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Why analyze the variability of claim liabilities?

ASOP 43 
effective 
Sep. 1, 2007

“The actuary should consider the uncertainty associated with the 
unpaid claim estimate.”

Actuary not required to, nor prohibited from, measuring uncertainty

“The actuary should consider the types and sources of uncertainty.”
“May include model risk, parameter risk, and process risk.”

NAIC Actuarial opinions are produced on a “reasonableness” standard
Variation from the “best estimate” is the issue

Actuarial Opinion Summary (AOS) includes focus on ranges

SEC Require public companies to discuss reserve uncertainty in 10-K 
filings
Increasing pressure…hand-waving rationale will soon be inadequate

Rating 
Agencies

Capital adequacy analyses usually assume reserve shortfalls
Management is expected to consider more than just the best estimate

Solvency II Technical Provisions – amounts set aside to fulfil obligations 
towards policyholders and other beneficiaries; includes a risk margin
Solvency Capital Requirement (SCR) –capital that enables 
absorption on significant unforeseen losses and gives reasonable
assurance to policyholders (0.5% probability of ruin over a one year 
timeframe)



© 2007 Towers Perrin 5

ASOP 43 includes various definitions of “estimate”

Unpaid Claim Estimate – “The actuary’s estimate of the obligation for future 
payment resulting from claims due to past events”

Scope of the Unpaid Claim Estimate should identify its intended measure, 
examples of which include

Mean, median, mode, or specific percentile
High estimate, low estimate
Actuarial Central Estimate – “An estimate that represents an expected 
value of the range of reasonably possible outcomes.”

— May not include all conceivable outcomes, e.g., “extreme events 
where the contribution of such events to an expected value is not 
reliably estimable.”

— May or may not be the result of a probabilistic/statistical analysis

ASOP 43 deems the terms best estimate and actuarial estimate as 
insufficient identifiers of the unpaid claim estimate’s intended measure
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The prediction error of that point estimate
can arise from three basic sources

Your estimate will differ from the average
value of all the potential estimates that
your algorithm might produce 
(Parameter Risk)
The average value of all the potential 
estimates from your algorithm might                    
not coincide with the “true mean” of the 
random variable being estimated (Model Risk or Bias)
Ultimate future obligations will undoubtedly differ from their own true 
mean (Process risk)

A probabilistic point estimate of the ultimate value of future claim 
obligations is a prediction of the mean (or another “central tendency”: 
median, mode) of that random variable from a given algorithm

Booked reserves are estimates

Range of Reasonably 
Likely Outcomes

Range of 
Point Estimates

The green and magenta distributions represent 
different actuarial reserving methods
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A “real life” analogy

Let’s say we want to predict the age of the next person, Brian, to walk 
through the door

If we knew the actual mean age of all CANE attendees, that would be our 
estimate

That estimate will be “off the mark” because Brian’s age will be different 
from the actual/true mean (Process Risk)
Nevertheless, the mean, if known, would be our best estimate

Since we don’t know the true mean age, let’s ask everyone in the room 
what their age is and take the average

That estimate will also be “off the mark” because, in addition to the 
above, the average age in this room will be different from the true 
CANE mean (Parameter Risk)
Furthermore, asking people in this room to divulge their ages may give 
us a biased – downward(!) – result (Model Risk)
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Several distinct types of risks are 
inherent in the estimation of claim liabilities

Eventual 
Outcome

Estimate of 
Expected 
Outcome

True Mean 
Outcome

Process Risk
Difference between 

actual costs and true 
mean

Parameter Risk
Variability due to fact 

that our model’s 
parameters are 

estimates

Model Risk
Variability due to fact 

that our model 
imperfectly represents 

reality

Total Risk

Our room’s average age 
could be different from the 

CANE mean

This room’s population may 
not be representative of the 
entire meeting population 
(or entirely forthcoming!)

