Predictive Modeling Where have we been? Where are we going?

> A Personal View by Glenn Meyers ISO Innovative Analytics CAGNY Meeting May 29, 2008

Predictive Modeling is Not New!

- Traditional actuarial responsibility
- Predict the losses per unit of exposure for next year
- Involves trending, loss development and credibility

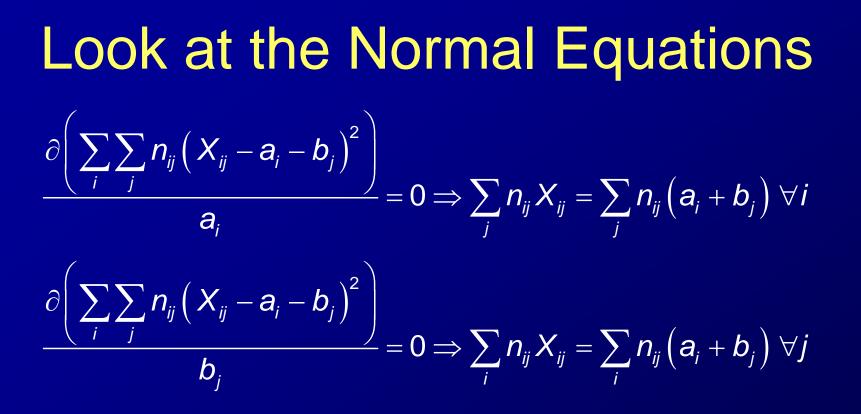
A CAS Midlife Example

• X_{ij} = Loss per unit of exposure

- Construction class i
- Protection class j
- Model $X_{ij} = a_i + b_j$
- Choose a_i and b_i so that

$$\sum_{i}\sum_{j}n_{ij}\left(X_{ij}-a_{i}-b_{j}\right)^{2}$$

is minimized.



- "Unbiased in the Aggregate" From Bailey "Insurance Rates with Minimum Bias" (PCAS 1963)
- Bailey solves for the a_i's and b_i's iteratively
- SAS Proc GLM (70's) solves with matrix algebra

Introduce "What's New" with an Example

- $X \sim \text{lognormal with } \mu = 5 \text{ and } \sigma = 2$
- Two ways to estimate E[X] (= 1,097)

• Straight Average –
$$\hat{E}_N[X] = \frac{1}{n} \sum_{i=1}^n X_i$$

• Lognormal Average – $\hat{\mathsf{E}}_{L}[X] = e^{\hat{\mu} + \hat{\sigma}^{2}/2}$

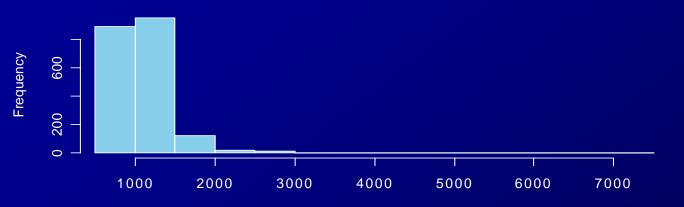
where
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \log(X_i), \ \hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(X_i) - \hat{\mu})^2}$$

Which Estimator is Better? $E_N[X]$ or $E_L[X]$?

- Straight Average, $E_N[X]$, is simple.
- Lognormal Average, $E_L[X]$ is complicated.
 - But derived from the maximum likelihood estimator for the lognormal distribution
- Evaluate by a simulation
 - Sample size of 500
 - -2,000 samples
- Look at the variability of each estimator

Results of Simulation

Straight Average



95% Confidence Interveal = (719.5, 1821.3) Maximum = 7320.5

Lognormal Average

Lesson from Example 1

- Knowing the distribution of the observations can lead to a better estimate of the mean!
- Actuaries have long recognized this.
 - Longtime users of robust statistics
 - Calculate basic limit average severity
 - Fit distributions to get excess severity

Fitting Multivariate Models by Direct Maximum Likelihood Estimation

- Most statistical software packages have generic optimizers
 - Excel "Solver"
 - R "optim"
- Use to solve for maximum likelihood

Example 2 – Pareto Distribution

• Claim severity "data" taken from various cities over the years 2004-2007.

