from more extreme errors. In that case, a large decrease in the annual trend would be
followed by a large increase and vice versa. One cannot determine conclusively from the data, but
the changes in the trend from 2008 to 2009, 2009 to 2010, and 2010 to 2011 do suggest that some
process error (perhaps arising from the data collection process) is present.

Table 1: Year-to Year Trend Rates in Consumer Price Index (All Urban Consumers

Value at 12/31 Change
of Year CPI in CPI

2006 210.800
2007 210.036 -0.36 %
2008 210.228 0.09 %
2009 215.949 2.72 %
2010 219.179 1.50 %
2011 225.612 2.94 %
2012 229.601 1.77 %
2013 233.049 1.50 %
2014 234.812 0.76 %
2015 236.565 0.75 %

As one may see, the trend rates in the CPI data are fairly volatile. Further, it is possible that
the dynamics of the consumer price index involve even more complexity. Therefore it is reasonable
to question whether or not the loglinear trend model really captures the structure of the data it is
applied to. The concern with trend with random drift is more direct. One may also see that the
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trend with random drift assumption that none of the points contain process error of any sort, is
suboptimal for datasets subject to process risk.

Therefore, an approach that recognizes both the process, etc. risk that makes the data points
imperfect representations of the underlying costs and also accommodates drift-type volatility from
year to year is needed. The approach begins with the trend with random drift process consistent
with

E [ln (C(i+ 1))] = E [ln (C(i))] + ln(1 + T ) + δN(0, 1) (16)

(with the notation abusing N(0, 1) terms representing independent standard normal samples for
each of the various intervals (i, i+ 1)). Thus, E [ln (C(i+ 1))] follows the slope with random drift
paradigm. But, rather than the pure random drift involved in subsection 2.3, this scenario also
includes the process error included in subsection 2.2. Specifically, one may state that

yi = E [ln (C(i))] + σN(0, 1) (17)

(with the N(0, 1) terms independent among the various indices i = 1, 2, ..., k).

2.4.2 Finding the Key Variances

Considering the presence of both types of volatility, the goal is to find the a and b that are most
consistent with the data. To do that, one must first define an error function or objective function
to minimize. The most obvious approach would be to take a page from the playbook of the other
two situations and seek the slope that is consistent with the lowest possible variance. However,
in this case there are actually two variances, both the process variance from subsection 2.2 and
the drift variance from subsection 2.3. So one must consider what combination of those should be
minimized.

For illustration, note that σ and δ (actually σ2 and δ2) may be estimated using historical data.
Per Boor 20159, once the slope is removed σ2 and δ2 may be computed using

E
[∑k−1

i=1 (yi+1 − yi)2 − (yk − y1)2
]

2(k − 2)
= σ2, (18)

and
E
[
(k − 1)(yk − y1)2 −

∑k−1
i=1 (yi+1 − yi)2 − (yk − y1)2

]
(k − 1)(k − 2)

= δ2. (19)

where each yj is the value of the linear (generally, log-transformed) value for the jth year, month,
etc.

However, when one attempts to simultaneously estimate the slope, process error variance σ2,
and drift variance δ2, the problem tends to become too unwieldy to perform reliably, at least per per
a few methods employed by the author. Therefore, one may suggest using the trend with random
drift approach when the values appear to be fairly compact around a curve, the approach of this
section when there is a similar non-linear appearance, but the values are not compact around the
curve, and the regression approach otherwise, at least as a starting point.

9To facilitate its use, be aware that in the referenced paper the “yi’s’ were labeled as “Si”s to limit conflicts among
variable names.
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2.4.3 Estimating the Slope

On the other hand, if reasonable estimates of σ2 and δ2, may be made, then it as least possi-
ble to provide an estimate for the slope. The idea involves estimating the underlying “expected
loss”10/slope with random drift/no process error path, then use the standard slope with random
drift estimate of the slope of the expected values, [(most recent point) − (first point)]/(k − 1), of
the slope from subsection 2.3.

To do so, it is helpful to define the best approximation point-by-point. For example, at the first
data value y1, the only information available is the value y1, so that would be the estimate e1 of
the first point. Its variance around the true value11 on the underlying path of the expected values
of losses would be σ2, which can be set as the initial value τ21 .

