Compensation
insurance, Inc.

# Age As A Driver of Frequency and Severity of Workers Comp Claims 

Harry Shuford, PhD Practice Leader and Chief Economist<br>Southwest Actuarial Forum<br>Austin, Texas<br>June 4, 2007

## Key Findings

- Age is a factor in explaining trends in frequency and severity
- The significance of age on frequency has diminished.
- The significance of age on severity is essentially unchanged.
- Differences in severity by age can be explained by differences in
- wages
- claim durations
- lump sum payments
- injury diagnoses, and
- number of medical treatments
- Workers compensation claims of baby boomers made an impact on loss costs historically, but
- The major impact of an aging workforce has likely already occurred


## Frequency is Inversely Related to Age of Worker

Non-Fatal Injury and IIIness Rates By Age of Worker, Calendar Years 1994-2002

Source: BLS


## Impact of Age on Frequency

Non-Fatal Incidence Rates Involving Days Away from Work by Age Show Relationships Narrowing


Source: BLS

# Non-Fatal Incidence Rate Relativities Within Each Year Show Differences By Age Narrowing Since 1994 <br>  

Source: BLS

## Impact of Age on Frequency Trends

- Occupational mix/shift explains a portion
- Younger workers < 30\% managerial
- Older workers $\sim 35 \%$ managerial
- General shift toward managerial
- Suggests that age is not as significant going forward
- Suggests that as the baby boomers retire, younger workforce may not exert as much upward pressure on frequency trends


# Impact of Age on Indemnity Severity 

Average Paid+Case Indemnity Severities Reported at 18 Months By Age \& Accident Year



Average Paid+Case Indemnity Severity Relativities Show Relationships Maintained

## A "Model" of Claims Costs

Cost $=$ Price $\times$ Utilization

Utilization = Quantity and Mix

## Impact of Age on Indemnity Severity

Control for:

- "Price" - Differences in average weekly wage
- "Quantity and Mix" - Differences in duration and the percentage of claims receiving lump sum payments

Average Weekly Wage Increases With Age

Average Weekly Wage of Injured Workers,
Closed Claims at 60 Months, Accident Years 1996-1999


## Average Duration Is Longer for Older Workers

Average Days from Date of Injury to Closure, Closed Claims, Accident Years 1996-2003


## Paid Indemnity Severities at 60 Months After Adjusting for Wage, Duration, and Lump Sum Differences



| Paid Indemnity Severities at 60 Months |  |  |  |
| :---: | :---: | :---: | :---: |
| After Adjusting for Wage, Duration, and Lump |  |  |  |
| Sum Differences |  |  |  |
| Accident Years 1996-1999 |  |  | $\begin{gathered} \text { \% Diff } \\ 20-34 \text { vs. } \end{gathered}$ |
|  | 20-34 | 45-64 | 45-64 |
| Unadjusted Indemnity Severities | 6,100 | 11,300 | 85\% |
| Controlled for Wage Differences Portion Due to Wage Differences | 7,800 | 11,300 | $\begin{aligned} & 44 \% \\ & 33 \% \end{aligned}$ |
| Controlled for Wage Differences \& Duration Portion Due to Duration Differences | 10,300 | 11,300 | $47 \%$ |
| Controlled for Wage, Duration \& Lump Sum Differences Portion Due to Lump Sum Differences | 11,200 | 11,300 | $170$ |
| Total Portion Due to Wage, Duration \& Lump Sum Differences Remaining Portion Due to Age \& Other Factors |  |  | 3\% |

[^0]3\%

Impact of Age on Medical Severity

Average Paid+Case Medical Severities Reported at 18 Months By Age \& Accident Year


## Average Paid+Case Medical Severity Relativities Show Relationships Maintained



## Impact of Age on Medical Severity

Control for:

- "Mix" - Differences in diagnosis mix
- "Quantity" - Differences in number of treatments
- "Price" - Differences in price of medical services


