
Stochastic Excess-of-Loss Pricing
within a Financial Framework

Doris Schirmacher, Ph.D., FCAS
Ernesto Schirmacher, Ph.D., FSA

Neeza Thandi, Ph.D., FCAS, MAAA

Abstract
This paper is aimed at the practicing actuary to introduce the theory of extreme values and
a financial framework to price excess-of-loss reinsurance treaties. We introduce the reader to
extreme value theory via the classical central limit theorem. Two key results in extreme value
theory are presented and illustrated with concrete examples. The discussion then moves on to
collective risk models, considerations in modeling tail events, and measures of risk. All these
concepts are brought together with the modeling of actual losses. In the last section of the
paper all previous elements are brought together with a financial framework for the pricing of
a layer of reinsurance. The cash flows between the insurance company and its equity holders
are modeled.

Keywords. Collective Risk Model, Experience Rating, Extreme Event Modeling, Extreme
Values, IRR, Large Loss and Extreme Event Loading, Monte Carlo Valuation, Reinsurance
Excess (Non-Proportional), Risk Pricing and Valuation Models, Simulation, Tail-Value-at-
Risk.

1 Introduction

The main goal of this paper is to give the practicing actuary some tools (such as

extreme value theory, collective risk models, risk measures, and a cash flow model)

for the pricing of excess-of-loss reinsurance treaties. In particular, we have in mind

the pricing of high layers of reinsurance where empirical data is scarce and reliance

on a mathematical model of the tail of the loss distribution is necessary.

We introduce extreme value theory through the central limit theorem. The central

limit theorem tells us that the limiting distribution of the sample mean is a normal

distribution. The analogous result from extreme value theory is that the limiting

distribution of the sample maximum is an extreme value distribution.1 There are three

distinct families of extreme value distributions: the Fréchet, Weibull, and Gumbel

1We are not being very precise but the gist of the result is correct.
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distributions. But these three families can be represented as a one parameter family

of distributions.

The next result in extreme value theory is the key result for pricing excess-of-loss

reinsurance treaties. This result shows that under certain circumstances the limiting

distribution of the excess portion of a loss approaches the generalized Pareto distribu-

tion (as the threshold increases). This result provides the theoretical underpinnings

for using the generalized Pareto distribution in reinsurance excess-of-loss pricing.

At this point we have a good theoretical model. The rest of the paper is a hands-on

approach to pricing an excess-of-loss treaty within a financial framework. In Section 3

we introduce the collective risk model together with the underlying data necessary for

pricing. We guide the reader with the adjustments necessary to get the data ready for

use in modeling the tail of the distribution of losses. We discuss graphical techniques

and the estimation of the parameters for both loss and claim count distributions.

In Section 4 we introduce the collective risk model [4, 26] and various measures to

quantify risk: standard deviation or variance, value at risk, tail value at risk, expected

policyholder deficit, and probability of ruin. We also discuss the concept of rented

capital and incorporate that into our cash flow model.

In the last section we bring everything together to determine the price of a rein-

surance layer. Our methodology revolves around the concept of the implied equity

flows [10]. The equity flows represent the transfer of money between the insurance

company and its equity holders.2 Our cash flow model is comprehensive. It includes

all relevant components of cash flow for an insurance company: underwriting opera-

tions, investment activity, assets (both income and non-income producing), and taxes.

Our model does not take a simplistic view of taxes where most actuaries in the past

have calculated them as a straight percentage applied to the results of each calen-

dar year. Instead we compute the taxable income according to the Internal Revenue

Service tax code.

In Appendix B we provide a full set of exhibits showing all the components of the

cash flows and the implied equity flows.

2One should not interpret this sentence literally. In most situations these transfers do not ac-
tually occur between the equity holders and the company. Rather they occur virtually between
the company’s surplus account and the various business units that require capital to guard against
unexpected events from their operations.
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2 Extreme Value Theory

The investigation of extreme events has a long history. Hydrologists, studying floods,

were probably the first ones to develop methods of analysis and prediction. The book

Statistics of Extremes [13] was the first one devoted exclusively to extreme values and

is considered now a classic. The author stresses the importance of graphical methods

over tedious computations and has illustrated the book with over 90 graphs. Since

its publication in 1958 extreme value theory has grown tremendously and there are

many deep and relevant results, but for our purposes we will mention only two of

them. Both results tell us about the limiting behavior of certain events.

The first result (the Fischer-Tippett theorem) is the analog of the well known

central limit theorem. Here the extreme value distributions play the same fundamen-

tal role as the normal distribution does in the central limit theorem. The second

result (the Pickands and Balkema & de Haan theorem) shows that events above a

high enough threshold behave as if they were sampled from a generalized Pareto

distribution. This result is directly applicable to excess-of-loss reinsurance modeling

and pricing. Two well known modern references with applications in insurance and

finance are the books by Embrechts et. al. [8] and Reiss & Thomas [25].

In this section we also introduce a powerful graphical technique: the quantile-

quantile (or QQ-) plot [5, chapter 6]. In many situations we need to compare two

distributions. For example, is the empirical distribution of losses compatible with the

gamma distribution? A quantile-quantile plot will help us answer that question.

2.1 Distribution of normalized sums

Actuaries are well aware of the central limit theorem [7, 15]; namely, if the random

variables X1, . . . , Xn form a random sample of size n from a unknown distribution

with mean µ and variance σ2 (0 < σ2 < ∞), then the distribution of the statistic

(X1 +X2 + · · ·+Xn)/n will approximately be a normal distribution with mean µ and

variance σ2/n.

An equivalent way to think about the central limit theorem and to introduce ex-

treme value theory is as follows: consider a sequence of random variables X1, X2, X3, . . .

from an unknown distribution with mean µ and finite variance (0 < σ2 < ∞). Let

Sn =
∑n

i=1 Xi (for n = 1, 2, . . . ) be the sequence of partial sums. Then the central
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limit theorem says that if we normalize this sequence of partial sums

Sn − bn

an

with an = n, and bn = nµ, (1)

then the limiting distribution is a normal distribution.