The age of the next entrant 
will differ from the true 

CANE mean due to random 
variation

Estimation error
Difference between estimated mean and true mean
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Total Risk, aka Mean Square Error, is the
statistical equivalent of the Pythagorean Theorem

Accident Year i’s
Eventual 
Outstanding 
Liability

Estimate of Accident 
Year i’s Outstanding 

Liability given today’s 
information

Liability’s 
True 
Mean

Parameter Risk

“Explained Deviation”

Process Risk

“Unexplained Deviation”
Total Risk

aka, Mean Square Error (mse)

ErrorEstimationRisk Process
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A Risk by any other name …

The word “risk” can be ambiguous and confusing; for example
“Variance” or “standard deviation”
Value at Risk (VaR) which is a quantile (e.g., the 99.5th percentile)
Tail Value at Risk (TVar) which is the expected value of tail losses

Coefficient of Variation, or CV, is a popular measure of relative risk
CV(x)  =  StdDev(x)

Mean(x)
— StdDev(Ultimate Loss) = StdDev(Outstanding + Paid)

= StdDev(Outstanding) 
because paid loss is a scalar

— So the numerators of the CV(Ultimate Loss) and CV(Outstanding) 
are the same

Most of the popular stochastic methods estimate the risk of ultimate 
loss first, then back into the risk of outstanding loss
— Follow the deterministic method on which they are based
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Mack Method

Bootstrapping

Practical Method

Three stochastic methods in popular use today
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Mack Method: Overview

Mack Method derives formulas for the standard error of the liability 
projected by the chain ladder method

Towers Perrin recommends using the recursive formulas from Murphy’s 
1994 paper “Unbiased Loss Development Factors”

The formulas provide for process and parameter risk, separately and in 
total

The method can be extended to incorporate age-to-age factors other 
than the volume weighted average

Mack recommends fitting a normal or lognormal distribution to the mean 
and variance (or CV) of the liability to yield a distribution of liabilities

The variability of the tail beyond the triangle can be incorporated in 
various ways
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But first, Mack’s model and formula

These three assumptions comprise “the model” which forms the 
basis of Mack’s formulas (see his 1993 paper)

From those assumptions, Mack derives that

where

the “f-hats” are the weighted average link ratios, and the “C-hats”
are the chain ladder estimates of future loss for accident yr i.
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Mack Example

XYZ ABC Insurance Company
Paid Losses

AY/DY 1 2 3 4 5 6 7 8 9
1999 10,238     24,654     38,025     46,550     52,842     58,722     65,227     67,604     69,559     
2000 5,508       16,235     25,586     32,863     38,111     42,315     45,171     47,666     49,045
2001 7,374       20,620     34,220     43,438     50,898     55,475     58,367     60,943 62,706
2002 6,153       19,182     31,005     40,424     46,949     50,942     54,931 57,354 59,014
2003 7,253       25,066     40,134     51,063     58,376     64,144 69,166 72,218 74,307
2004 10,855     38,520     62,348     82,710     95,382 104,806 113,011 117,998 121,411
2005 10,313     34,341     51,110     65,632 75,688 83,166 89,677 93,634 96,343
2006 16,411     42,228     66,770 85,743 98,879 108,649 117,155 122,324 125,863
2007 21,234     63,281 100,059 128,491 148,177 162,818 175,564 183,311 188,614

sum below
diagonal 0 63,281 166,829 279,866 418,125 523,583 619,504 707,782 777,301

Total Ult= 846,861
LDFs 2.980 1.581 1.284 1.153 1.099 1.078 1.044 1.029 1.000
CDFs 8.883 2.981 1.885 1.468 1.273 1.158 1.074 1.029 1.000
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Mack Example

XYZ ABC Insurance Company
Paid Losses
Total Variance of Chain Ladder Projection, Each Accident Year

