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Abstract: 

The purpose of this paper is to develop a theoretical framework within which the optimal reinsurance 
arrangement for catastrophic risks is explored and derived. In the model, it is assumed that the insurer 
values the stability of its underwriting results in purchasing reinsurance protection.  The optimal 
solutions to the model are obtained through numerical simulation and intend to provide justifications 
and explanations for the profile of reinsurance purchase that has been observed in practice.   
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1. INTRODUCTION 

Optimal reinsurance arrangement has been extensively studied in a series of papers 
from various perspectives.  Borch (1961) examined risk sharing between insurers through 
quota-share reinsurance arrangements.  Some of the recent studies have focused on the 
pricing and optimal design of excess-of-loss reinsurance contracts.  Cummins et al. (1999) 
developed a pricing methodology for index-based catastrophe loss contracts.  Gajek and 
Zagrodny (2004) derived optimal forms for stop-loss contracts when the insurer attempts to 
minimize the probability of ruin. 

The purpose of this paper is to develop a theoretical framework within which the optimal 
reinsurance arrangement for catastrophic risks is explored and derived. In the model, it is 
assumed that the insurer values the stability of its underwriting results in purchasing 
reinsurance protection.  The optimal solutions to the model are obtained through numerical 
simulation and intend to provide justifications and explanations for the profile of 
reinsurance purchase that has been observed in practice.  From over 4,000 catastrophe 
reinsurance layers transacted during the period 1970-1998, Froot (2001) observed that: (i) 
reinsurance contracts had been more often used to cover lower catastrophic risk layers 
(which have higher probability to be penetrated) rather than more severe but lower-
probability layers; and (ii) reinsurance contracts had been priced in such a way that higher 
reinsurance layers had higher ratios of premium to expected losses.   

The rest of the paper is organized as follows:  The next section sets up a model of 
reinsurance purchase from an insurer’s standpoint and derives the optimality conditions.  
Section 3 numerically solves the model, specifies the simulation methodology and discusses 
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the results.  Section 4 assumes a discrete loss distribution and derives the analytical solutions 
for the optimal design of reinsurance contract.  Section 5 suggests possible ways to modeling 
the reinsurer’s behavior and endogenizing the rule of reinsurance pricing.  Section 6 
concludes. 

2. THE MODEL 

This section introduces a simple model in which the reinsurance-pricing rule is 
exogenously given in deriving the system of optimal solutions for the insurer, while Section 5 
discusses modeling of the reinsurer’s behavior and choices.  Specifically, the model makes 
the following simplifying assumptions:  

(i) The reinsurance market consists of one insurer and one reinsurer;  

(ii) The reinsurer sets its own pricing  rule which may be a function of its own 
cost of capital;  

(iii) The insurer has perfect information about the reinsurance pricing rule, and 
chooses the reinsurance layer for full coverage; and  

(iv) The insurer and reinsurer have access to the same information on the 
underlying loss distribution. 

The Reinsurer.  The reinsurer underwrites an excess-of-loss contract i  for catastrophic 
risks (shortened as “cat” hereafter) and assumes a certain portion of cat losses arising from 
the underlying insurance contracts.  The reinsurance layer is defined by [ a , b ], where a  
denotes the insurer’s retention and b  the retention plus limit.  Cat losses occur with a 
continuous distribution function )(xF , where ),0[ ∞∈x .  For the reinsurer, the expected 
value and variance of loss payment from underwriting contract  i  is given, respectively, as  
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It is further assumed that loss payments under a marginal reinsurance contract is 
stochastically independent of those under all other reinsurance contracts in the existing 
portfolio held by the reinsurer.  Naturally, the assumption of stochastic independence among 
risks in the reinsurer’s portfolio may not be realistic1, as a cat event may impact on many of 
the risk exposures under different contracts covered by the reinsurer.  This assumption, 
however, will simplify the following exposition and simulation but not change the nature of 
the results to be derived.  Based on the Capital Asset Pricing Model, the reinsurance pricing 
formula can be formulated as: 
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i baxLVarbaxLEbaxZ ⋅+= γ                                    (3) 

 

where Rγ  ( 0>Rγ ) is the price of risk determined by the reinsurer’s existing portfolio, and 
mathematically, it can be expressed as ][/])[( )()()( i