2.1.1 Understanding QQ-plots

Before proceeding with extreme value theory let us introduce a powerful graphical

technique known as a quantile-quantile plot or QQ-plot which will help us assess

whether a data set is consistent with a known distribution. For this graphical display

we will plot the quantiles of one distribution function against the quantiles of another

distribution function.

The quantile function Q is the generalized inverse function3 of the cumulative

distribution function F ;

Q(p) = F�(p) for p ∈ (0, 1) (2)

where the generalized inverse function F� is defined as4 (see [8, page 130])

F�(p) = inf {x ∈ R : F (x) ≥ p} , 0 < p < 1. (3)

The quantity xp = F�(p) defines the pth quantile of the distribution function F .

Suppose that our data set consists of the points x1, x2, . . . , xn. Let x(1) ≤ x(2) ≤
· · · ≤ x(n) denote our data sorted in increasing order.5 We also use the convention [5,

page 11] that x(i) is the pi = (i− 0.5)/n quantile.

To check if the distribution of our empirical data is consistent with the distribution

function F we plot the points (Q(pi), x(i)); that is, the quantiles of F against the

quantiles of our data set.

If the empirical distribution is a good approximation of the theoretical distribu-

tion, then all the points would lie very close to the line y = x; departures form this

line give us information on how the empirical distribution differs from the theoretical

3We denote generalized inverse function with a left arrow as a superscript (F�) instead of the
more traditional −1 superscript (F−1). We cannot use the traditional definition of inverse function
because some of our cumulative distribution functions are not one-to-one mappings.

4Ignoring some technicalities, the operator inf selects the smallest member of a set.
5Some authors would denote this sequence using double subscripts: xn,n ≤ xn−1,n ≤ · · · ≤ x1,n.
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Figure 1: QQ-plot of normal distribution N(0, 1) against N(1, 1). The solid
line is y = x.

distribution. Figure 1 shows the QQ-plot of a normal distribution N(1, 1) with µ = 1

and σ2 = 1 against the standard normal distribution N(0, 1), (µ = 0, σ2 = 1). Note

that the points on the graph do not follow the line y = x. Rather they follow the

line y = x + 1. This configuration tells us that we have mis-specified the location

parameter. In Figure 2 we have the QQ-plot for a normal distribution with variance

equal to 2 against the standard normal distribution. In this case we have mis-specified

the variance. This can be readily seen from the graph because the points follow a

straight line with slope different from one.

2.1.2 Visualizing the central limit theorem

To visualize the central limit theorem consider a sequence of random numbers from an

unknown distribution: X1, X2, X3, . . . . For n = 1, 2, 3, . . . compute the mean statistic

µn of the first n terms; that is,

µn =
1

n

n∑
i=1

Xi. (4)

The central limit theorem tells us that for large enough n the distribution of the

mean statistic µn is very close to a normal distribution. How can we check that the

distribution of µn is indeed very close to a normal distribution? Let us draw many
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Figure 2: QQ-plot of normal distribution N(0, 1) against N(0, 2). The solid
line is y = x.

samples of size n, compute µn, and look at the distribution of the mean µn.

For an example, take n = 25 and calculate 200 means

µ
(1)
25 , µ

(2)
25 , µ

(3)
25 , . . . , µ

(200)
25 (5)

How can we check that the distribution of these sampled means really follows a normal

distribution?

We can calculate various numerical summaries: the mean, variance, skewness,

kurtosis and others. But relying on numerical summaries alone can be misleading.

Rather we should use graphical methods. To assess if our data come from a normal

distribution we will show two graphs (see Figure 3). For the first one we will plot

the cumulative density function of the sample mean µ25 along with the theoretical

cumulative density function for the normal distribution. For the second graph we

will plot the quantiles of the distribution of µ25 against the quantiles of the normal

distribution. In this particular example the choice n = 25 is large enough so that the

central limit theorem applies. Other underlying distributions might require a larger

value of n.

Figure 4 shows how the central limit theorem applies to any underlying distribu-

tion. For this figure we have chosen three underlying distributions: uniform, gamma,

and log-normal. The first row of the display shows the underlying distribution’s prob-
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Figure 3: Cumulative density function and quantile-quantile plots for the dis-
tribution of the mean µ25.
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Uniform Gamma Lognormal

Figure 4: Visualizing the central limit theorem. Top row: underlying density
function. Middle row: CDF-plot. (Only 75 of the 200 points were
plotted.) Bottom row: QQ-plot.

ability density function. The second row shows the cumulative density function of

the mean (dots) along with the cumulative density function for the normal distribu-

tion (solid line). Even though the curve does seem to approximate the normal curve

fairly close on all three displays of the middle row it is hard for our visual system to

distinguish differences from the two curves. The last row of the display shows the

QQ-plots. Here it is much easier for us to see that our data (in all three cases) does

fall fairly close to the line y = x.

Regardless of the underlying distribution (as long it satisfies some mild conditions)

the distribution of the mean of a sample follows a normal distribution.
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2.1.3 Does the central limit theorem apply to maxima?

While actuaries are interested in the mean severity of claims, they also want to know

how large an individual loss might be. Hence, the following question arises naturally:

if we replace the mean of a sample with another statistic, say the maximum of the

sample, is the limiting distribution (if it exists) still the normal distribution?

As before, consider a sequence of random numbers from an unknown distribution:

X1, X2, X3, . . . . For n = 1, 2, 3, . . . compute the maximum statistic of the first n

terms:

Mn = max(X1, X2, . . . , Xn). (6)

For n large, does the distribution of Mn converge to a normal distribution?