Accident 
Year 12 24 36 48 60 72 84 96 108
1999
2000 137,728
2001 841,057 1,086,801
2002 3,540,395 4,635,215 5,086,951
2003 665,924 5,515,915 7,073,998 7,742,360
2004 1,125,201 2,609,513 12,209,351 15,466,710 16,923,627
2005 3,419,436 5,389,037 7,430,518 15,317,689 18,231,588 19,680,224
2006 4,769,700 12,580,548 17,909,193 22,936,094 36,320,849 41,873,885 44,914,250
2007 50,150,681 133,218,960 227,546,190 304,630,553 370,111,398 447,776,706 492,460,032 522,519,845
Sum 50,150,681 140,722,079 255,259,323 349,048,948 436,068,529 647,762,497 751,833,825 811,554,968

Process variance and parameter variance are calculated 
separately and recursively using the Murphy formulas

Total variance is the sum of the those two
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Mack Output

XYZ ABC Insurance Company
Paid Losses

Ci,10 Ri

AY Ultimate O/S
Process 

risk
Parameter 

risk Total risk Process Parameter Total
CV of 

Ultimate
1999 69,559     -           -           -           -           
2000 49,045     1,379       284          239          371          0.206       0.173       0.269       0.008       
2001 62,706     4,338       828          633          1,042       0.191       0.146       0.240       0.017       
2002 59,014     8,071       1,931       1,166       2,255       0.239       0.144       0.279       0.038       
2003 74,307     15,931     2,319       1,538       2,783       0.146       0.097       0.175       0.037       
2004 121,411   38,701     3,178       2,612       4,114       0.082       0.067       0.106       0.034       
2005 96,343     45,233     3,748       2,373       4,436       0.083       0.052       0.098       0.046       
2006 125,863   83,635     5,662       3,585       6,702       0.068       0.043       0.080       0.053       
2007 188,614   167,380   19,858     11,321     22,859     0.119       0.068       0.137       0.121       

Total: 846,861   364,669   21,458   18,738   28,488   0.059       0.051     0.078     0.034     

Mack Variance Formulation CV of OS Loss

CVs of outstanding loss tend to “smile”

CVs of ultimate loss tend to “blow up”
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Mack Output

The Funnel of Doubt
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The farther away an accident year is from ultimate resolution, the 
more uncertain the estimate of its ultimate value.
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Mack VaR Estimates

Percentiles of the estimated outstanding liability can be estimated 
using an assumed probability distribution

99.5%
— Norminv(.995,364669,28488) = $438,048
— Loginv(.995,12.804,0.078)      = $444,462, ~1.5% higher
99.95%
— Norminv(.9995,364669,28488) = $438,048
— Loginv(.9995,12.804,0.078)      = $444,462, ~2.5% higher

Mack Method has been criticized for understating tail risk (GIRO
working party, July 2007)

XYZ ABC Insurance Company
Paid Losses

Ci,10 Ri

AY Ultimate O/S
Process 

risk
Parameter 

risk Total risk

Total: 846,861   364,669   21,458     18,738     28,488     

Mack Variance Formulation
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Mack: Summary

Advantages Disadvantages

Widely regarded in the industry

Founded in statistical theory

Works with chain-ladder 
eligible triangles

Can reflect tail variability

Data outliers can have a 
leveraged effect on the results

May over-parameterize the risk

A 10x10 triangle will estimate 
9 link ratios from 36 
observations

Tail risk may be understated, 
even when its assumptions are 
fully satisfied

It is fundamentally a 
regression method



© 2007 Towers Perrin 22

Mack Method

Bootstrapping

Practical Method

Three stochastic methods in popular use today
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Bootstrap Method: Overview

Bootstrapping is a simulation technique that generates empirical
probability distributions of complex functions
It can be useful in situations in which the variability of an estimated 
parameter (e.g., ultimate loss) can be difficult to determine analytically
It is based on the idea that a “might-have-been” historical dataset can be 
recast from the original dataset by sampling from the original dataset with 
replacement

The parameter of interest is estimated from each historical recast
The process is repeated many times to get a full distribution of the 
parameter

Sometimes it does not make sense to resample from the original data
An alternative bootstrap approach is to fit a model to the data and 
resample from the residuals (difference between your model of the 
data an the actual data value)
The residuals are considered to hold all the random noise information
The historical dataset is recast by adding noises to the fitted values 
that are randomly sampled from the residuals
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Bootstrap Method
Loss Development
XYZ ABC Insurance company
Paid Losses