# Rankings of Top 10 Lost-Time Claim Diagnoses 

1996-2003

| Ages 20-34 |  |
| :---: | :--- |
| 1 | SPRAIN LUMBAR REGION |
| 2 | LUMBAR DISC DISPLACEMENT |
| 3 | CARPAL TUNNEL SYNDROME |
| 4 | LUMBAGO |
| 5 | CERVICALGIA |
| 6 | LOWER LEG INJURY NOS |
| 7 | SPRAIN OF ANKLE NOS |
| 8 | SPRAIN OF NECK |
| 9 | LUMBOSACRAL NEURITIS NOS |
| 10 | SPRAIN LUMBOSACRAL |

Ages 45-64

| $\mathbf{1}$ | CARPAL TUNNEL SYNDROME |
| :---: | :--- |
| $\mathbf{2}$ | LUMBAR DISC DISPLACEMENT |
| 3 | SPRAIN ROTATOR CUFF |
| 4 | TEAR MED MENISC KNEE-CUR |
| 5 | CERVICALGIA |
| 6 | SPRAIN LUMBAR REGION |
| 7 | ROTATOR CUFF SYND NOS |
| 8 | LUMBOSACRAL NEURITIS NOS |
| 9 | LUMBAGO |
| 10 | LOWER LEG INJURY NOS |

## Top 10 Diagnoses-7 in Common

## Lost-Time Claims

1996-2003

| Ages 20-34 |  |
| :---: | :--- |
| 1 | SPRAIN LUMBAR REGION |
| 2 | LUMBAR DISC DISPLACEMENT |
| 3 | CARPAL TUNNEL SYNDROME |
| 4 | LUMBAGO |
| 5 | CERVICALGIA |
| 6 | LOWER LEG INJURY NOS |
| 7 |  |
| 8 |  |
| 9 | LUMBOSACRAL NEURITIS NOS |
| 10 |  |

Ages 45-64

| 1 | CARPAL TUNNEL SYNDROME |
| :---: | :--- |
| 2 | LUMBAR DISC DISPLACEMENT |
| 3 |  |
| 4 |  |
| 5 | CERVICALGIA |
| 6 | SPRAIN LUMBAR REGION |
| 7 |  |
| 8 | LUMBOSACRAL NEURITIS NOS |
| 9 | LUMBAGO |
| 10 | LOWER LEG INJURY NOS |

## Top 10 Diagnoses-3 Different Minor Sprains vs. Repetitive Motion

Lost-Time Claims

| Ages 20-34 | 1996-2003 | Ages 45-64 |
| :---: | :---: | :---: |
| 1 | 1 |  |
| 2 | 2 |  |
| 3 | 3 | SPRAIN ROTATOR CUFF |
| 4 | 4 | TEAR MED MENISC KNEE-CUR |
| 5 | 5 |  |
| 6 | 6 |  |
| 7 SPRAIN OF ANKLE NOS | 7 | ROTATOR CUFF SYND NOS |
| 8 SPRAIN OF NECK | 8 |  |
| 9 | 9 |  |
| 10 SPRAIN LUMBOSACRAL | 10 |  |

Paid Medical Severities After Adjusting for Diagnosis Mix

Cumulative Paid Medical Severities Through Latest Evaluation


# Paid Medical Severities After Adjusting for Diagnosis Mix 

| Cumulative Paid Medical Severities Through Latest Evaluation Lost-Time Claims, Accident Years 1996-2003 |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 20-34 | 45-64 | $\begin{gathered} 20-34 \text { vs. } \\ 45-64 \end{gathered}$ |
| Unadjusted Medical Severities on Lost-Time Claims | 7,300 | 11,300 | 55\% |
| Controlled for Diagnosis Mix | 8,100 | 11,300 | 39\% |
| Portion Due to Diagnosis Mix |  |  |  |