Using the same experimental procedure as for the mean statistic take n = 25 and

calculate 200 maxima:

M
(1)
25 , M

(2)
25 , M

(3)
25 , . . . ,M

(200)
25 . (7)

In Figure 5 we have displayed the cumulative distribution function of the max-

imum statistic (transformed to have mean zero and unit variance). We have also

plotted the standard normal distribution. While we can see that both sets of data do

not agree it is hard to know if the departures we see are significant. Our eyes have a

hard time distinguishing differences between curved lines. The quantile-quantile plot

provides a more powerful graphical technique because we are looking for discrepancies

between a straight line and the data. Figure 6 shows clearly that the distribution

of the maximum does not follow a normal distribution. If it did the data would fall

approximately on a straight line. Rather the points form a concave line. At the

upper right-hand corner the data are below the straight line. This implies that the

distribution of the maximum is thicker tailed than the normal distribution. The re-

gion below the straight line corresponds to points where Qt(p) > Qe(p); that is, for a

given value of p ∈ (0, 1) the pth quantile of the theoretical distribution (in our case

the normal distribution) is greater than the pth quantile of the distribution. One

could argue that our choice of n = 25 random numbers is not large enough to show

(in our example) that the distribution of the maximum statistic converges to a nor-

mal distribution. We performed the same experiment with n = 100, 1000, and 10000

and we still reached the same conclusion: for our example, the distribution of the

maximum statistic does not converge to the normal distribution.
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Figure 5: CDF-plot of maximum statistic. The solid line is the standard normal
distribution N(0, 1).
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Figure 6: QQ-plot of maximum statistic. The solid line is y = x.
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2.2 Distribution of normalized maxima

The extreme value theory result analogous to the central limit theorem specifies the

form of the limiting distribution for normalized maxima. In place of the partial sums

Sn we have the maximum Mn = max(X1, X2, . . . , Xn).

We know that the distribution of maxima do not follow a normal distribution (see

Figure 6). It turns out that the distribution of maxima converges to one of three

distributions known as the extreme value distributions. The following theorem by

Fischer and Tippett [11] explicitly states these three distributions.

Theorem 1 (Fischer-Tippett). Let Xn be a sequence of independent and identically

distributed random variables and let Mn = max(X1, X2, . . . , Xn) be the maximum of

the first n terms. If there exists constants an > 0 and bn and some non-degenerate

distribution function H such that6

Mn − bn

an

d−→ H, (8)

then H belongs to one of the three standard extreme value distributions:

Fréchet: Φα(x) =

0, x ≤ 0, α > 0,

exp(e−x−α
), x > 0, α > 0,

(9)

Weibull: Ψα(x) =

exp(−(−xα)), if x ≤ 0 and α > 0,

1, if x > 0 and α > 0,
(10)

Gumbel: Λ(x) = exp(−e−x), if x ∈ R. (11)

A distribution F is said to belong to the maximum domain of attraction of the

extreme value distribution H if Mn = max(X1, . . . , Xn) satisfies equation (8), where

the Xi’s are random variables with distribution F .

The Fréchet, Weibull and Gumbel distributions can be written in terms of a one

parameter ξ family:

Hξ(x) =

exp(−(1 + ξ x)−1/ξ), if ξ 6= 0

exp(−e−x), if ξ = 0
(12)

6The notation d−→ refers to convergence in distributions.
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Table 1: Maximum likelihood estimates (and their standard errors) for the gen-
eralized extreme value distribution Hξ([x− µ]/σ).

Parameter Uniform Gamma Log-normal
location (µ) 0.965 (0.003) 9.538 (0.192) 6.521 (0.151)

scale (σ) 0.033 (0.003) 1.707 (0.139) 1.326 (0.111)

shape (ξ) −0.932 (0.005) −0.011 (0.073) 0.028 (0.079)

where x is such that 1 + ξ x > 0. This representation is obtained from the Fréchet

distribution by setting ξ = α−1, from the Weibull distribution by setting ξ = −α−1

and by interpreting the Gumbel distribution as the limit case for ξ = 0.

We visualize the Fischer-Tippett theorem using the same three underlying dis-

tributions (uniform, gamma, log-normal) we used for the central limit theorem. For

each underlying distribution we have collected 100 maxima. Each maximum is taken

over 25 points chosen at random from the distributions. Table 1 shows the maximum

likelihood estimates for each distribution and in Figure 7 we show the corresponding

QQ-plots. Note that the shape parameter for the maxima sampled from the uniform

distribution is negative. This implies that the uniform distribution is in the maxi-

mum domain of attraction of the Weibull distribution. Similarly the shape parameters

for the gamma and log-normal are not statistically different from zero. Hence these

distributions are in the maximum domain of attraction of the Gumbel distribution.

Distributions that belong to the maximum domain of attraction of the Fréchet

distribution include Pareto, Burr, and log-gamma. They are usually categorized as

heavy-tailed distributions. Other distributions that actuaries are familiar with in-

clude the normal, gamma, exponential, log-normal and Benktander type-I and type-

II (see [8, pages 153–7]). These distributions are not as heavy-tailed as the previous

examples. They belong to the maximum domain of attraction of the Gumbel distri-

bution. These are medium-tailed distributions. Examples of distributions belonging

to the maximum domain of attraction of the Weibull distribution include the beta

and uniform distributions. These we shall call thin-tailed distributions.

2.3 Distribution of exceedances

We have seen that the distribution of the maximum does not follow the normal

distribution. Rather it follows one of the extreme value distributions: Fréchet, Weibull

or Gumbel.

While reinsurance actuaries are interested in the maximum single loss over a given
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Figure 7: QQ-plots comparing sampled maxima against the fitted generalized
extreme value distribution Hξ([x− µ]/σ).

time period this information is not the area of focus when pricing a contract. The

excess of loss reinsurance actuary is concerned about any loss that exceeds a pre-

determined threshold (or attachment point). Suppose that X1, X2, . . . , Xn represent

the ground-up losses over a given period. Let u be the predetermined threshold and

let

Y = [X − u|X ≥ u] (13)

be the excess of X over u given that the ground-up loss exceeds the threshold. The

pricing actuary is interested in the distribution of the exceedances; that is, in the

conditional distribution of Y = X − u given that X exceeds the threshold u.