Step 1: Observed cumulative historical data
Accident

Year 12 24 36 48 60 72 84 96 108
1999 10,238 24,654 38,025 46,550 52,842 58,722 65,227 67,604 69,559
2000 5,508 16,235 25,586 32,863 38,111 42,315 45,171 47,666
2001 7,374 20,620 34,220 43,438 50,898 55,475 58,367
2002 6,153 19,182 31,005 40,424 46,949 50,942
2003 7,253 25,066 40,134 51,063 58,376
2004 10,855 38,520 62,348 82,710
2005 10,313 34,341 51,110
2006 16,411 42,228
2007 21,234

ATA factors 2.980 1.581 1.284 1.153 1.099 1.078 1.044 1.029 1.000
CDFs 8.883 2.981 1.885 1.468 1.273 1.158 1.074 1.029 1.000

Step 2: Recast cumulative values
Accident

Year 12 24 36 48 60 72 84 96 108
1999 7,831 23,337 36,901 47,386 54,646 60,046 64,747 67,604 69,559
2000 5,521 16,455 26,018 33,411 38,530 42,337 45,651 47,666
2001 7,059 21,038 33,265 42,717 49,262 54,130 58,367
2002 6,644 19,799 31,306 40,202 46,362 50,942
2003 8,365 24,930 39,420 50,621 58,376
2004 13,668 40,734 64,408 82,710
2005 10,846 32,324 51,110
2006 14,170 42,228
2007 21,234
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Bootstrap Method
Loss Development
XYZ ABC Insurance company
Paid Losses

Step 3: Incremental historical data
Accident

Year 12 24 36 48 60 72 84 96 108
1999 10,238 14,416 13,371 8,525 6,292 5,880 6,505 2,377 1,956
2000 5,508 10,727 9,351 7,277 5,248 4,204 2,856 2,495
2001 7,374 13,246 13,600 9,218 7,460 4,577 2,892
2002 6,153 13,029 11,823 9,419 6,525 3,993
2003 7,253 17,813 15,068 10,929 7,313
2004 10,855 27,665 23,828 20,362
2005 10,313 24,028 16,769
2006 16,411 25,817
2007 21,234

Step 4: Incremental recast data
Accident

Year 12 24 36 48 60 72 84 96 108
1999 7,831 15,507 13,563 10,485 7,260 5,399 4,701 2,857 1,956
2000 5,521 10,933 9,563 7,393 5,119 3,807 3,314 2,014
2001 7,059 13,979 12,227 9,452 6,545 4,867 4,238
2002 6,644 13,156 11,507 8,896 6,159 4,581
2003 8,365 16,565 14,489 11,201 7,755
2004 13,668 27,066 23,674 18,302
2005 10,846 21,477 18,786
2006 14,170 28,058
2007 21,234
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Bootstraping Loss Triangles

A triangle of cumulative fitted values for the past triangle is obtained by backwards 
recursion on the most recent diagonal using chain ladder link ratios

A set of Pearson residuals is calculated from the fitted and actual data
The Pearson residuals attempt to normalize residuals across the columns

Each simulated sampling scenario produces a new “realization” of triangular data 
that has the same statistical characteristics as the actual data

Since each realization yields new ultimates based on new estimates of the LDF 
parameters, the Bootstrap Method without additional enhancements calculates 
only parameter risk

Our model calculates both parameter and total risk

Options
Our bootstrapping implementation can calculate tail volatility by employing 
curve fitting to each realization of average loss development factors
Bornhuetter-Ferguson option
Outlier observations can be restricted
The sampling of residuals can be restricted for the first development period
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Bootstrapping: Summary

Advantages Disadvantages

Easy to understand and explain

Commonly used in industry

Accommodates BF method

Facilitates the calculation of tail 
volatility

Data outliers can have a 
leveraged effect on the results

Method does not work well with 
negative loss development 
(due to underlying theoretical 
model)