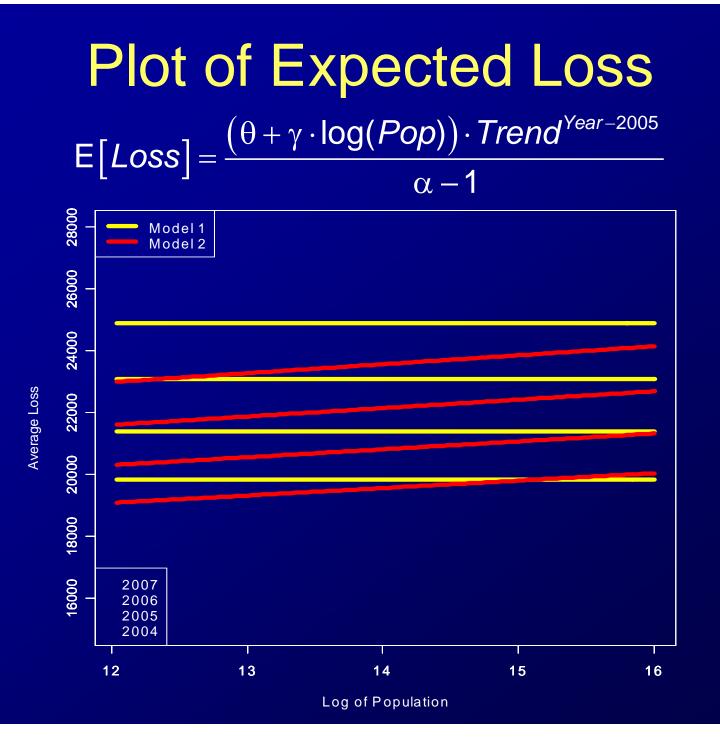
Simulated from known model

$$F(z) = 1 - \left(\frac{Scale}{Scale + z}\right)^{\alpha}$$

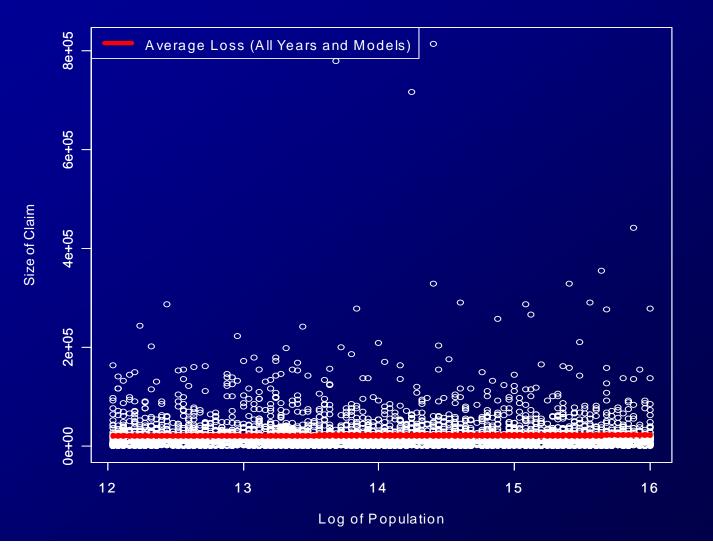
- Model 1 Scale = $\theta \cdot Trend^{(Year 2004)}$
- Model 2 Scale = $(\theta + \gamma \cdot \log(Pop)) \cdot Trend^{(Year 2004)}$
- Parameters to be estimated
 Trend, α, θ, γ

Parameter Estimates

Parameter	True	Model 1	Model 2	
θ	25,000	27,834	27,476	
α	2.500	2.403	2.607	
Trend	1.050	1.079	1.064	
γ	500		408	



Plot with Actual Loss



Is the log(*Pop*) Term Statistically Significant?

- Use the likelihood ratio test

 -L(θ₂, α₂, *Trend₂*, γ₂) = Log Likelihood for Model 2
 -L(θ₁, α₁, *Trend₁*) = Log Likelihood for Model 1
- $2 \cdot (L(\theta_2, \alpha_2, Trend_2, \gamma_2) L(\theta_1, \alpha_1, Trend_1)) \sim \chi^2(1)$
- P-Value for test = 0.034
 Significant at 0.05 level, but not at 0.01 level

Test Goodness of Fit with P-P Plots

Calculate percentile, p_i, of each data point

$$\boldsymbol{p}_{i} = 1 - \left(\frac{\boldsymbol{b}_{i}}{\boldsymbol{b}_{i} + \boldsymbol{z}_{i}}\right)^{\alpha}, \boldsymbol{b}_{i} = \left(\boldsymbol{\theta} + \boldsymbol{\gamma} \cdot \log(\boldsymbol{P} \boldsymbol{o} \boldsymbol{p}_{i})\right)^{\text{Year}_{i} - 2004}$$