Let F denote the distribution of the random variable X,

F (x) = Prob (X < x) , (14)

and let Fu denote the conditional distribution of the exceedance Y = X − u given

that X exceeds the threshold u:7

Fu(y) =
F (y + u)− F (u)

1− F (u)
. (15)

Just like the mean statistic converges in distribution to the normal distribution

and the maximum statistic converges in distribution to one of the extreme value

7The distribution function Fu is also known as the exceedance distribution function, the condi-
tional distribution function, or in reinsurance the excess-of-loss distribution function.
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distributions, the exceedances converge in distribution to the generalized Pareto dis-

tribution (provided we choose a high enough threshold). The following theorem due

to Pickands [24] and Balkema & de Haan [2] shows the result.

Theorem 2 (Pickands, Balkema & de Haan). For a large class of underlying

distribution functions F the conditional excess distribution function Fu(y), for u large,

is well approximated by the generalized Pareto distribution Gξ,σ(y) where

Gξ,σ(y) =

1−
(
1 + ξ

σ
y
)−1/ξ

if ξ 6= 0

1− exp(−y/σ) if ξ = 0
(16)

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0,−σ/ξ] if ξ < 0.

The point xF denotes the rightmost point of the distribution function F (which

could be finite or infinite).

The class of underlying distribution functions for which the above theorem ap-

plies includes most of the standard distribution functions used by actuaries: Pareto,

gamma, log-normal, and others (see [16]).

2.3.1 Peaks over threshold method

In order to apply the above theorem we have to choose a threshold. But how do we

choose a good threshold? The theorem tells us that if we pick a high enough threshold

our data should behave like data that comes from the generalized Pareto distribution.

The question is, what characteristics does the generalized Pareto distribution have

that we could check against our data? One such characteristic is the mean excess

function. The mean excess function for the generalized Pareto distribution Gσ,ξ(x) is

a straight line with positive slope:

e(u) =
σ + ξu

1− ξ
(17)

where σ + ξu > 0. The mean excess function8 for various standard distributions can

be found on Table 2.

8We use Landau’s notation where o(1) stands for an unspecified function of u whose limit is zero
as u →∞.
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Table 2: Mean excess functions for some standard distributions.

Distribution Mean excess function

Pareto κ+u
α−1

, α > 1

Burr u
ατ−1

(1 + o(1)), ατ > 1

Log-gamma u
α−1

(1 + o(1)), α > 1

Log-normal σ2u
ln u−µ

(1 + o(1))

Benktander-type-I u
α+2β ln u

Benktander-type-II u1−β

α

Weibull u1−τ

cτ
(1 + o(1))

Exponential λ−1

Gamma β−1
(
1 + α−1

βu
+ o

(
1
u

))
Truncated Normal u−1(1 + o(1))

The empirical mean excess function for a sample of data points Xi is given by

en(u) =

∑n
i=1 max(0, Xi − u)∑n

i=1 1Xi>u

(18)

where 1X>u is the indicator function with value 1 if X > u and zero otherwise.

Figure 8 shows a sample of 2860 general liability losses. Note that most of the

losses are very small (say below 500) but there are a few extremely large losses.9

Figure 9 shows the empirical mean excess plot for these data. Since the mean excess

function for the generalized Pareto distribution is a straight line with positive slope,

we are looking for the threshold points from which the mean excess plot follows a

straight line. There are two regions where the plotted points seem to follow a straight

line with positive slope. The first one is from thresholds between 600 and 1000 and

the second is between 1000 and 2500. Of course, the second region has very few data

points. Based on a threshold u = 600 we can fit a generalized Pareto distribution

(GPD) (see Figure 10) and check the goodness-of-fit against the data (see Figure 11

for a QQ-plot).

9The losses have been scaled so that the largest loss has a value of 10,000.
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Figure 8: General liability losses. The losses have been normalized so that the
maximum loss has a value of 10,000.
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Figure 9: Mean excess plot for general liability losses.
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Figure 10: GPD fit (threshold u = 600) to the general liability data. The
maximum likelihood parameter estimates are ξ = 0.7871648 and
σ = 423.0858245
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Figure 11: Quantile-quantile plot for general liability losses. The maximum
likelihood parameters for the GPD fit are: u = 600, ξ = 0.7871648
and σ = 423.0858245.
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2.4 Quantile estimation

Estimates of quantiles are important for the actuary and it is easy to calculate them

with the generalized Pareto distribution function. To estimate the tail above a thresh-

old u start by re-writing the conditional probability function Fu as follows:

F (x) = Prob (X ≤ x) = (1− Prob (X ≤ u)) Fu(x− u) + Prob (X ≤ u) . (19)

From the previous section we know that for large enough threshold u we can approx-

imate Fu(x− u) with the generalized Pareto distribution Gξ,σ(x− u). Also using the

empirical data we can estimate Prob(X ≤ u) with the empirical cumulative density

function Fn(u):

Fn(u) =
n−Nu

n
(20)

where n is the number of points in the sample and Nu is the number of points in the

sample that exceed the threshold u.

If we let F̂ (x) be our approximation to F (x), then for x ≥ u we can estimate the

tail of the distribution F (x) with

F̂ (x) = (1− Fn(u)) Gξ,σ(x− u) + Fn(u). (21)

It is easy to show that F̂ (x) is also a generalized Pareto distribution function with

the same ξ parameter but different σ and u parameters. In fact,

F̂ (x) = Gξ,σ̃(x− ũ) (22)

where σ̃ = σ(1−Fn(u))ξ and ũ = u− [σ(1− (1−Fn(u))ξ)/ξ]. Appendix A shows the

derivation of these new parameters.