Heteroskedasticity can yield 
wild results

Bootstrap can also understate 
tail risk, even when its 
assumptions are satisfied
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Mack Method

Bootstrapping

Practical Method

Three stochastic methods in popular use today
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Practical Method: Overview

The Practical Method – first published in 2002 by a working party of 
the UK Institute of Actuaries – takes a Monte Carlo approach to 
stochastic reserving

The Practical Method uses Monte Carlo simulation to estimate 
liability distributions based on the three most popular deterministic 
methods – Chain Ladder, Loss Ratio, and Bornhuetter-Ferguson

This method simulates age-to-age (ATA) factors and loss ratios as 
normal or lognormal random variables

Means and variances of those distributions are selected inputs
For BF method, LDFs can be “fixed” based on the ATA means, or 
“variable” based on the ATA simulations

Explicitly reflects process risk only
Parameter can be incorporated with some additional analysis
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Practical Method
Loss Development

XYZ ABC Insurance company
Paid Losses

Complete the triangle using random draws from parameters' assumed distributions
Accident

Year 12 24 36 48 60 72 84 96 108 Ult O/S
1999 10,238 24,654 38,025 46,550 52,842 58,722 65,227 67,604 69,559 69,559 0
2000 5,508 16,235 25,586 32,863 38,111 42,315 45,171 47,666 48,707 48,707 1,042
2001 7,374 20,620 34,220 43,438 50,898 55,475 58,367 60,744 61,954 61,954 3,586
2002 6,153 19,182 31,005 40,424 46,949 50,942 55,184 57,698 59,862 59,862 8,920
2003 7,253 25,066 40,134 51,063 58,376 63,269 66,890 68,761 70,478 70,478 12,102
2004 10,855 38,520 62,348 82,710 93,915 100,708 113,350 119,007 122,500 122,500 39,790
2005 10,313 34,341 51,110 67,588 77,486 83,657 96,560 100,820 102,121 102,121 51,011
2006 16,411 42,228 67,637 89,391 102,672 110,104 114,974 120,212 126,063 126,063 83,835
2007 21,234 66,040 104,952 133,027 151,933 167,329 177,918 188,734 194,857 194,857 173,623

ATA factors
Mean 2.980 1.581 1.284 1.153 1.099 1.078 1.044 1.029 1.000 373,908

Std Dev 0.471 0.061 0.040 0.016 0.014 0.032 0.013 0.009

1.26750 =norminv(rand(),mean,stdev)
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Practical: Summary

Advantages Disadvantages

Easy to understand and explain

Accommodates the three most 
popular actuarial deterministic 
methods

Can incorporate tail variability

Not as well known in the 
actuarial community

Does not explicitly measure 
parameter risk

The flexibility of a simulation model can be 
both an advantage and a disadvantage
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Mack Method

Bootstrapping

Practical Method

Three stochastic methods in popular use today

Hindsight Method
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Hindsight Method: Overview
Reported Loss Development Method -- Unpaid Loss Projection Errors
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Consists of testing the performance of past estimates of ultimate losses 
by comparing them to actual emergence with the benefit of hindsight

Uses actuarial central estimates from actual past reserve reviews; for 
older periods it is usually necessary to imitate current reserving methods 
to obtain past best estimates

Method is non-parametric; captures all sources of risk



© 2007 Towers Perrin 34

CANE April 2008
Table of Contents

Tail Volatility



© 2007 Towers Perrin 35

Tail Volatility

Many of the popular stochastic methods only measure risk to the 
edge of the triangle

Variability for development beyond the triangle – so called “tail 
volatility” – must be measured and incorporated separately

Mack 
Heuristic approach to tail variability in his 1999 paper

Bootstrap
England and Verrall (1998) only measure risk to the edge of 
the triangle

Practical
Assume you incorporate a tail in your deterministic analysis
For a stochastic simulation you will need to have some idea of 
the variability of that tail factor
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Example: Tail variability can be reflected with the 
Mack Method using the heuristic in his 1999 paper …