R
i

R
i

RR LVarLEZ −=γ , where )(i  refers to all 
risks excluding contract i .  As stated in Borch (1982), one advantage of this formulation is 
that it ensures the additive property of reinsurance contacts so that the price of risk will not 
be altered by the addition of stochastically independent risks.  There are several issues that 
are worthy of comments.  First, the risk load as specified in (3) does not explicitly take into 
account parameter uncertainty associated with the underlying loss distribution,  nor is it 
directly modeled as a function of the “down-side” variance that may seem to be the more 
reasonable and appropriate one than the total variance.  Nevertheless, the formulation in (3) 
has been supported by many empirical findings on reinsurance pricing (for instance, Kreps 
and Major 2001, Lane 2004).  Second, , Kreps (2004) suggested a probability-weighted 
average of the deviations of loss from its expected value multiplied by a “riskiness leverage 
ratio” as a more general form for risk load.  The riskiness leverage ratio can be a function of 

                                                 
1 The correlation among the risk exposures in a reinsurer’s portfolio was analyzed via copula approach in 
Venter (2003). 



On Optimal Reinsurance Arrangement 
 

4 Casualty Actuarial Society Forum, Spring 2005 

higher moments of loss function.  As pricing reinsurance contracts is not the main focus of 
this paper,  further studies should explore optimal reinsurance arrangements using other 
forms of risk load specifications.  For the simplicity of exposition, the subscript i  will be 
dropped from all following mathematical expressions.   

The Insurer.  The insurer knows about the reinsurer’s pricing rule, and purchases the 
optimal reinsurance layer, or makes the optimal choices about a  and b .  By choosing a  and 
b , the insurer attempts to minimize the sum of the reinsurance premium the insurer pays for 
reinsurance coverage and the expected loss payment net of reinsurance recovery.  Besides, 
the objective function of the insurer also includes a penalty term for the variation of net loss 
payment.  The penalty for loss variations is assumed to be a function of the variance of net 
loss payment.  Note that this paper abstracts from the consideration of probability ruin in 
deriving optimal reinsurance arrangements.  To summarize, the insurer attempts to minimize 
the following objective function subject to the budget constraint (denoted by B ) on 
reinsurance purchase, 
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and Sγ  ( 0>Sγ ) measures the extent to which the insurer values the stability of its 
underwriting results, or the degree of its risk aversion.  Since ∫

∞
=+

0
)(][][ xxdFLELE SR , for a 

given loss distribution,  the amount of gross insurance premium received under the 
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underlying insurance contacts can be fixed if the insurance contracts are priced so that the 
expected loss ratio remains roughly constant over time.  As such, the problem stated in (4) 
would be equivalent to a problem of maximizing the expected net income minus some 
function of its variance to account for the associated uncertainty. 

Optimal Conditions.  Maximizing (4) with respect to a  and b  yields the following first-
order conditions  
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In equations (5) and (6), ∫
b

a
xdF )(  and ∫

∞

b
xdF )(  are the exceedence and exhaustion 

probabilities, respectively.  Complicated at first glance, equations (5) and (6) virtually state 
that by choosing the reinsurance coverage, the insurer attempts to achieve the optimal 
balance between the reduction in the cost of loss variation because of reinsurance coverage 
and the price for shifting such variation to the reinsurer.  Many of the terms in (5) and (6) 
describe the deviations of loss payment from the expected values in each interval for the 
insurer or the reinsurer.  For instance, ][ RLEab −−  is the amount of loss payment by the 
reinsurer and ][ SLEabx −+−  is the amount of loss payment by the insurer when the layer 
limit is exceeded, in excess of their respective expected loss payment.  To the extent that the 
parameters Rγ  and Sγ  measure the cost of reinsurance and insurance capital, respectively, 
the terms multiplied by these two parameters should be interpreted as the cost of such 
deviations.   

Note that 0/ <∂∂ aZ  and 0/ >∂∂ bZ , which are quite intuitive in that higher reinsurance 
coverage demands higher price.  However, it is not obvious how the reinsurance premium 
responds to the retention while holding the layer limit constant.  Substituting la +  for b  in 
equations (3), and differentiating the resulting equation with respect to a  gives 
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where l  denotes the layer limit.  The sign of aZ ∂∂ /  is uncertain, which depends on the layer 
boundaries and Rγ . 

3. NUMERICAL SIMULATION 

Methodology 

 While it is difficult to obtain the closed form solutions to the equations (5) and (6), 
the optimal values of a  and b  can be numerically solved for through simulation.  In the 
simulation, it is assume that the insurer has no budget constraint on purchasing reinsurance.  
For illustrative purposes, the cat loss is assumed to be described by a Gamma distribution 
with the following probability density function: 
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Figure 1. Gamma Distribution 

 

In Figure 1, the probability density curves are plotted for several combinations of α  and β .  
As the benchmark case in the simulation, 1=α  and 1=β , and (8) then is simplified to 

xexxf −⋅=)(  with mean and variance both equal to 2.  For the benchmark case, the 
reinsurance premium and the value of the insurer’s objective function, as functions of a  and 
b , are plotted respectively in two three-dimensional figures (see Figures 2 and 3).  In plotting 
the two figures, 2=Rγ  and 2=Sγ  are assumed.   

