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Machine Learning Overview
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Machine Learning Overview
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Machine Learning Pros & Cons

PROS:
• Find relationships in data
• Learning and predicting 
• Sophistication
• Open-source software

CONS:
• Lack of transparency
• Over-fit
• Computational Cost



Case Study Techniques

POLLING QUESTION: Which of the following techniques that 
will be discussed today have you explored and/or used?   
(pick all that apply)
• Generalized Additive Models (GAM)
• Multivariate Regression Splines (MARS)
• K Nearest Neighbor (KNN)
• Gradient Boosting (GB)
• Artificial Neural Network (NN)



Generalized Additive Models (GAM)

• Replaces estimation of linear form parameters with smooth 
linear or non-linear functions

– 𝜂𝜂 = 𝛽𝛽0 + 𝑓𝑓1( x1) + 𝑓𝑓2(x2) + … + 𝑓𝑓p( xp)
– 𝜇𝜇 = g-1(𝜂𝜂) 

• Goodness-of-fit
– Conceptually equivalent to sum of squares in ordinary linear regression

• Functions 𝑓𝑓𝑖𝑖 can be:
– Parametric with a specified form (i.e., a polynomial)
– Non-Parametric
– Each 𝑓𝑓𝑖𝑖 can be a different function



Multivariate Regression Splines (MARS)

• Models built in two phases – forward and backward pass
• FORWARD PASS

– Start with just the intercept
– Repeatedly add basis function in pairs
– Find pair that maximizes reduction in sum-of-squares residual error
– Add terms until change in residual error is very small

• BACKWARD PASS
– Remove terms one by one, deleting the least effective term



K Nearest Neighbor (KNN)

• KNN captures the idea of similarity
• Classifies a data point based on how its neighbors are 

classified
• How to chose K?



Gradient Boosting (GB)

• Decision trees built sequentially
• New tree is built on the residual of prior tree(s)



Artificial Neural Network (NN)
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Traditional Claim Reserving



Run-Off Triangles: An Overview
0 1 2 3 4 5 6 7 8 9

1981 5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834

1982 106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704

1983 3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466

1984 5,655 11,555 15,766 21,266 23,425 26,083 27,067

1985 1,092 9,565 15,836 22,169 25,955 26,180

1986 1,513 6,445 11,702 12,935 15,852

1987 557 4,020 10,946 12,314

1988 1,351 6,947 13,112

1989 3,133 5,395

1990 2,063

LDF 2.999 1.624 1.271 1.172 1.113 1.042 1.033 1.017 1.009 1.000



Run-Off Triangles: An Overview

AY Latest Ultimate IBNR Mack.S.E CV(IBNR)

1981 18,834 18,834 0 0

1982 16,704 16,858 154 143 0.928

1983 23,466 24,083 617 592 0.959

1984 27,067 28,703 1,636 713 0.436

1985 26,180 28,927 2,747 1,452 0.529

1986 15,852 19,501 3,649 1,995 0.547

1987 12,314 17,749 5,435 2,204 0.405

1988 13,112 24,019 10,907 5,354 0.491

1989 5,395 16,045 10,650 6,332 0.595

1990 2,063 18,402 16,339 24,566 1.503



Run-Off Triangles: Advantages and 
Disadvantages

• Advantages:
– Easy Implementation
– Stabilizes Experience
– Intuitive and Interpretable

• Disadvantages:
– Information compression, e.g. 10 years worth of data to 55 data points
– Unreliable recent results
– Loss of information



Machine Learning in Claim Reserving



Individual Claim Reserving

Looking at claim data at the individual level can overcome the main 
drawback of standard triangle techniques, bringing these advantages: 

• Timely Estimates: 
– There is no need to wait for each AY year to sufficiently develop

• Extensive Use of Data:
– Data is usually recorded anyway, it would be clever to actually use it.



Predicting Ultimate Cost
• Target: To predict the ultimate cost of the claims when they are initially 

reported. 
• At this stage, there is no paid amount and an initial case reserve is 

established.
• In one case they will be settled and paid. This is the amount that needs to 

be estimated. 
• On the other hand, claims could be closed with no payment (CNP), and 

therefore there will not be any payment. 