For the second value along the path, we have two estimators, e1 + b and y2. The expected
prediction variance of y2, with respect to the value of the underlying expected losses would logically
be it’s variance from the those losses, or σ2. The expected squared prediction error generated by
e1 + b would be the squared error inherent in e1, or the process variance σ2, plus the inherent
volatility as one moves from year to year along the path, δ2. Since the two may generally be
thought to be independent, the variance of the error between the estimate e1 + b and the true value
along the path is δ2 + σ2.

That begins the iteration. Since the expected squared error e1 makes predicting the expected
value is τ21 = σ2, and the drift along the path is independent of the process error, the error e1 + b
makes (where b is the currently unknown slope) in predicting the second true point on the path
adds one year of random drift to make τ21 + δ2 the error variance of e1 + b in predicting the second
point on the path. The error variance of y2 would be σ2. A formula from best estimate credibility
(see Boor 1992) indicates that for these two independent estimators, the best estimate results from
weighting each one by the expected squared prediction error of the other12. Therefore, the (best)
estimated value of the second point on the path the expected losses underlying the data actually
followed is

e2 =
σ2(e1 + b) + (τ21 + δ2)y2

τ21 + δ2 + σ2
. (20)

Since the two components are (clearly) independent, the variance of the result above is just the
result of multiplying the variances of the two by the scalar multipliers (like credibilities). A little
algebra results in in a formula for the error variance of e2 of

τ2 =
σ2 × (τ21 + δ2)

τ21 + δ2 + σ2
. (21)

Those may be generalized into recursive formulas for the e’s and τ ’s

ei+1 =
σ2(ei + b) + (τ21 + δ2)yi+1

τ2i + δ2 + σ2
. (22)

10This could also be expected frequency, severity, etc
11The language is key here. In this case, the mean of e1 is equal to the actual underlying first point on the path

the expected losses follow as they drift. However, if they did not match, the expected squared error predicting the
initial point on the path would have to include the squared difference between the mean of e1 and the mean of that
initial point along with the variance of e1. Considering that all the distributions used in this section are presumed to
be unbiased and independent, per Boor 1993, it should not be an issue. However, it is mentioned for completeness
and clarity.

12If the reader is so inclined, one may verify that the formula works in this instance by using Bayesian methods.

10



τi+1 =
σ2 × (τ2i + δ2)

τ2i + δ2 + σ2
. (23)

Of course, since that formula assumes that one already knows the slope, it is not directly useful
for estimating the slope. However, it may be used indirectly. In the regression model, the slope is set
so that squared residuals between the fitted line and the actual points are minimized. So, it would
be logical to seek the value of b for which the iterations of equations (22) and (23) generate the least
squared residuals between the best estimate ei’s and the actual points (yi’s). Table 2 illustrates the
process when a 10% exponential trend is accompanied by process error corresponding to σ2 = .005
after the logarithmic transform and drift variance δ2 = .002, also in the logarithmic transformed
data. Of course, the exponential/trend with random drift data is first converted to a linear system
using logarithms so that all the variables are on a linear basis. Then the calculations mentioned
earlier are carried out in Table 2. Lastly, the spreadsheet software searches for the value in medium
gray of the slope that minimizes the sum of squared differences between the data points and the
best estimate of the points along the underlying path. That, after conversion to loglinear trend,
forms the trend estimate.

Table 2: Estimation of Underlying Slope With Both Random Drift and Process Error When Actual
Value (10%) is Larger than the Standard Deviations

Constants:
A. σ2 = 0.0050, σ = .0706 (considered known)
B. δ2 = 0.0020, δ = .0447 (considered known)

Exponential Trend = 10.00%, Slope of Logs = 9.53% (both to be found)

(1) (2) (3)=[Prior (6)] (4)=[Prior (7) (5)=(4)+B. (6)={[(3)+b]A.+(1)(5)} (7) = (5)×A. (8)=((2)-(3))2

/{A. +(5)} /(A.+(5)
“S” “e” Current Point Incoming Drift Outgoing Difference

Simulated Natural Log Est of Expected Variance Variance to Value of Data Point S
Year Loss Ratio of Loss Ratio Loss Level “τ” Next e Next e τ and e

