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Predictive Modeling is Not New!

• Traditional actuarial responsibility
• Predict the losses per unit of exposure for 

next year
• Involves trending, loss development and 

credibility 



A CAS Midlife Example

• Xij = Loss per unit of exposure 
– Construction class i
– Protection class j

• Model Xij = ai + bj

• Choose ai and bj so that 

is minimized.
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Look at the Normal Equations

• “Unbiased in the Aggregate” - From Bailey 
“Insurance Rates with Minimum Bias” (PCAS 1963)

• Bailey solves for the ai’s and bj’s iteratively
• SAS Proc GLM (70’s) solves with matrix algebra 
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Introduce “What’s New” with an Example

• X ~ lognormal with μ = 5 and σ = 2
• Two ways to estimate E[X] (= 1,097)

• Straight Average –
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Which Estimator is Better?  
EN[X] or EL[X]?

• Straight Average, EN[X], is simple.
• Lognormal Average, EL[X] is complicated.

– But derived from the maximum likelihood 
estimator for the lognormal distribution

• Evaluate by a simulation
– Sample size of 500
– 2,000 samples

• Look at the variability of each estimator



Results of Simulation
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Lesson from Example 1

• Knowing the distribution of the observations 
can lead to a better estimate of the mean!

• Actuaries have long recognized this.
– Longtime users of robust statistics

• Calculate basic limit average severity
• Fit distributions to get excess severity



Fitting Multivariate Models by
Direct Maximum Likelihood Estimation

• Most statistical software packages have 
generic optimizers
– Excel “Solver”
– R “optim”

• Use to solve for maximum likelihood



Example 2 – Pareto Distribution

• Model 1 - Scale = θ⋅Trend(Year – 2004)

• Model 2 - Scale = (θ+γ⋅log(Pop))⋅Trend(Year – 2004)

• Parameters to be estimated
– Trend, α, θ, γ

• Claim severity “data” taken from various cities 
over the years 2004-2007.
– Simulated from known model
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Parameter Estimates
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Plot of Expected Loss
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Plot with Actual Loss
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Is the log(Pop) Term
Statistically Significant?

• Use the likelihood ratio test
– L(θ2,α2,Trend2,γ2) = Log Likelihood for Model 2
– L(θ1,α1,Trend1) = Log Likelihood for Model 1

• 2⋅(L(θ2,α2,Trend2,γ2) – L(θ1,α1,Trend1))~χ2(1)

• P-Value for test = 0.034
– Significant at 0.05 level, but not at 0.01 level 



Test Goodness of Fit with P-P Plots
• Calculate percentile, pi, of each data point

• Plot against expected percentiles

• Straight 45o line indicates a good fit
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Fit should be good – I knew the model



Lesson From Example 2

• Maximum likelihood is practical for 
multivariate models with today’s PCs with 
the right software installed!
– SAS, R and others.
– Personal best – 20 parameters on a loss 

reserve model



Generalized Linear Models

• Generalization of the “General Linear Model”
– The General Linear Model 

• Least-squares analysis of continuous and categorical 
variables.

• I first encountered it in SAS in late 70’s.

• First book – 1989, McCullagh and Nelder
• Latest book – Good introduction for actuaries

– Generalized Linear Models for Insurance Data
• De Jong and Heller  



Properties of GLM’s

• Efficient maximum likelihood estimation for a 
specific (but broad) class of distributions.

• For most common problems
– Convergence takes a single digit # of iterations
– For generic maximum likelihood optimizers it 

takes a triple digit number of iterations



Properties of GLM’s
• Link function - g  (Monotonic and smooth)

– Let μ be the mean of the independent variable

( ) 0
1

n

i i
i

g x
=

μ = α + α ⋅∑

g(μ) = log(μ/(1-μ))logit
g(μ) = log(μ)log
g(μ) = 1/μ2Inverse squared
g(μ) = 1/μInverse
g(μ) = μIdentity

Some Common Links



Properties of GLM’s
• Distribution Function (with mean μ)

– Variance of response distribution is a function of μ
– Variance function is determined by the distribution