Predicting Ultimate Costs

• We will have three stacked models:

– First, each claim will be classified if it will be paid or closed with no payment.

– If the claim will be paid, a second model will estimate the final claim amount, ie. 
ultimate cost.

– A third model will also estimate the timing of such payment.



Modeling Framework
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• The framework is built on one classifier and two regressors.



Data example

Acc_Date Rep_Date Car_Man Lat Long Acc_Time DUI BAC ... Case Res

Ultimate Cost Time Lag



Model Comparison



Models Implemented
• The following models have been implemented:

– General Additive Models, GAM
– Multivariate Regression Splines, MARS
– K Nearest Neighbor, KNN
– Gradient Boosting, GB
– Neural Networks, NN

– Each different model has been used to classify claims and to predict both ultimate cost 
and lags. 

– Then, the performance have been compared and the best performing models have been 
chosen.



Case Study Techniques

POLLING QUESTION: Which technique performs the best in 
the classification of a claim resulting in a payment versus 
closed with no payment?   (pick one)
• Generalized Additive Models (GAM)
• Multivariate Regression Splines (MARS)
• K Nearest Neighbor (KNN)
• Gradient Boosting (GB)
• Artificial Neural Network (NN)



RBNS Results (Reported + IBNER)

• Classification Performance:



Case Study Techniques

POLLING QUESTION: Which technique performs the best in 
the estimating the ultimate claim cost?   (pick one)
• Generalized Additive Models (GAM)
• Multivariate Regression Splines (MARS)
• K Nearest Neighbor (KNN)
• Gradient Boosting (GB)
• Artificial Neural Network (NN)



RBNS Results (Reported + IBNER)

• Regression Performance:



Case Study Techniques

POLLING QUESTION: Which technique performs the best in 
the estimating the closing lag?   (pick one)
• Generalized Additive Models (GAM)
• Multivariate Regression Splines (MARS)
• K Nearest Neighbor (KNN)
• Gradient Boosting (GB)
• Artificial Neural Network (NN)



RBNS Results (Reported + IBNER)

• Regression Performance:



RBNS Results (Reported + IBNER)



RBNS Results (Reported + IBNER)



IBNYR Estimates

• At this point we have obtained estimates for claims that have been 
reported to the company. 

• This includes RBNS (Reported but not settled) and IBNER (Incurred but not 
enough reported).

• We still have to produce estimates for IBNYR, (Incurred but not yet 
reported).

• Since the company does not have any records of these claims we have to 
follow a different approach.



IBNYR Estimates

Let’s consider that the evaluation date is December 31, N. 
1. Take the observed ultimate value of all the claims occurred in all the 

previous years and reported by year end (RBNS + IBNER). 
2. Take the observed ultimate value of all the claims occurred in all the 

previous years and reported after year end (IBNYR).
3. Computing the ratios of these quantities, IBNYR/(RBNS + IBNER), 

we can have a time series for all previous AY’s. 
4. After estimating a value for year N, multiply this estimate by the 

level of ultimate amounts already predicted.
5. This will lead to an estimate of IBNYR. 



IBNYR Results



Conclusions

• Results have a high level of accuracy.
• No reliance on individual point estimates. 
• Early evaluation

– Allows early decisions from management

• Future studies could explore the possibilities of predicting individual 
claim development. 



Final Remarks

• We showed the potential of ML in estimation of policyholders’ 
liabilities.

• It’s not a one-fits-all recipe but it gives a framework of actions.
• Recent advances in computer power have allowed more extensive 

use of data in a wide variety of areas. 
• We believe that it is very beneficial to explore these capabilities in the 

context of actuarial science.



Thank you for your attention

Further information available at

De Virgilis, M., Pierluigi C., Estimation of Individual Claim 
Liabilities. Casualty Actuarial Society, 2020. 

https://www.casact.org/research/wp/papers/working-
paper-Virgilis-Cerqueti-2020-01.pdf
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