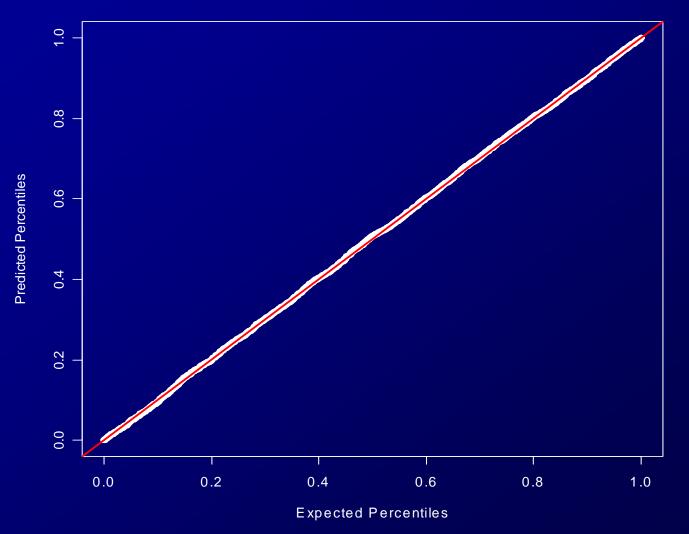
Plot against expected percentiles

$$\left(p_{i},\frac{i}{n+1}\right)_{i=1}^{n}$$

Straight 45° line indicates a good fit

P-P Plot for Example 2 Fit should be good – I knew the model

P-P Plot for Goodness of Fit



Lesson From Example 2

- Maximum likelihood is practical for multivariate models with today's PCs with the right software installed!
 - SAS, R and others.
 - Personal best 20 parameters on a loss reserve model

Generalized Linear Models

- Generalization of the "General Linear Model"
 The General Linear Model
 - Least-squares analysis of continuous and categorical variables.
 - I first encountered it in SAS in late 70's.
- First book 1989, McCullagh and Nelder
- Latest book Good introduction for actuaries
 - Generalized Linear Models for Insurance Data
 - De Jong and Heller

Properties of GLM's

- Efficient maximum likelihood estimation for a specific (but broad) class of distributions.
- For most common problems
 - Convergence takes a single digit # of iterations
 - For generic maximum likelihood optimizers it takes a triple digit number of iterations

Properties of GLM's

Link function - g (Monotonic and smooth)
 Let μ be the mean of the independent variable

$$\boldsymbol{g}(\boldsymbol{\mu}) = \boldsymbol{\alpha}_0 + \sum_{i=1}^n \boldsymbol{\alpha}_i \cdot \boldsymbol{x}_i$$

Some Common Links

Identity	$g(\mu) = \mu$
Inverse	$g(\mu) = 1/\mu$
Inverse squared	$g(\mu) = 1/\mu^2$
log	$g(\mu) = \log(\mu)$
logit	$g(\mu) = \log(\mu/(1-\mu))$

Properties of GLM's

Distribution Function (with mean μ)

- Variance of response distribution is a function of $\boldsymbol{\mu}$
- Variance function is *determined by the distribution*

Some Common Distributions

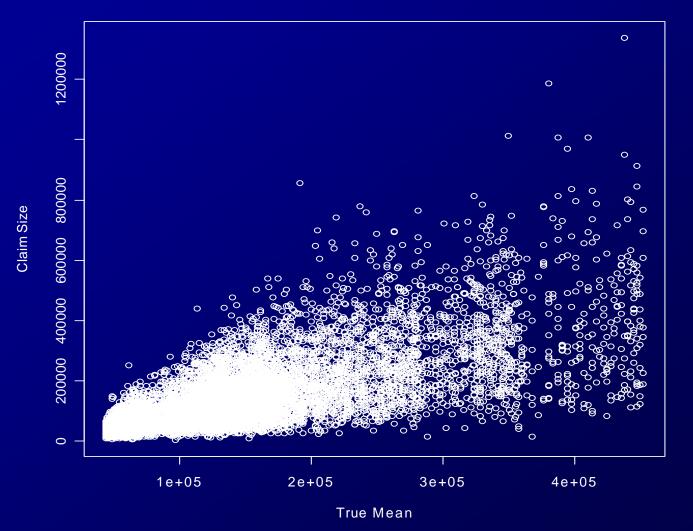
Distribution	Variance		
Normal	1/σ ²		
Poisson	μ		
Gamma	μ^2/ν		
Inverse Gaussian	μ ³ /σ ²		
Negative Binomial	μ(1+κμ)		