To obtain the numerical solutions to equations (5) and (6), the following simulation 
procedures are used: 

(i) Specify the values of Rγ  and Sγ  and choose the initial values of a  and b  
(which are denoted by 0a  and 0b , respectively); 
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Figure 2. Reinsurance Premium as a Function of a and b (assuming 2=Rγ , 2=Sγ  

)10,0(),,0( ∈∈ bba ) 

 

 

Figure 3.  The Value of the Insurer’s Objective Function (assuming ,2=Rγ  2=Sγ , 
)10,0(),,0( ∈∈ bba ) 
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(ii) Hold 0b  constant, and with 0a  as the starting value, apply the Newton’s 
iteration method to find the “optimal” value of a  (denoted by 1a ) that 
satisfies Equation (5); 

(iii) Holding 1a  constant, and with 0b  as the starting value, apply the Newton’s 
iteration method to find the “optimal” value of b  (denoted by 1b ) that 
satisfies  Equation (6); and 

(iv) Repeat (ii) and (iii) a number of times (usually 50 times would be sufficient) 
until the differences between ta  and 1+ta , and between tb  and 1+tb  are 
sufficiently small.  Then 1+ta  and 1+tb  are the optimal solutions to (5) and (6) 
(denoted by *a  and *b ). 

 

Results 

 

Table 1. Numerical Simulation Results with 2=Rγ , 2=Sγ  

Parameter Values, Expected Value and Variance of Underlying Loss Distribution
(1) (2) (3) (4)

alpha   beta   E(x) Var(x)
0 1 1 1
0 2 2 4
1 1 2 2
2 1 3 3

Simulation Results
(5) (6) (7) (8) (9) (10) (11) (12)
a b limit Z E(Lr) Obj ROL Z/E(Lr)

1.018 2.611 1.594 0.806 0.288 2.180 0.506 2.798
2.035 5.222 3.187 2.648 0.576 6.719 0.831 4.597
1.805 3.813 2.008 1.531 0.497 4.367 0.762 3.078
2.631 4.982 2.351 2.218 0.670 6.556 0.943 3.311  

 

The numerical simulation results are summarized in Table 1.  The optimal reinsurance 
layers are obtained through simulation for four sets of α  and β  values.  In the table, the 
first two columns are the parameter values of α  and β .  Columns (3) and (4) are the 
expected value and variance of the cat loss distribution.  For the cases where 1=β , the loss 
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distribution is equi-dispersed, and over-dispersed when 1>β .  The simulated values of the 
layer boundaries and policy limit are given in columns (5)-(7), the rate-on-line (ROL) and 
ratio of premium to expected loss in columns (11) and (12).  Note that in the simulation, the 
budget constraint and the probability of ruin have been ignored, and the values of α  and β  
are chosen arbitrarily so that the implied probability distribution of cat losses does not 
mirror the ones forecasted by engineering cat models in reality. 

As the simulation results show,  for all the four cases as presented in Table 1, the insurer 
who aims to stabilize its book of business should optimally use reinsurance protection 
against risks of moderate sizes, but leave the most severe loss scenarios uncovered or self-
insured.  This result justifies the aggregate profile of reinsurance purchases observed in 
Froot (2001)2 .  Also, as observed from the simulation results, the insurer’s retention is set to 
be comparable with the expected value of ground-up cat losses under the underlying 
insurance contracts that are covered by the reinsurance treaty.  As compared with the 
benchmark case ( 1,1 == βα ), the insurer, at the optimum, should purchase higher retention 
and higher limit for the case 0=α , 2=β ,the distribution which has the same expected loss 
but is more dispersed.  The optimal layer in the latter case also has higher ROL and higher 
ratio of premium to expected loss.   