XYZ ABC Insurance Company
Paid Losses

AY/DY 1 2 3 4 5 6 7 8 9 Ult
1999 10,238     24,654     38,025     46,550     52,842     58,722     65,227     67,604     69,559     73,037
2000 5,508       16,235     25,586     32,863     38,111     42,315     45,171     47,666     49,045 51,497
2001 7,374       20,620     34,220     43,438     50,898     55,475     58,367     60,943 62,706 65,841
2002 6,153       19,182     31,005     40,424     46,949     50,942     54,931 57,354 59,014 61,964
2003 7,253       25,066     40,134     51,063     58,376     64,144 69,166 72,218 74,307 78,022
2004 10,855     38,520     62,348     82,710     95,382 104,806 113,011 117,998 121,411 127,482
2005 10,313     34,341     51,110     65,632 75,688 83,166 89,677 93,634 96,343 101,160
2006 16,411     42,228     66,770 85,743 98,879 108,649 117,155 122,324 125,863 132,156
2007 21,234     63,281 100,059 128,491 148,177 162,818 175,564 183,311 188,614 198,045

LDFs 2.980 1.581 1.284 1.153 1.099 1.078 1.044 1.029
CDFs 9.327 3.130 1.979 1.541 1.337 1.216 1.128 1.080 1.050

σk
2 1,835.79 91 54.80 9.82 8.71 52.43 9.43 1.69 16.823

σβ
2 0.02477 0.00051 0.00024 0.00005 0.00005 0.00034 0.00009 0.00003 0.00013
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Practical Method
Loss Development with Tail

The only thing new is that the tail factor is now simulated too

XYZ ABC Insurance company
Paid Losses

Complete the triangle using random draws from parameters' assumed distributions
Accident

Year 12 24 36 48 60 72 84 96 108 Ult O/S
1999 10,238 24,654 38,025 46,550 52,842 58,722 65,227 67,604 69,559 74,329 4,770
2000 5,508 16,235 25,586 32,863 38,111 42,315 45,171 47,666 48,456 50,572 2,906
2001 7,374 20,620 34,220 43,438 50,898 55,475 58,367 60,917 62,749 67,388 9,021
2002 6,153 19,182 31,005 40,424 46,949 50,942 53,745 57,740 60,126 62,296 11,353
2003 7,253 25,066 40,134 51,063 58,376 64,868 68,005 70,317 71,718 75,171 16,795
2004 10,855 38,520 62,348 82,710 93,351 103,425 110,016 113,893 118,202 123,615 40,905
2005 10,313 34,341 51,110 64,884 76,010 83,628 89,582 93,485 95,820 100,663 49,553
2006 16,411 42,228 66,138 86,723 100,295 110,679 112,473 116,807 120,615 124,426 82,198
2007 21,234 65,143 101,274 134,630 156,817 172,525 184,264 194,022 198,081 205,524 184,290

ATA factors
Mean 2.980 1.581 1.284 1.153 1.099 1.078 1.044 1.029 1.050 401,792

Std Dev 0.471 0.061 0.040 0.016 0.014 0.032 0.013 0.009 0.016

1.32936 =norminv(rand(),mean,stdev)
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Aggregation: combining lines
Means aggregate without much fuss:

E(X+Y) = E(X) + E(Y)
I.e., to get the aggregate mean, just aggregate the marginals

Variances aggregate without much fuss when the lines are independent 
(more precisely, uncorrelated)

Var(X+Y) = Var(X) + Var(Y)
I.e., to get aggregate variance, just aggregate the marginals, but only 
when the lines are uncorrelated

When the lines are correlated, there is an extra covariance term
Var(X+Y) = Var(X) + 2Cov(X,Y) + Var(Y)    (1)
— Covariance is to the formula for the variance of the sum of two 

random variables as the cross product term is to the square of a
binomial

Entire distributions aggregate without much fuss when the random
variable pairs are joint normally distributed

Otherwise, more advanced techniques are required
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Aggregation continued: correlation
Correlation scales the covariance of two lines by dividing by their 
standard deviations