1/σ2Normal
μPoisson

μ(1+κμ)Negative Binomial
μ3/σ2Inverse Gaussian
μ2/νGamma

VarianceDistribution

Some Common Distributions



Example 3 – Property Claim Size

• Construction
– Frame, Masonry, and Fire Resistive

• Protection 
– 1,2, …, 10 with 1 being the best protection

• Amount of Insurance



Properties of Simulated Data

1e+05 2e+05 3e+05 4e+05

0
20

00
00

40
00

00
60

00
00

80
00

00
12

00
00

0
S c a tte r  P lo t o f C la im  S ize s

True  M ean

C
la

im
 S

iz
e



Model 1
log(μ) = α0+classi+α1⋅log(prot)+α2⋅log(aoi)
Call:
glm(formula = z~cons+log(prot)+log(aoi),family = Gamma(link="log"))

Coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)    8.674263   0.155404   55.82   <2e-16 ***
consMasonry -0.204571   0.013600  -15.04   <2e-16 ***
consResistive -0.913219   0.013648  -66.91   <2e-16 ***
log(prot)      0.380237   0.007967   47.73   <2e-16 ***
log(aoi)       0.235316   0.012365   19.03   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01



Model 1
log(μ) = α0+classi+α1⋅log(prot)+α2⋅log(aoi)

• Is the model linear in log(prot) and log(aoi)?
• Test with Partial Residual Plots

• The plots should be distributed about a 
straight line with slope αi
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Partial Residual Plot for log(aoi)
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Partial Residual Plot for log(prot)
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Dealing with Nonlinear Effects
• Generalized additive model (GAM)
• Allows a spline to replace the linear term
Family: Gamma 
Link function: log 

Formula:

z ~ cons + s(log(prot)) + log(aoi)

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)    9.09303    0.14133   64.34   <2e-16 ***
consMasonry -0.20656    0.01240  -16.66   <2e-16 ***
consResistive -0.91135    0.01244  -73.23   <2e-16 ***
log(aoi)       0.24568    0.01128   21.79   <2e-16 ***

Approximate significance of smooth terms:
edf Est.rank F p-value    

s(log(prot)) 6.238        8 229.9  <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



Plot of the Spline
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Commentary on GLM

• GLM’s represent a significant advance over 
the normal/least squares paradigm.
– Based on maximum likelihood estimation

• Since it has been around for over a decade, 
there is a lot of supporting software.
– e. g. GAM

• Restricts the choice of response distributions.
– Too restrictive ???  Debatable.

• Links can be supplied by the user.



The Future - Predicting Ranges

• Anybody can predict the future
• It is harder to make the right prediction
• How much prediction error should be 

tolerate?
• Determined by well thought out estimates 

of the prediction error.
– Verified by back testing with P-P plots



Back to Example 2
Parameter Uncertainty
and the Gibbs Sampler

• Gibbs sampler is often used for Bayesian analyses.
• It randomly generates parameters in proportion to 

posterior probabilities.
• Parameters randomly fed into the sampler in 

proportion to prior probabilities.

• Accepted in proportion to

• Results in the posterior distribution.  

Likelihood
Maximum Likelihood



Posterior Distribution of Parameters
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Posterior Distribution of Parameters
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Posterior Distribution of  
E[Loss] for 2007 with log(Pop)=15
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Methods are New, but What Else?
The Data!

• Large data sets and more variables
• More variables are statistically significant in 

sample!
• Statistical significance does not mean “practical 

significance.”
• Practical significance is best tested by graphical 

methods.
• Need to test “out of sample.”



Software – An incomplete list

• PC SAS
• SAS Enterprise Miner  (JMP for Graphics)
• R, the examples and graphics for this talk 

were done using R.
• S-Plus  (similar to R)
• Statistica
• SPSS



Concluding Remarks

• Most of the buzz in predictive modeling 
has to do with pricing applications.

• Other insurance applications
– Loss Reserving
– Fraud detection
– Premium Audit

• What to do with ranges of estimates?
– Accounting issues e.g. loss reserve risk 

margins