## Impact of Age on Medical Severity

## Differences in Number of Treatments

|  | Average Treatments \& \% Price Differences Per Treatment, Accident Years 1996-2003 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | All Diagnoses |  |  |  |
| Overall Medical Severity \% Difference Older Over Younger: 55\% | Average Treatments Per Claim |  |  | Average Price Per Treatment |
| Treatment Service Group | 20-34 | 45-64 |  | \% Difference Older Over Younger |
| Pathology | 1.6 | $3.0)$ | 90\% |  |
| Complex Surgery and Anesthesia | 1.6 | 2.7 | 65\% |  |
| Hospital Services | 1.3 | 2.1 | 60\% |  |
| Surgical Treatments | 0.9 | 1.4 | 55\% |  |
| Drugs, Supplies and DME | 10.4 | 15.4 | 48\% |  |
| Other | 7.7 | 11.2 | 45\% |  |
| Physical Therapy | 34.9 | 49.9 | 43\% |  |
| Complex Diagnostic Testing | 0.8 | 1.1 | 42\% |  |
| Diagnostic Radiology | 3.3 | 4.7 | 40\% |  |
| Office Visits | 7.8 | 9.8 | 26\% |  |
| Emergency Services | 1.0 | 0.8 | -15\% |  |
| Total Treatments | 71.3 | 102.1 | 43\% |  |

## Total Number of Treatments By Diagnosis

Accident Years 1996-2003


## Paid Medical Severities After Adjusting for Diagnosis Mix \& Number of Treatments

Cumulative Paid Medical Severities on Lost-Time Claims Through Latest Evaluation


Paid Medical Severities After Adjusting for Diagnosis Mix \& Number of Treatments

Cumulative Paid Medical Severities on Lost-Time Claims Through Latest

| Evaluation, Accident Years 1996 | 003 20-34 | 45-64 | $\begin{gathered} \text { \% Diff } \\ 20-34 \text { vs. } \\ 45-64 \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Unadjusted Medical Severities on Lost-Time Claims | 7,300 | 11,300 | 55\% |
| Controlled for Diagnosis Mix <br> Portion Due to Diagnosis Mix | 8,100 | $11,30$ | $0 \% \text { - }$ |
| Controlled for Diagnosis Mix \& Number of Treatments Portion Due to Number of Treatments | 10,900 | 11,300 | $70$ |
| Total Portion Due to Diagnosis Mix \& Number of Treatments Remaining Portion Due to Age \& Other Factors |  |  | $\begin{aligned} & 1 \%-2 \\ & 6 \%-2 \end{aligned}$ |


|  | Average Treatments \& \% Price Differences Per Treatment, Accident Years 1996-2003 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | All Diagnoses |  |  |  |
| Overall Medical Severity \% Difference Older Over Younger: 55\% | Average Treatments Per Claim |  |  | Average Price <br> Per Treatment |
| Treatment Service Group | 20-34 | 45-64 | \% Difference Older Over Younger | \% Difference Older Over Younger |
| Pathology | 1.6 | 3.0 | 90\% | 1\% |
| Complex Surgery and Anesthesia | 1.6 | 2.7 | 65\% | 7\% |
| Hospital Services | 1.3 | 2.1 | 60\% | 0\% |
| Surgical Treatments | 0.9 | 1.4 | 55\% | -2\% |
| Drugs, Supplies and DME | 10.4 | 15.4 | 48\% | 17\% |
| Other | 7.7 | 11.2 | 45\% | 0\% |
| Physical Therapy | 34.9 | 49.9 | 43\% | 0\% |
| Complex Diagnostic Testing | 0.8 | 1.1 | 42\% | 1\% |
| Diagnostic Radiology | 3.3 | 4.7 | 40\% | 4\% |
| Office Visits | 7.8 | 9.8 | 26\% | 2\% |
| Emergency Services | 1.0 | 0.8 | -15\% | 27\% |
| Total Treatments | 71.3 | 102.1 | 43\% | 8\% |

## Why Aging Boomers Matter to Workers Compensation

Age is a factor in claims costs:

## Indemnity

- Differences in average weekly wage and duration of claims account for most of the difference in indemnity severity across age cohorts


## Medical

- Differences in type of injury account for a modest portion of the difference in medical severity
- The key driver is markedly higher differences in the number of treatments within a diagnosis


## They're Related

- Greater levels of treatment undoubtedly account for the longer duration of indemnity payments for older workers


## Tracking Trends In Loss Costs

## In terms of loss costs-

Higher severity of claims by older workers tends to offset at least some benefits of lower frequency

## Differences By Age for Total Loss CostsHighest for Ages 35-44 In Latest Years



## Historically

## Boomers Made a Difference

Tracking Age Weighted Trends in Loss Costs

## Clarification

- The following are not actual measures of frequency, severity, or loss costs
- They are indexes based on estimated age-related differences observed in 2002
- Technically they indicate how loss costs in 2002 would change if the age composition of the labor force matched the indicated year
- They are a rough indication of the likely impact of the baby boomers on WC loss costs over time