From equation (21) we can solve for x to obtain our quantile estimator. Let n be

the total number of data points and Nu be the number of observations that exceed

the threshold u. Then the pth quantile is given by solving the equation

p =

(
1− n−Nu

n

){
1−

(
1 +

ξ

σ
(xp − u)

)−1/ξ
}

+
n−Nu

n
(23)
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in terms of xp. This yields the estimator

x̂p = u +
σ

ξ

[(
n

Nu

(1− p)

)−ξ

− 1

]
. (24)

2.5 Risk Premium

Once we have estimated the generalized Pareto distribution for our data it is easy

to calculate the risk premium (expected losses) in any given layer in excess of our

threshold. Let (r, R) (with R > r > u) denote the excess-of-loss layer (R − r) xs r.

The risk premium in this layer is

P =

∫ R

r

(x− r) fu(x− u) dx + (R− r) (1− Fu(R− u)) (25)

where fu(x−u) is the density of the fitted generalized Pareto model. Notice that the

price for any layer above the threshold depends only on the excess distribution Fu.

Let

Gξ,σ(x− u) =

1−
(
1 + ξ

σ
(x− u)

)−1/ξ
if ξ 6= 0

1− exp
(
−x−u

σ

)
if ξ = 0

(26)

be the generalized Pareto distribution function including a location parameter u.

Using the Pickands and Balkema & de Haan Theorem we can approximate Fu(x−u)

with Gξ,σ(x − u) and so any questions about a particular layer of reinsurance can

be answered by calculating the appropriate moments using the estimated generalized

Pareto distribution function.

Calculating the integral (25) to determine the risk premium we have the following

explicit formula

P =


σ
ξ

[(
1 + ξ

σ
(R− u)

)1−1/ξ −
(
1 + ξ

σ
(r − u)

)1−1/ξ
]

if ξ 6= 0

σ
[
exp

(
− r−u

σ

)
− exp

(
−R−u

σ

)]
if ξ = 0

(27)

3 Collective Risk Models

We shall look at the aggregate losses from a portfolio of risks. Let Sn denote the sum

of n individual claim amounts (X1, X2, . . . , Xn), where n is a random number and

the claim amounts Xi’s are independent and identically distributed random variables.
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That is, Sn follows a collective risk model

Sn = X1 + X2 + · · ·+ Xn, for n = 0, 1, 2, . . . (28)

with S0 = 0.

In this paper, we focus on experience rating, rather than exposure rating. The

next example will be used throughout the paper to illustrate the concepts.

Illustration

Consider pricing an excess-of-loss reinsurance treaty. The treaty covers a

small auto liability portfolio with a retention of 3 million, a limit of 12

million, and an annual aggregate deductible of 3 million for accident year

2005. The cedant has provided the following data on large losses

Table 3: Large losses by accident year (I).
Accident

Year 1995 1996 1997 1998 1999
Incurred 692,351 902,742 2,314,953 3,183,920 1,168,803
Losses 767,671 2,037,328 702,022 535,590 1,178,212

1,274,118 1,232,477 1,023,062 742,667 3,722,663
1,280,334 822,814 3,579,147 922,728 1,830,560

779,054 684,503 656,957 923,000 509,205
525,584 1,796,454 831,689 930,300

1,101,540 589,947 1,622,289
980,171 530,295 4,291,141

1,268,650 750,693
807,076 531,515

1,624,021
765,879
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Table 4: Large losses by accident year (II).
Accident

Year 2000 2001 2002 2003 2004
Incurred 1,172,325 531,500 870,000 1,297,600 851,259
Losses 1,978,249 630,741 592,600 502,776 1,530,050

512,380 811,327 1,759,111 2,050,000 1,750,000
1,441,546 989,497 1,856,305 2,350,000

925,617 502,603 750,503 9,510,500
774,997 566,382

1,102,500 1,118,255
608,446

2,130,454
526,483

1,600,942
1,547,415

For simplicity, we assume that the loss data are not censored. That is, the

given losses are from ground-up losses without capping at the underlying

policy limits. This assumption is not crucial and we will discuss briefly in

the sections below how one adjusts the modeling procedure when such an

assumption is removed. 2

3.1 Loss severity distributions

Estimates of the loss severity distribution play an important role in high excess-of-

loss reinsurance layers where relevant empirical losses are scarce. It is particularly

important that the selected loss distribution fits well the historical large losses and

less relevant in explaining the small losses. In practice, when looking at the historical

claims one usually ignores the small losses and analyzes only those losses that exceed

a threshold.

Before historical losses can be used in any rating procedure they have to be pro-

jected to their ultimate values. This is often done by applying loss development

factors. Recall that the loss development factors obtained from the usual accident-

year triangle analysis contain two parts: development for known claims and develop-

ment for unreported cases. For loss severity distribution fitting purpose, we need the

development factors for known claims.

In addition, because of the well-recognized differences in development between

large losses and small losses, we recommend using loss development factors on known
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claims derived from large claims only. Depending on the treatment for loss adjust-

ment expenses in the reinsurance treaty one must determine whether to include such

expenses in the loss data. In this paper, we shall assume that expenses are included

in the losses and from this point forward we shall refer to the sum of the two as losses.

In addition to the projection to their ultimate values, losses should also be trended

to reflect the changes between the experience period and the coverage period. For

example loss severity trends may include monetary inflation, increases in jury awards,

and increases in medical expenses.