Example 3 – Property Claim Size

- Construction
 - Frame, Masonry, and Fire Resistive
- Protection
 - -1,2,...,10 with 1 being the best protection
- Amount of Insurance

Properties of Simulated Data

Scatter Plot of Claim Sizes



Model 1

$\log(\mu) = \alpha_0 + class_i + \alpha_1 \cdot \log(prot) + \alpha_2 \cdot \log(aoi)$

Call: glm(formula = z~cons+log(prot)+log(aoi),family = Gamma(link="log"))

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                  55.82
(Intercept)
             8.674263
                        0.155404
                                         <2e-16 ***
                                 -15.04 <2e-16 ***
consMasonry
            -0.204571
                        0.013600
consResistive -0.913219
                       0.013648
                                 -66.91 <2e-16 ***
log(prot)
         0.380237
                       0.007967
                                 47.73 <2e-16 ***
log(aoi) 0.235316
                       0.012365
                                 19.03 <2e-16 ***
Signif. codes:
              () \***/
                      0.001 \**/ 0.01
```


Model 1

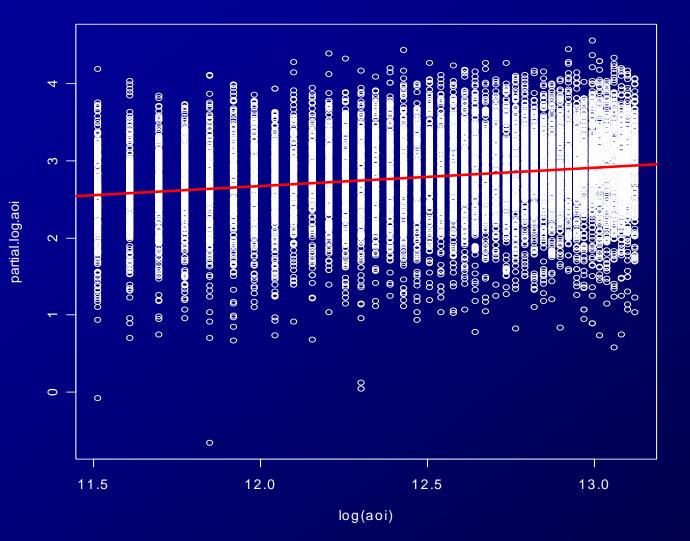
 $\log(\mu) = \alpha_0 + class_i + \alpha_1 \cdot \log(prot) + \alpha_2 \cdot \log(aoi)$

- Is the model linear in log(prot) and log(aoi)?
- Test with Partial Residual Plots

 $(\log(prot), \log(z) - \log(\hat{\mu}) + \alpha_1 \cdot \log(prot))$ $(\log(aoi), \log(z) - \log(\hat{\mu}) + \alpha_2 \cdot \log(aoi))$

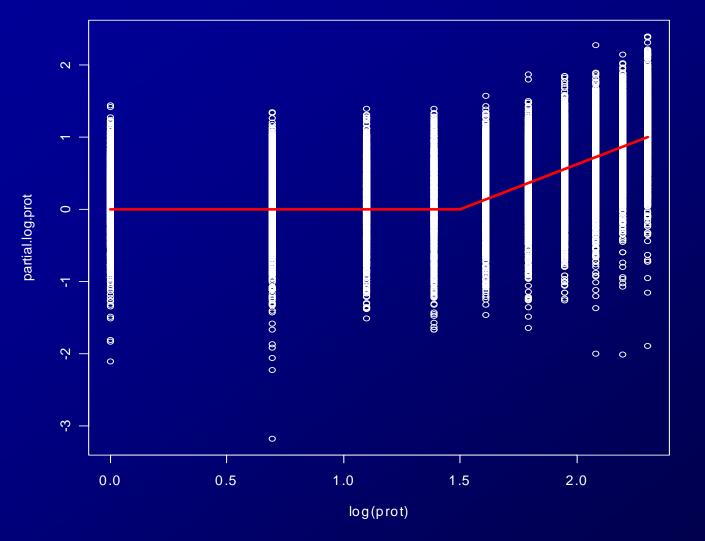