1 101.3 % 0.0128 0.0128 0.0050 0.0070 0.1034 0.0029 0.00000
2 110.4 % 0.0987 0.1034 0.0029 0.0049 0.1925 0.0025 0.00002
3 120.6 % 0.1876 0.1925 0.0025 0.0045 0.3128 0.0024 0.00002
4 140.0 % 0.3365 0.3128 0.0024 0.0044 0.4383 0.0023 0.00056
5 159.3 % 0.4657 0.4383 0.0023 0.0043 0.4822 0.0023 0.00075
6 155.1 % 0.4389 0.4822 0.0023 0.0043 0.6342 0.0023 0.00188
7 198.2 % 0.6843 0.6342 0.0023 0.0043 0.6619 0.0023 0.00251
8 183.1 % 0.6047 0.6619 0.0023 0.0043 0.7690 0.0023 0.00328
9 218.2 % 0.7803 0.7690 0.0023 0.0043 0.8587 0.0023 0.00013

10 235.2 % 0.8551 0.8587 0.0023 0.0043 0.00001

b=Estimated Slope of Logs= 9.40% Sum of Differences Between Loss Level Path and Data Points= .00916
T=Est Loglinear Trend= 9.85%

One could question whether the fairly high accuracy (estimate of 9.85% vs. an actual 10.0%) of
this method is due to the larger slope predominating over the two variances. Therefore, the same
calculations were done for a trend rate of 3% in Table 3.

The sums of squared differences in Table 3 match Table 2 because the data to be analyzed was
the same, up to the slope, in both examples. However, notice that even the estimate of the lower
3% trend was very, very good. In the experience of the author, if the data looks like it complies with
the regression assumptions, typically this only provides a marginal improvement in accuracy over
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Table 3: Estimation of Underlying Slope With Both Random Drift and Process Error When Actual
Value (3%) is Smaller than the Standard Deviations

Constants:
A. σ2 = 0.0050, σ = .0706 (considered known)
B. δ2 = 0.0020, δ = .0447 (considered known)

Exponential Trend = 3.00%, Slope of Logs = 2.96% (both to be found)

(1) (2) (3)=[Prior (6)] (4)=[Prior (7) (5)=(4)+B. (6)={[(3)+b]A.+(1)(5)} (7) = (5)×A. (8)=((2)-(3))2

/{A. +(5)} /(A.+(5)
“S” “e” Current Point Incoming Drift Outgoing Difference

Simulated Natural Log Est of Expected Variance Variance to Value of Data Point S
Year Loss Ratio of Loss Ratio Level “τ” Next e Next e τ and e

1 1.013 % 0.0128 0.0128 0.0050 0.0070 0.0363 0.0029 0.00000
2 1.034 % 0.0330 0.0363 0.0029 0.0049 0.0603 0.0025 0.00001
3 1.058 % 0.0561 0.0603 0.0025 0.0045 0.1124 0.0024 0.00002
4 1.149 % 0.1393 0.1124 0.0024 0.0044 0.1695 0.0023 0.00072
5 1.225 % 0.2027 0.1695 0.0023 0.0043 0.1570 0.0023 0.00110
6 1.116 % 0.1101 0.1570 0.0023 0.0043 0.2336 0.0023 0.00220
7 1.336 % 0.2898 0.2336 0.0023 0.0043 0.2074 0.0023 0.00315
8 1.155 % 0.1445 0.2074 0.0023 0.0043 0.2442 0.0023 0.00397
9 1.290 % 0.2543 0.2442 0.0023 0.0043 0.2682 0.0023 0.00010

10 1.301 % 0.2633 0.2682 0.0023 0.0043 0.00002

b=Estimated Slope of Logs= 2.82% Sum of Differences Between Between Loss Level Path and Data Points= .00916
T=Est Loglinear Trend= 2.86%

the regression estimate. These alternate views are better suited to situations where one expects
that the underlying trend changed significantly during the time period of the data.

In conclusion, while there is a workable formula for estimating the variance structure given
knowledge of the trend, there is also a workable formula for estimating the trend given the variance
structure. However, the author is not aware of any good approach to estimate both simultaneously.
Nevertheless, in certain situations, investing the time needed to execute this method can yield
better accuracy in the trend calculation.