Illustration

In our auto liability example, assume for simplicity that we have a constant

inflation of 3% (per annum) and the following loss development factors

for known claims:

Table 5: LDF for known claims by accident year.
LDF for

Year known claims
1995 1.001
1996 1.002
1997 1.003
1998 1.009
1999 1.024
2000 1.044
2001 1.050
2002 1.081
2003 1.108
2004 1.172

Losses should be best divided into paid and outstanding and be ad-

justed/inflated accordingly. Our constant inflation assumption simplifies

this process. Depending on the data, certain losses might be closed and

should not be developed further. In our simplified illustration, we shall

assume that all losses are subject to further development. Then, for exam-

ple, the first claim in the amount of 692, 351 in accident year 1995 would

be developed and inflated to its ultimate value of

692, 351 · 1.001 · 1.03(2005−1995) = 931, 392 (29)
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In summary, we have the following indexed claim history:

Table 6: Indexed historical large losses.
Accident

Year 1995 1996 1997 1998 1999
Indexed 931,392 1,180,229 2,940,118 3,950,126 1,428,916
Incurred 1,032,717 2,663,567 891,607 664,479 1,440,418
Losses 1,714,020 1,611,319 1,299,345 921,389 4,551,127

1,722,382 1,075,733 4,545,715 1,144,781 2,237,944
1,048,030 894,907 834,372 1,145,119 622,527

707,047 2,281,596 1,031,834 1,137,335
1,481,858 749,265 2,012,690
1,318,585 673,504 5,323,798
1,706,664 953,422
1,085,727 675,053

2,062,597
972,709

Accident
Year 2000 2001 2002 2003 2004

Indexed 1,418,819 628,304 1,027,807 1,525,982 1,027,644
Incurred 2,394,198 745,620 700,090 591,266 1,847,084
Losses 620,114 959,097 2,078,191 2,410,806 2,112,608

1,744,647 1,169,718 2,193,015 2,763,607
1,120,238 594,144 886,635 11,184,378

937,949 669,540
1,334,313 1,321,927

736,378
2,578,405

637,182
1,937,558
1,872,776

2

If the losses are censored at the underlying policy limit, without knowing exactly

how large the ground-up losses are, then one conservative adjustment is to assign

such losses at the appropriate policy limits for the current underwriting standards.

For example, suppose that a risk had a policy limit of one million and it generated

a loss that was capped at the policy limit. Furthermore, assume that the current
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underwriting standards would give this risk a policy limit of 1.5 million. Then the

as-if loss for this risk would be the full policy limit of 1.5 million. On the other

hand, if one knows the exact size of the ground-up loss, then one should index the

ground-up loss as above and limit it at the appropriate policy limit if necessary.

After the historical losses have been adjusted to an as-if basis but before we

start the model fitting, it is important to explore the data further to gain better

understanding. One way to do so is to plot the empirical mean excess function (18).

An upward trend in the mean excess plot suggests a heavy tailed behavior, a horizontal

line would be exponentially distributed, and thin tailed distribution usually gives a

downward trended mean excess plot (see Table 2).

Illustration

In our auto liability data, we have the following mean excess plot:
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Figure 12: Mean excess loss plot.

The plot shows an upward trend, which suggests that the tail is heavier

than an exponentially distributed function. The points above a threshold

of 2,000,000 seem to follow a straight line (ignoring the last couple of

points which are the average of very few observations). This suggests

that a generalized Pareto fit with a threshold of 2 million should provide

a good fit. 2

Commonly used loss severity distributions in reinsurance pricing include Pareto,

log-normal, log-gamma, exponential, gamma, transformed beta, and others. Pareto
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distributions are particularly popular. Actuaries have recently been applying extreme

value theory in estimating the tails of the loss severity distributions [8, 19, 16, 20]. It

is particularly useful in pricing high excess of loss layers. The theory suggests that

the excess losses above a high threshold are asymptotically distributed according to

a generalized Pareto distribution. The loss severity distributions commonly used in

reinsurance pricing belong to the class of functions to which the Pickands and Balkema

& de Haan theorem 2 applies; showing that the excess loss above a high threshold can

be well approximated by the generalized Pareto distribution. This theorem provides

the theoretical underpinnings for the popularity of the Pareto distribution in the

reinsurance industry when pricing high excess-of-loss layers.

There are various methods of estimating the parameters of the loss severity dis-

tributions: method of moments, percentile matching, maximum likelihood, and least

squares are among them. The method of moments and percentile matching are easy

to implement and convenient but lack of the desirable optimality properties of maxi-

mum likelihood and least squares estimators. Maximum likelihood in essence seeks to

find the parameters that give the maximum probability to the observed data. Maxi-

mum likelihood estimators are asymptotically unbiased and have minimum variance.

Unfortunately, it can be heavily biased for small samples. The least squares method

seeks to find the parameters estimates that produce the minimum distance between

the observed data and the fitted data. The least squares method can be applied more

generally than maximum likelihood. However, it is not readily applicable to censored

data and is generally considered to have less desirable optimality properties than

maximum likelihood. In our model, we will estimate our parameters using maximum

likelihood.

Recall that maximum likelihood method selects the parameters θ’s which maxi-

mize the likelihood function:

L(θ) =
n∏

i=1

f(xi|θ) (30)

or equivalently the log-likelihood function:

l(θ) = ln(L(θ)) =
n∑

i=1

ln(f(xi|θ)) (31)

where f(xi|θ) is the probability density function evaluated at xi given θ.

Illustration
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We continue with the auto liability example. To fit a generalized Pareto

distribution to the indexed excess loss data, first recall that generalized

Pareto distribution probability density function is of the form

fξ,σ(x) =
1

σ

(
1 +

ξ

σ
x

)−( 1
ξ
+1)

(32)

and the log-likelihood function is

l(ξ, σ) = n

(
1

ξ
+ 1

)
ln σ −

(
1

ξ
+ 1

) n∑
i=1

ln

(
1 +

ξ

σ
xi

)
. (33)

With the selected threshold of 2, 000, 000, we plug in the excess loss (in-

dexed loss - threshold) values and obtain maximum likelihood estimators

of ξ = 0.66784 and σ = 591, 059.8.

The graph below shows the cumulative density functions for the general-

ized Pareto as well as the adjusted empirical distributions (adjusted for

inflation and loss development).
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Figure 13: Generalized Pareto cumulative density function.