Correlation is “standardized” covariance
Allows comparison of two lines of difference sizes

Such relationships between N lines of business are encapsulated in the 
covariance matrix and the correlation matrix

If you don’t make a mistake in building these matrices, they are 
always positive-semidefinite (you can take their “square root,” as 
standard deviation is the square root of variance)
Can be inverted only if positive-definite (cannot be “zero”)
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Correlation between two quantities measures 
the degree to which deviations from the mean 
move – or don’t move – in conjunction with each other

Given pairwise estimates of ultimates from two lines for I accident 
years, the strength to which the estimated ultimates “co-vary” can be 
measured by the sample correlation coefficient
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Simple Example

Line A is XYZ ABC Insurance Company Paid Loss
CV from Mack calculation without tail

Line B is a similar LOB in another state
CVs are similar
Correlation was previously calculated on the side

Covariance of the sum uses formula (1)
Then the standard deviation and CV are calculated

The smaller CV of the sum demonstrates the “diversification benefit”
Minimum CV = 0.058 when correlation = 0

Mean CV StDev Var

Line A 364,669    0.078        28,488      811,554,968
Line B 182,334    0.078        14,244      202,888,742

Correlation 20% Cov= 81,155,497

A+B 547,003    0.063        34,304      1,176,754,703

Outstanding Loss
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Aggregation continued: combining entire distributions

Correlation measures the average strength of the relationship 
between lines over the entire distribution

When is the correlation coefficient not enough?
When the strength of the relationship between two lines changes in 
different parts of their distributions
Example: Correlation between property lines might be higher in the 
tails of their distributions, which could be important to an actuary 
parameterizing a CAT contract

Ideally, a company writing N lines of business one would like the 
complete joint distribution of all N lines

It turns out that every joint distribution of N lines of business can be 
decomposed into N marginal distributions by virtue of an 
amalgamating function called a “copula”

Vice versa, given the marginal distributions of N lines of business, the 
joint distribution can be calculated with the help of an appropriate 
copula
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Copulas provide a convenient way to
express the aggregate distribution of several lines

Three popular copulas in actuarial use today are 
The Normal copula
The Student-t copula
The Gumbel copula

Copula required components (with the exception of Gumbel):
The marginal distributions of the individual lines
Correlations among these lines

The Gumbel copula is different from the Normal and Student-t
It does not need a complete correlation matrix
Association is expressed by a single parameter applying to all lines
Upper tail dependence is strong while lower tail dependence 
always equals 0
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The choice of the appropriate
copula is a matter of judgment 

The portfolio of liabilities can be stress-tested under 
varying copula assumptions
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With independent variables results are not correlated

Normal Copula -- 0% Correlation
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75% correlation: bad results in one line make it 
more likely to have bad results in the second line
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The relationship is even more 
pronounced with 95% correlation

Normal Copula -- 95% Correlation
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Runoff Risk vs. One-Year Risk

Answer: the variance of the estimate is the variance of the 
difference between the true ultimate value and the estimate 
today

The risk is that the estimate can change – up or down – as 
we runoff the claims to ultimate

Suppose you use the paid loss development method as your 
deterministic method for estimating ultimate loss

The result of the chain ladder calculations is a number, based 
on many other numbers that are fixed, historical values.

Isn’t that number a fixed scalar value?

In what sense does that number have “variance”?

Similarly, the one-year risk is that the estimate can change 
between now and 12 months from now
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Converting the established stochastic methods 
from runoff to one-year horizons

)0()1()1( ˆˆˆ
iJiJiJ CCC −≡Δ

Define the change in the estimate as 

Define the change in the noise as 

Define the calendar year mean square error (CYMSE) as the sum of 
two components: the variance arising from the change in noise plus the 
variance arising from the change in the estimate

The paper Uncertainty of the Claims Development Result in the Chain 
Ladder Method (2007) by Wuthrich, Merz, and Lysenko analyzes the MSE 
of this change based on Mack’s approach, but with a slightly stronger 
variance assumption
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Questions?
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