3 Limited Fluctuation Credibility for Trend

Now that formulas that relate the trend calculations to individual points are available (at least for
regression and pure trend with random drift), it is possible to develop credibility formulas that are
designed specifically for trend. The two versions for limited fluctuation credibility follow.

3.1 What Would a (Limited Fluctuation) Credibility Formula for Trend Look
Like?

When considering credibility for trend, it is relevant to begin with the core goal of the given
credibility process. Although actuaries typically think of limited fluctuation credibility in terms of
claim counts, it is really about the rate, trend, etc. not changing too much unless the data clearly
indicate that a given change is needed. For example, for the common 1082 standard, the objective
is to not allow pure randomness in the data to arbitrarily change rates by more than 5% (up or
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down), unless the data indicate such a change is needed. Further, since any amount of loss can
conceivably happen, “the data indicate such a change is needed” is defined as “There is a 10%
(or less) chance that the credibility-adjusted result will randomly create more than a 5% change.”
Those requirements are not based on claim counts, claim counts are merely a convenient way to
compute the credibility.

So, in the case of limited fluctuation credibility, the stated goal is that probability that random
chance causes losses to exceed some threshold ± R is limited to some suitably low probability p.
So, the goal is to find (or estimate) the pth and 1−pth percentiles of the distribution of possible
trends. Then one may appropriately throttle the distribution with a credibility factor Z so that
Z × F−1

trend(p) ≥ −R and Z × F−1
trend(1 − p) ≤ R, where F−1

trend(p) is the pth percentile of the
distribution of possible changes in trend.

3.2 Limited Fluctuation Credibility with Regression-Based Trend

Subsection 3.1 allows one the opportunity to define a general credibility formula for the regression
slope. Such a formula would depend on the variances, not on claim counts. Specifically, it is well
known that approximately 90% of the probability in the normal distribution is within two standard
deviations (up or down) of the mean (note that for purposes of considering pure randomness,
the mean would be “no change”). So if Z = 5%/(90% × CV (linear slope))(where CV denotes
the standard coefficient of variation, the standard deviation divided by the mean), the criteria
underlying the 1082 standard will be fulfilled by credibility weighting the slope with some very
reliable ancillary data. However, that does require one to know the variance of the fitted slope
around the true slope.

It should then be clear that the main challenge in determining credibility for the regression slope
that underlines the trend is finding the percentiles of the distribution of possible slopes. Thankfully,
a standard statistic is available to help. For example, using the special additional regression option
available in the som common spreadsheet software, one may compute the key variance statistic
needed. After first taking logarithms of the CPI data in Table 1, the spreadsheet option produces
(as approximately excerpted from the regression output).

Table 4: Excerpt from Supplementary Information Spreadsheet Software Provided in Loglinear
Regression of Table 1 Data

ANOVA

df SS, MS F

Regression 1 0.01965 0.01965 173.0653602
Residual 8 0.00091 0.00011
Total 9 0.02056

Coefficients Standard Error, t Statistic p value

Intercept -25.62411 2.35860 -10.86411 4.55693E-06
X Variable 0.01543 0.00117 13.15543 1.06096E-06

The values in gray are the the mean (fitted) slope and the standard error (error standard
deviation) of the regression slope. Thus, the 1082-equivalent credibility calculation for the linear
regression would be 5%/(90% ∗ (.00117/.01543)) = 73%
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However, the credibility of the final trend T of the actual CPI values is slightly different. To
estimate the trend in the original CPI data, one must invert the logarithm and convert the trend
factor 1 + T = exp (slope) to the trend rate T = exp (slope) − 1. That affects the relative error
(which is supposed to, under the 1082 standard, be 5% or less) through the magnification or
shrinkage generated by the exponential function, as well as the denominator used in computing
the relative error. The magnification or shrinkage multiplier would be generated by the derivative
of exp (x) − 1, or exp (x) at x = .01543. The value is 1.01555. Then, since T = exp (.01543) −
1 = .01555, the 5% relative error allowed in determining the slope translates to relative error of
5%× 1.0155× .01543/.01555 ≈ 5.04%. So the 5% threshold still essentially holds in this example.
However, it is important to complete this final step to be certain that the credibility fulfills its
function appropriately.