It may be helpful to look at how the optimal choices of the insurer change while varying 
the parameters of the loss distribution.  Table 1 reports the simulation results for the cases 
with different values of α  ( 2 1, 0,=α ), while holding β  constant at 1.  For the density 
function specified in (8), the value of α  determines the shape of the distribution; the 
coefficient of variation decreases with the value of α , even though the loss distribution 
remains equi-dispersed ( 1)(/)( =xExVar ).  The optimal choices of the reinsurance layer can 
be very sensitive to the chosen values of the model parameters.  With higher values of α , 
events of higher severity occur with larger probabilities(see Figure 1), and  the insurer should 
have more protection (as shown by higher limit of reinsurance layer) against more severe 
events.  On the other hand, the reinsurer would demand higher ROL and ratio of premium 
to expected loss for worse cat loss scenarios.  Similar conclusions can be drawn by 
comparing the simulation results for different values of β ; for instance, comparing the 
results between the cases with 1=β  and 2=β  (while 0=α ).  To the extent that higher 
                                                 
2 As observed in Froot (2001, p. 536), “reinsurance coverage as a fraction of exposure is high at first (after 
some small initial retention) and then declines markedly with the size of the event, falling to a level of less than 
30% for events of only about $8 billion (the author’s note: $8 billion refers to the industry-wide loss). 
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reinsurance layers are more vulnerable to prediction errors from engineering models, 
parameter uncertainty may well explain high prices for low-probability layers as noted in 
Froot (2001).   

 

Discussion 

Varying the value of Rγ .  Varying the value of Rγ  between 2 and 10, Figure 4 plots the 
optimal values of a  and b .  The figure shows that when the price per unit of risk charged 
by the reinsurer increases relative to that by the insurer, or equivalently, as SR γγ /  increases, 
less reinsurance coverage will be purchased in terms of lower b  and higher a  and thus 
lower policy limit.  

 

Figure 4. Retention and Limit As Reinsurance Load Changes (assuming 2=Sγ ) 
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4. DISCRETE LOSS DISTRIBUTION: AN EXAMPLE 

 

 
 

Table 2. Discrete Loss Distribution 

 

 

 

This section examines the optimal reinsurance arrangement when the loss distribution is 
discrete.  Assume that there are a finite number of states for cat losses.  Table 2 gives a 
simple discrete distribution of cat losses, where one of the following states of the world 
could occur: little or no occurrence (Scenario 1), moderate (Scenario 2), and most severe 
(Scenario 3).  For the loss distribution given in Table 2, it is assumed that 3210 sss <<≤ , 

0321 ≥≥≥ fff  and 1321 =++ fff .  For the simplicity of illustration, further set 01 =s  (no 
cat loss) and write 321 1 fff −−= .  There could be three choices regarding the sizes of 
retention and limit relative to loss severities: (i) 320 sbsa ≤≤≤≤ , (ii) 20 sba ≤≤≤ , and (iii) 

32 sbas ≤≤≤ .  For this discrete distribution, it can be mathematically shown that  

 

1. the optimal solutions always come from (i), or at the optimum, 
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2. the layer limit is independent of the probability with which each event occurs, 

and satisfies that 
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Scenario 1 Scenario 2 Scenario 3
Total Cat Loss s1 s2 s3

Probability f1 f2 f3
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3. The minimum (optimal) value of the insurer’s value function is equal to the rate 
on line of the reinsurance contract. 

 

The proof is provided in the Appendix.   

The optimal solutions satisfy 3
*

2
*0 sbsa <<<< , provided that the ratio of Rγ  to Sγ  

does not take extreme values.  This implies that it is advisable for the insurer to purchase 
some reinsurance protection against both moderate and most severe cat loss scenarios rather 
than against any one particular scenario only, even though the coverage for any one of the 
scenarios in the latter case may be larger than that in the former case.  Further, the insurer 
has more reinsurance protection against cat losses when 320 sbsa ≤≤≤≤ .  As shown in the 
Appendix, the optimal reinsurance arrangement for (i) has the highest layer limit as 
compared with the other two choices.  It is also observed that the comparative static results, 

0/* <∂∂ Rb γ  and 0/* >∂∂ Ra γ , are consistent with the simulation results obtained for the 
continuous loss distribution (see Figure 4).   

At the optimum, )/( ***
min abZObj −= , or in words, the objective function has its 

minimum value equal to the ratio of reinsurance premium to the layer limit, or the “rate on 
line”.  As compared, the simulation results for the continuous loss distribution (see Table 1) 
do not imply such a relationship between the two elements. 

However, it is not intuitively clear why the optimal layer limit is independent of the 
occurrence probability of each cat loss scenario. 