2

In dealing with censored data, one adjusts the probability function by assigning
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a mass density at the censor point c (see [17]):

F̃ (x) =

F (x), if x < c,

1, if x ≥ c,
(34)

3.2 Claim frequency distribution

Similar to the loss severity, the claim frequency also needs to be trended and developed

to ultimate. One needs to estimate for the not yet reported claims and the possible

trends. To estimate the not yet reported claims is easier: one develops the claim

number triangle to ultimate. To estimate the possible trends, on the other hand, is

certainly not an easy task. Court decisions may influence the liability frequencies; an

amendment in the governing law can change the reporting of the WC claims. Both

legal and social factors need to be considered when identifying the trends. One further

adjustment to the historical frequency is to reflect the historical portfolio sizes. This

can be done by comparing the historical exposure sizes to the treaty year exposure

size.

Illustration

Continuing with our auto liability example, suppose that we have the

following exposure information and claim number development factors:

Table 7: Historical exposure size and claim frequency LDF by accident year.
No. of Claim Freq

Year Exposures Dev. Factor
1995 21,157,000 1.007
1996 19,739,000 1.007
1997 19,448,000 1.007
1998 19,696,000 1.022
1999 19,406,000 1.030
2000 19,543,000 1.037
2001 19,379,000 1.073
2002 21,186,000 1.197
2003 24,425,000 1.467
2004 27,990,000 2.379
2005 28,000,000

Then, for example, there is one claim reported in 1996 above the chosen
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threshold of 2, 000, 000, with the adjustment for unreported claims and

exposure sizes, we get

1 · 1.007 · 28, 000, 000/19, 739, 000 = 1.43 (35)

That is, assuming no other trends are necessary, we expect to see 1.43

claims above 2 million if year 1996 experience were to happen again with

the 2005 exposure size. The following table summarizes the combined

adjustments:

Table 8: Indexed claim experience.
No. of No. of

Year claims as-if claims
1995 0 0
1996 1 1.43
1997 4 5.80
1998 3 4.36
1999 2 2.97
2000 2 2.97
2001 0 0
2002 2 3.16
2003 3 5.04
2004 1 2.38

2

To model the claim frequency distribution, we consider three choices of claim

frequency distributions: Poisson, negative binomial, and binomial.

• Poisson

The Poisson distribution is often used in reinsurance pricing for its simplicity.

It has a great advantage: the sum of two independent Poisson variables also

follows a Poisson distribution. Another advantage is that if the number of claims

in a fixed time period follows a Poisson distribution, then

1. the number of claims above a fixed retention is also Poisson distributed.

2. the claim number for a subinterval is also Poisson distributed.
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The first advantage is particularly useful in excess-of-loss reinsurance pricing

because it provides the theoretical background for assuming that loss events are

Poisson distribution while adjusting retentions when fitting the distributions.

The second advantage works well, for example, when one removes certain ben-

efits from the current plan. The assumption of Poisson needs not be changed if

the frequency distribution under the current plan follows a Poisson distribution.

One disadvantage is that the assumption that the rate at which the claims occur

is constant over time. This in particular is not applicable in certain sections

of reinsurance (for example, earthquake) where the probability of another loss

occurring is a lot higher given that one has already occurred.

• Negative binomial

The negative binomial is a generalization of the Poisson distribution by mixing

a Poisson distribution with a gamma mixing distribution. That is, by assum-

ing the parameter λ of the Poisson distribution to be gamma distributed, the

resulting distribution is negative binomial. This is particularly useful when the

practitioner incorporates parameter uncertainly into the Poisson parameteriza-

tion.

The disadvantage of this distribution lies in the difficulty in solving for its

maximum likelihood estimators; there is no closed form for them.

• Binomial

The process of having claims from m independent risks with each risk having

probability q of having a claim follows a binomial distribution with parameters

m and q. This distribution has finite support 0, 1, 2, . . . ,m. That is, at most

m claims can happen in the specific period of time. This makes the Binomial

distribution less popular for reinsurance pricing.

In estimating the parameters of the claim frequency distribution one can use the

same methods as for the loss severity distribution; namely, the method of moments,

maximum likelihood, least squares, etc. as discussed in Section 3.1. In general,

because of the much smaller volatility involved in the claim frequency versus the loss

severity, there is less concern in estimating frequency distribution. In our model, we

use the method of moments—due to its simplicity—to estimate the parameters of the

distribution.
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Illustration

In the auto liability example, the average of the sample frequencies is

2.812 and its variance is 3.821. Since the sample variance is larger than

the sample mean, we select the negative binomial as the claim frequency

distribution. The parameters s, p of a negative binomial distribution are

such that10

µ =
s(1− p)

p
and σ2 =

s(1− p)

p2
(36)

We input the sample mean and sample variance into the equations and

solve for s and p in the system of equations with the restriction that s must

be an integer. The approximate solutions are s = 8 and p = 0.73993. This

approximation is unbiased but slightly underestimates the variance. 2

3.3 Aggregate loss distribution

As stated earlier in this section, we model the aggregate loss distribution from a

collective risk theory point of view. The aggregate loss Sn for a specific period of

time (usually one calendar year) is the sum of n individual claim amounts (from

ground-up):

Sn = X1 + X2 + · · ·+ Xn, n = 0, 1, 2, . . . (37)

with S0 = 0. n is a random number following the selected claim frequency distribution

and the Xis are independent, identically distributed, and follow the selected loss

severity distribution. It is also assumed that n and Xi’s are independent.

For the annual aggregate layer losses under the reinsurance program, we modify

the above formula by applying the reinsurance coverage:

X̄i = min(l, max(Xi − r, 0)), for i = 1, 2, . . . , n (38)

S̄n = min(L, max((X̄1 + X̄2 + · · ·+ X̄n)−D, 0)) (39)

for limit l, retention r, aggregate limit L, and aggregate deductible D.