3.3 Limited Fluctuation Credibility with Trend with Random Drift

Just as in loglinear trend, the key to limited fluctuation credibility for trend with random drift
trend lies in computing the variance. In this case, the process is much more straightforward. In
say, ten years, of data there are nine year-to-year slopes. It is not difficult to calculate the variance
of those slopes. Then, since the estimate of the trend with random drift is simply the average of
those nine slopes, all one need do is divide the variance of the individual slopes by nine. That
estimates the variance of the error in the slope estimate, and the remaining process mirrors that
used in subsection 3.2.

3.4 Usefulness of Limited Fluctuation Credibility for Trend

Of course, once it is computed, limited fluctuation credibility can be used in a wide variety of
situations. This can be used when the complement of credibility benchmark is countrywide trend for
the line of business, or when it is the tend in last year’s rate filing. The flexibility and (comparative)
ease of computing this are offset somewhat by the fact that it does not result in the most accurate
estimate of trend. The methods of the next section will focus on accuracy, but consequently the
formulas are less robust..

4 Best Estimate Credibility for Loglinear Regression

As noted in Boor 1992, best estimate credibility depends not just on how well the data predicts
the loss costs, it also depends on how well (or poorly) the complement of credibility benchmark
predicts the loss costs. It further depends on whether or not the prediction errors generated by
the data and the benchmark are correlated. If one is using countrywide trend as a benchmark,
one might expect the errors to be uncorrelated. However, if one is using the trend generated last
year as a benchmark, one might expect substantial correlation. Therefore, the two approaches are
analyzed in separate sections.

4.1 Best Estimate Credibility with External Benchmark Data

Per Boor 1992, best estimate credibility is a function of the error each statistic (dataset) makes in
predicting the underlying quantity being estimated (in this case, the slope underlying the trend).
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For two predictors that make uncorrelated errors, the credibility weight of one statistic is propor-
tional to the squared error generated by the other statistic. One might expect that, say, trend
computed from countrywide data would make prediction errors that are largely uncorrelated with
those generated by the trend data of a small state. In general, most benchmarks tend to make er-
rors that are unrelated to the trend of a dataset with lesser volume. So that simpler, no covariance,
formula would apply.

The next step that is required is to estimate the two variances. However, as discussed in
subsection 3.2, that may be begun, for both the target data and the benchmark, by using the
standard errors of the two slopes obtained in the regression process.

For the subject data, that suffices to produce an estimate of the squared error. However, the
squared error the benchmark makes in estimating the subject slope solely because the benchmark
and the subject data simply have different underlying slopes requires another term. Therefore,
the squared error the benchmark makes is more than just variance from the regression fit. That
amount, at least in this characterization is a constant bias13 rather than variance. It does contribute
to the squared error, though. It is not hard to see that the expected squared error is equal to the
variance of the predictor plus the square of that bias.

Now, one may only know the actual bias by knowing the underlying slopes that are being
estimated. However, one could use the difference between the slope of the subject data and the
slope of the benchmark data to estimate the bias. Then the credibility of the slope in the subject
data is:

Z(subject data) = [
standard error2(benchmark) + (difference of slopes)2

]
/
[
standard error2(subject data) + standard error2(benchmark) + (difference of slopes)2

]
.

For example, When the Table 1 data is loglinearly regressed, the slope is 0.01543 and the
standard error is 0.005. If one could then identify a benchmark to supplement this (CPI) data,
and it had a slope of .017 and standard error of .003, the the credibility of the CPI data would

be .0032+(.01543−.17)2
.0052+.0032+(.01543−.17)2 = 31%. Thus, given the regression output, this is not a challenging

calculation.
It should be apparent that this general approach will also work with the slope with random drift

using the variance of year-to-year changes formula from subsection 3.3. Details are not provided as
the formula should also be apparent.

Of course, at this point, with either trend scenario, a credibility weighted estimate of the slope is
produced, but what is actually needed is the exponential-based trend. The procedure for converting
the expected squared error in the slope to that in the exponential trend has already been discussed
in subsection 3.2. Alternately, one may simply perform the credibility calculation on the regression
slopes, and then convert the result to a trend by applying the exponential function to the slope
and subtracting unity.