5. THE VALUE OF Rγ  AND CONTINGENT CAPITAL CALLS 

Mango (2004) introduced a capital consumption methodology for pricing reinsurance 
contracts, which in essence uses the value of potential capital usage as the risk load.  Such 
potential access to surplus account is called contingent capital calls in that paper and other 
relevant studies.  The discussion in the previous sections has been focused on the situation 
where the insurer makes its optimal decisions on reinsurance purchase subject to the pricing 
rule of the reinsurer who has been assumed not to consequently respond to the optimal 
choices of the insurer.  In other words, the reinsurance pricing rule has been assumed 
exogenously given and fixed.  Since reinsurers are also profit maximizing firms just like 
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insurers, it is reasonable to assume that the reinsurer attempts to maximize the firm’s 
expected net income after adjusting for the capital costs in the unprofitable states.  For 
instance, using the methodology proposed in Mango (2004), the objective function of the 
reinsurer is formulated as: 

 

 ∫ ∫+

∞
⋅+−−+−−⋅

b

za b
RR xdFZabgxdFZaxgLVarMAX

R

)())(()())((][:γ
γ

,          (9) 

 

where Z  ( abZ −< ) is a function of a  and b  as formulated in (3), and the function )(⋅g  is 
the capital call charge function and convex so that 0)(' >⋅g , 0)(" ≥⋅g .  The condition that 

0)(" ≥⋅g  requires nondecreasing marginal cost of capital calls.  The reinsurer chooses the 
value of Rγ  to maximize the problem in (9), or maximize the risk load minus the cost of 
contingent capital calls. 

 

Figure 5. The Choice of Rγ  and the Value of the Reinsurer’s Objective Function 
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For a given reinsurance layer, a higher value of Rγ  necessarily implies a higher ratio of 
reinsurance premium to expected loss.  Figure 4 graphically shows that simply raising the 
value of Rγ  would influence reinsurance purchase by increasing the insurer’s retention and 
lowering the policy limit.  As a results, it may well be the case that the reinsurer’s objective 
function as specified in (9) is non-monotonic in Rγ .  The optimal value of Rγ  may be a 
function of the parameters of the underlying cat loss distribution and of the cost function of 
capital calls.  For instance, the cost of access to surplus account is assumed to take the 
following functional form 

 

2)( εεε ⋅+= cg ,                                 (10) 

 

where ε  ( 0≥ε ) is the amount of capital calls and c  ( 0>c ) is the rate at which the marginal 
cost of capital calls increases.  With higher values of c , the reinsurer would find it more 
costly to underwrite more severe cat events.  By assuming (10), Figure 5 graphs the 
trajectories of the value of (9) for ]10 ,2[∈γ  for 4=c , 5  and 8 , respectively.  For the case 
of 5=c , the value of (9) is maximized when Rγ  is around 6.25, while for 4=c  (or 8=c ), 
smaller (or larger) values of Rγ  always yield higher values of (9) when Rγ  is within the stated 
range.  Comparing the three curves in the figure would show:  when the marginal cost of 
capital calls increases relatively faster for the reinsurer, the reinsurer sets higher Rγ  and the 
insurer tends to purchase reinsurance protection for moderate losses only and leave higher 
layers uncovered. 

6. CONCLUDING REMARKS 

This paper has examined the optimal reinsurance arrangement for cat risks when the 
insurer values the stability of its underwriting results, subject to the reinsurance-pricing rule 
set by the reinsurer.  In the model, the optimal solutions for reinsurance coverage purchase 
are obtained through numerical simulation, and the analytical solutions derived for the case 
when the loss distribution is discrete.  Using the model results, the aggregate profile of 
reinsurance purchase observed for industry practice in previous studies is explained and 
justified.   
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As Froot and Posner (2000) stated, the risk pricing for cat reinsurance contracts is largely 
determined by the reinsurer.  The first author in his 2001 paper further found some evidence 
implying that reinsurers possess certain market power in the reinsurance market.  The 
general equilibrium model of reinsurance market was studied in Borch (1962), in which 
reinsurance capital market was assumed to be perfectly competitive and the pricing of quota 
share contracts were examined.  Future research should develop a conceptual framework in 
which the reinsurer’s behavior is systematically modeled and analytical solutions can be 
derived, and focus on the empirical measurement and determination of the cost of 
reinsurance capital in industry practice.   
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Appendix  

This appendix provides proof for the three statements made in Section 4 for the discrete 
distribution.  First, solve the maximization problem for each of the three cases (i) 

320 sbsa ≤≤≤≤ , (ii) 20 sba ≤≤≤ , and (iii) 32 sbas ≤≤≤ .  For instance, for case (i), the 
maximization problem can be written as 
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The optimal solutions for each case are given below: 
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Obviously, minObj  obtained in case (i) has the lowest value among all three cases.  
Therefore, the insurer’s objective function has its global minimum value when 

3
*

2
*0 sbsa <<<< .  Note that for the cases 20 sba ≤≤≤  and 32 sbas ≤≤≤ , there exist 

multiple solutions for a  and b , as only the layer limit ( ab − ), but not the limit boundaries 
( b , a ) individually, matters for the insurer’s value function.  It is also easy to observe that 
the optimal layer limit for case (i) is larger than those for the other two cases.   
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