• The plots should be distributed about a straight line with slope α_i

Partial Residual Plot for log(aoi)



Looks straight to me

Partial Residual Plot for log(prot)



Not straight

Dealing with Nonlinear Effects

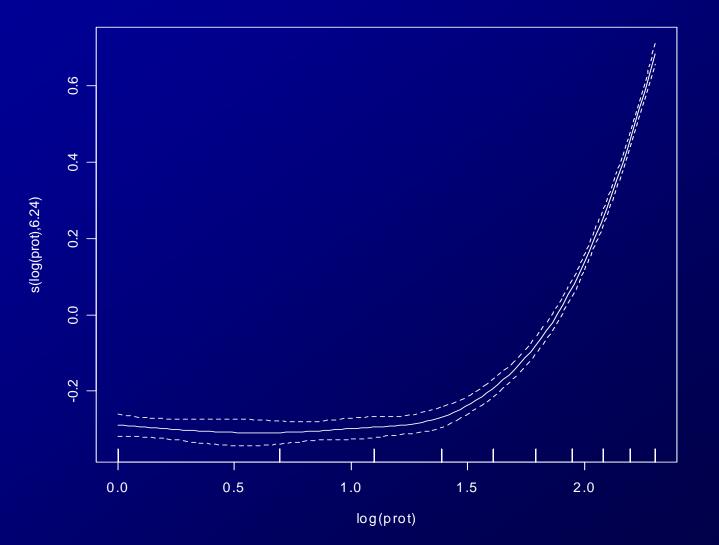
Generalized additive model (GAM)

Allows a spline to replace the linear term

<pre>Family: Gamma Link function: log Formula: z ~ cons (s(log(prot)) + log(aoi)</pre>														
									Parametric co	efficients:				
										Estimate S	td. Error	t value 🛛	Pr(> t)	
(Intercept)	9.09303	0.14133	64.34	<2e-16	* * *									
consMasonry	-0.20656	0.01240	-16.66	<2e-16	* * *									
consResistive	-0.91135	0.01244	-73.23	<2e-16	* * *									
log(aoi)	0.24568	0.01128	21.79	<2e-16	* * *									
Approximate s	ignificance	of smooth	terms:											
	edf Est.r	ank F	p-value											
<pre>s(log(prot))</pre>	6.238	8 229.9	<2e-16	* * *										
Signif. codes	: 0 `***/	0.001 `**'	0.01 `*	′ 0.05 `	.′ 0.1									

**** / 1

Plot of the Spline



Commentary on GLM

 GLM's represent a significant advance over the normal/least squares paradigm.

Based on maximum likelihood estimation

 Since it has been around for over a decade, there is a lot of supporting software.

– e. g. GAM

- Restricts the choice of response distributions.
 Too restrictive ??? Debatable.
- Links can be supplied by the user.

The Future - Predicting Ranges

- Anybody can predict the future
- It is harder to make the right prediction
- How much prediction error should be tolerate?