13Technically “bias”, although it does not have the strong negative connotation associated with bias that distorts
the results—as this improves the results.
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4.2 Best Estimate Credibility When Updating Loglinear Regression

In updating trend, the complement of credibility is either last year’s trend or last ear’s slope It
seems logical to use the same credibility for each. In contrast to the uncorrelated nature of the
errors in external benchmarks with internal data, last year’s slope uses much of the same actual
data as the subject data. So, then Boor 1992 indicates (after some algebra) that the optimum
credibility for the slope is

Z(subject data) =[
standard error2(old slope) + (difference of slopes)2 − covariance(new slope,old)

]
/[

standard error2(new slope) + standard error2(old slope) + (difference of slopes)2

−2× covariance(new slope,old)] .

(24)

The new issue to be resolved, then, is that of estimating the covariance between this year’s
slope and last year’s slope. The first tool lies in some additional output of the regression routine in
the spreadsheet software. The data in Table 5 also comes from the regression on the Table 1 CPI
data.

Table 5: Additional Excerpt from Supplementary Information Spreadsheet Software Provides in
Loglinear Regression of Table 1 Data

Multiple R 0.97766
R Square 0.95582
Adjusted R Square 0.95029
Standard Error 0.01066
Observations 10

The standard error in gray is the standard deviation of the “residuals”, or differences between
the fitted curve and the data points. Combining this with the weights from equation (9) in sub-
section 2.2, that are effectively used in computing the slope, one may see that the variance of each
(independent) point/residual and weight combination is equal to the square of the weight times the
standard error squared. To show that this works note this alternate computation of the previously
provided (Table 4) standard error of the slope.√√√√.010662 ×

k∑
i=1

(
6

2i− k − 1

k3 − k

)2

= .00117. (25)

The goal, though, is to compute the covariance of this year’s slope with last year’s slope. That
may be done in a similar fashion. It is not hard to see that the first year in the current trend period
was the second year in last year’s trend period, and so on. Then, if we further define rnew to be
the standard error in the new regression and rold to be that of the prior regression, one may obtain
(after some algebra) the following formula for the covariance

16



Cov(new slope,old slope) =

k−1∑
i=1

rnewrold × 6
2i− k − 1

k3 − k
× 6

2i− k + 1

k3 − k
.

= rnewrold × 12
k − 3

k(k3 − k)
.

(26)

Note that this is essentially a constant, identical across all updates and data used in k period slope,
times the product of the two standard errors.

One may also note that this does not completely resolve the updating credibility problem. It
works when the complement of credibility term is last year’s slope, but not when it is the credibility
weighted average of several prior years that updating would have generated the last year. However,
that problem is fairly complex. Per H. Gerber and D. Jones 1975, when these sort of covariances
exist, successive updates often require changes in the credibility mix of older years to be truly
optimal. Likely, there is still some view of what is optimal that would accommodate this particular
situation. Hopefully, this provides a first step. Further, in context the formulas of this subsection
could conceivably be used to provide a proxy for the full updating credibility.

5 Summary

A detailed analysis of the trend, and associated linear slope, calculations was presented. Three
alternate scenarios for the underlying process driving the trend were presented, along with some
guidance for estimating the trend in each case. How often they produce materially different trends is
not known at present, but might represent an opportunity for further analysis. Lastly, using details
of the analyses of the trend process in this article, credibility formulas on both a limited fluctuation
and best estimate basis were provided. Those formulas focused primarily or conventional regression
trend, but form a template for the trend with random drift as well.

References

J. Boor. Credibility based on accuracy. Proceedings of the Casualty Actuarial Society, 79:165–185,
1992.

J. Boor. A stochastic approach to trend and credibility. Casualty Actuarial Society Forum,Special
Ratemaking Edition, pages 341–400, 1993.

J. Boor. The credibility of the overall rate indication: making the theory work. Variance, 9:167–186,
2015.

H. Gerber and D. Jones. Credibility formulas of the updating type. Transactions of the Society of
Actuaries, 27:31–46, 1975.

R. Hayne. An estimate of statistical variation in development factor methods. Proceedings of the
Casualty Actuarial Society, 72:25–43, 1985.

J. McNichols and J. Rizzo. Stochastic gbm methods for modeling market prices. Casualty Actuarial
Society Forum,Summer Edition, pages 21–18, 2012.

17