Age Related Trends in Loss Costs Frequency \& Severity Indexes
(2002=1.000)


Age Related Trends in Loss Costs Total Loss Cost Index (2002=1.000)


## Boomers Made a Difference Historically

 Will They Continue to Make a Difference?Estimates for 2003-2050

Age Related Trends in Loss Costs Frequency and Severity Indexes
(2002=1.000)


## Age Related Trends in Loss Costs Total Loss Cost Index



## Tracking Age Related Trends In Loss Costs

The major impact of an aging workforce is likely behind us for two reasons:

1. Forecasts for the age distribution of the labor force show only small changes in the future.

## Derived Labor Force Share-Smaller Changes in the Future



Labor force share by age was derived by multiplying labor force participation rates for each age cohort by population for each age cohort. Forecasts of population are from Economy.com. Labor force participation rates by age were only available through 2006, so the 2006 values were used for future years.

## Derived Labor Force Share-Smaller Changes in the Future



Labor force share by age was derived by multiplying labor force participation rates for each age cohort by population for each age cohort. Forecasts of population are from Economy.com. Labor force participation rates by age were only available through 2006, so the 2006 values were used for future years.

## Derived Labor Force Share-Smaller Changes in the Future



Labor force share by age was derived by multiplying labor force participation rates for each age cohort by population for each age cohort. Forecasts of population are from Economy.com. Labor force participation rates by age were only available through 2006, so the 2006 Forecasts of population are from E
values were used for future years.

## Derived Labor Force Share-Smaller Changes in the Future



Labor force share by age was derived by multiplying labor force participation rates for each age cohort by population for each age cohort. Forecasts of population are from Economy.com. Labor force participation rates by age were only available through 2006, so the 2006 values were used for future years.

## Derived Labor Force Share-Smaller Changes in the Future



Labor force share by age was derived by multiplying labor force participation rates for each age cohort by population for each age cohort. Forecasts of population are from Economy.com. Labor force participation rates by age were only available through 2006, so the 2006 Forecasts of population are from E
values were used for future years.

## Derived Labor Force Share-Smaller Changes in the Future



Labor force share by age was derived by multiplying labor force participation rates for each age cohort by population for each age cohort. Forecasts of population are from Economy.com. Labor force participation rates by age were only available through 2006, so the 2006 values were used for future years.

## Derived Labor Force Share-Smaller Changes in the Future



Labor force share by age was derived by multiplying labor force participation rates for each age cohort by population for each age cohort. Forecasts of population are from Economy.com. Labor force participation rates by age were only available through 2006, so the 2006 Forecasts of population are from E
values were used for future years.

## Derived Labor Force Share-Smaller Changes in the Future



Labor force share by age was derived by multiplying labor force participation rates for each age cohort by population for each age cohort. Forecasts of population are from Economy.com. Labor force participation rates by age were only available through 2006, so the 2006
values were used for future years.

## Derived Labor Force Share-Smaller Changes in the Future



Labor force share by age was derived by multiplying labor force participation rates for each age cohort by population for each age cohort. Forecasts of population are from Economy.com. Labor force participation rates by age were only available through 2006, so the 2006 values were used for future years.

## Tracking Age Related Trends In Loss Costs

The major impact of an aging workforce is likely behind us for two reasons:

1. Forecasts for the age distribution of the labor force show only small changes in the future.
2. There is very little difference in the frequency and severity levels of the 45-54 and 55-64 age cohorts. Currently baby boomers are 42-60 years old, so for the most part have already entered these age groups.

## Key Findings

- Age is a factor in explaining trends in frequency and severity
- The significance of age on frequency has diminished; significance on severity has been maintained
- Differences in severity by age can be explained by differences in
- wages
- claim durations
- lump sum payments
- injury diagnoses, and
_ number of medical treatments
- Workers compensation claims of baby boomers made an impact on loss costs historically, but the major impact of an aging workforce has likely already occurred

To review NCCI Research...


## Discussion/Questions?


[^0]:    Remaining Portion Due to Age \& Other Factors