- Determined by well thought out estimates of the prediction error.

- Verified by back testing with P-P plots

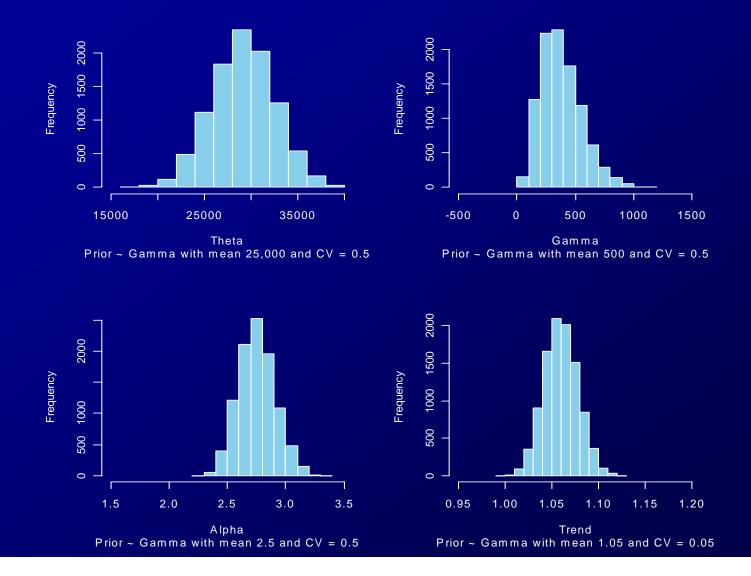
Back to Example 2 Parameter Uncertainty and the Gibbs Sampler

- Gibbs sampler is often used for Bayesian analyses.
- It randomly generates parameters in proportion to posterior probabilities.
- Parameters randomly fed into the sampler in proportion to prior probabilities.
- Accepted in proportion to

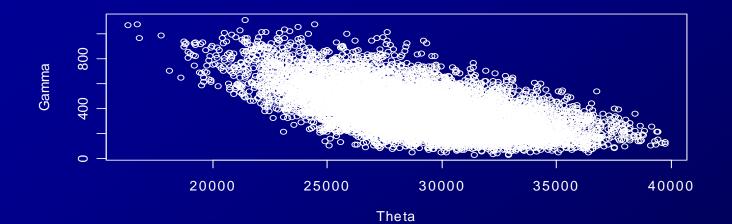
Likelihood Maximum Likelihood

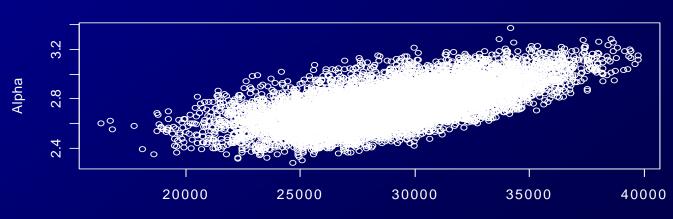
• Results in the posterior distribution.

Posterior Distribution of Parameters

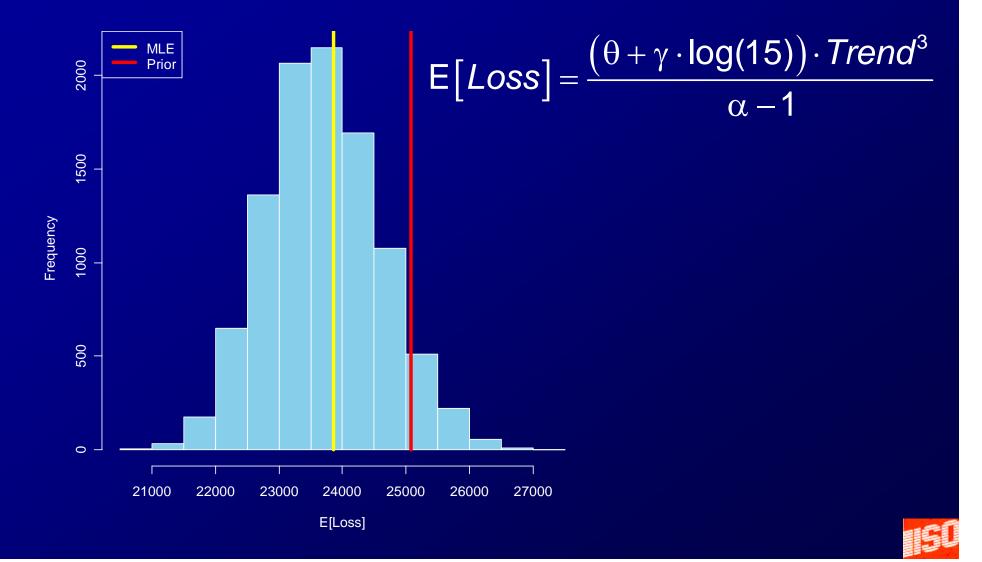


Posterior Distribution of Parameters





Posterior Distribution of E[Loss] for 2007 with log(Pop)=15



Methods are New, but What Else? The Data!

- Large data sets and more variables
- More variables are statistically significant in sample!
- Statistical significance does not mean "practical significance."
- Practical significance is best tested by graphical methods.
- Need to test "out of sample."

Software – An incomplete list

PC SAS

- SAS Enterprise Miner (JMP for Graphics)
- R, the examples and graphics for this talk were done using R.
- S-Plus (similar to R)
- Statistica
- SPSS

Concluding Remarks

- Most of the buzz in predictive modeling has to do with pricing applications.
- Other insurance applications
 - Loss Reserving
 - Fraud detection
 - Premium Audit
- What to do with ranges of estimates?
 - Accounting issues e.g. loss reserve risk margins