In general insurance practice, there are four ways in computing the aggregate loss

distribution from the selected claim frequency and the loss severity distributions:

1. Method of moments

10We are using the following parametrization of the negative binomial density function: f(k) =(
s+k−1

k

)
ps(1− p)k.
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This method assumes a selected aggregate loss distribution whose parameters

are estimated by the empirical moments of the aggregate losses. Such moments

are derived algebraically from the moments of the claim frequency and loss

severity distributions:

E(S̄n) = E(n) · E(X̄) (40)

var(S̄n) = E(n) · var(X̄) + E(X̄)2 · var(n) (41)

It has the advantage of simplicity and ease of calculation. However, its main

disadvantage is inaccuracy. In general, the fitted loss distribution does not

model the true aggregate losses well.

2. Monte Carlo simulation

This method calculates the aggregate loss distribution directly from simulating

the claim frequency and loss severity distributions. First, one samples from

the frequency distribution to determine the number of claims n in the period.

Then, we pick n claims from the severity distribution at random. The sum of

the n random claim amounts (adjusted for the reinsurance coverage in place)

gives one outcome for the aggregate losses. We repeat many times this sampling

procedure to estimate the distribution of the aggregate losses.

This method provides easy and accurate aggregate distributions. However, some

argue that it takes considerable computing time. For further details see [12].

3. Recursive method

In general, this method requires a discretization of the loss severity distribution

and a selection of a large enough number of points for the claim frequency

distribution. It involves inverting the Laplace transform of the aggregate loss

distribution (for example, see [14]). Panjer [23] gave a direct recursive formula

for a particular family of claim frequency distributions that does not involve

the Laplace transformation (see also [26])

The recursive method is fast and accurate most of the time. The disadvantage

is the requirement of discretization of the loss severity distribution. There are

two methods for carrying out the discretization of a continuous distribution

function: the midpoint method and the unchanged expectation method. With

both methods one loses information. For further details see [6].
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4. Fast Fourier Transform

The fast Fourier transformation inverts the characteristic function of the ag-

gregate loss distribution, a procedure similar to the recursive method. It also

requires a discretization of the loss severity distribution. See [3, 26] for further

details.

The advantage of this method lies in its efficiency and speed. However, the

computation tends to be complicated.

We use Monte Carlo simulation to compute the aggregate loss distribution in our

model. It is simple and intuitive.

Illustration

Assume that we have fitted a generalized Pareto distribution as our loss

severity distribution with parameters ξ = 0.66784, σ = 591, 059.8, and

threshold of 2, 000, 000 and a negative binomial as our claim frequency

distribution with parameters s = 8 and p = 0.73993. Let’s also assume

that, in one random iteration, the negative binomial distribution produces

4 claims and we generate the following 4 claims from the generalized

Pareto distribution:

Table 9: Sample GPD generated losses.
Loss

(from ground up)
2,590,062
3,107,208
2,874,384
7,800,324

Keep in mind that the generalized Pareto generates excess loss above the

threshold. To convert excess loss to ground up loss one adds back the

threshold.

This represents one possible annual outcome. To evaluate the reinsurance

recovery, we apply the coverage: 12 million excess of 3 million with annual

aggregate deductible of 3 million. The table bellow shows the result.
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Table 10: Sample layer losses.
Loss Layer Loss

2,590,062 0
3,107,208 107,208
2,874,384 0
7,800,324 4,800,324

The sum of all layer losses is 4, 907, 532 and the reinsurance recovery is

1, 907, 532. Thousands of iterations are generated to derive all possible

outcomes and they give us the aggregate loss distribution for the reinsur-

ance coverage. The following graph shows the result of 5, 000 iterations:
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Figure 14: Generated aggregate loss distribution.

The resulting aggregate loss distribution is as expected highly skewed,

with 78.1% probability of no losses and a mean of $1,108,974. 2

4 Risk Loads and Capital Requirements

An essential job of actuaries is to quantify risks. In this section, we will introduce var-

ious risk measures and capital requirements that could be incorporated in our pricing

model. We would like to stress that quantifying risks is a complex undertaking. So far

no single risk measure can fulfill all of the properties that actuaries would like to have.
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For example, the risk measures standard deviation or variance are symmetric. They

do not differentiate between losses and gains. In practice, actuaries and management

teams are concerned with the management of potential losses. Another risk measure,

value at risk, is concerned with potential losses above a threshold. Unfortunately,

this measure does not tell us anything about how severe losses could be if they exceed

the threshold. Probability of ruin is another risk measure that actuaries have spent

considerable time studying. Here the actuary would set the capital requirements of a

company so that the probability of ruin is acceptably small. Similar to value at risk,

this measure provides no information about the severity of ruin.

4.1 Risk Measures

Various risk measures have appeared in the actuarial literature: standard deviation,

variance, probability of ruin, value at risk (VaR), expected policyholder deficit (EPD),

and tail VaR are among them.

• Standard deviation or variance

Standard deviation and variance methods equate more volatility in the loss

distribution with more riskiness. These methods set a risk load directly pro-

portional to the standard deviation or variance. They are popular for their

simplicity and mathematical tractability. However, they ignore the distinction

between the upside and downside risks, which is critical for proper pricing es-

pecially when the loss distribution is highly skewed.

• Probability of ruin

Probability of ruin focuses on the theoretical ruin threshold, the point where

the liabilities are greater than the assets. For a probability ε, it seeks the capital

amount such that

Prob(X ≤ capital + E(X)) = 1− ε (42)

Probability of ruin is easy to understand and to compute. Unfortunately, it

considers only the probability of ruin and lacks the consideration of loss severity

when ruin occurs.

• Value at risk (VaR)
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Value at Risk is generally defined as the capital necessary, in most cases, to

cover the losses from a portfolio over a specified holding period. The VaR is

defined as the smallest value that is greater than a predetermined percentile of

the loss distribution. That is, for a selected probability α,

VaRα = inf {x|Prob(X ≤ x) > α} (43)

Similar to the probability of ruin risk measure, VaR is easy to understand and

to compute but lacks the consideration of loss severity.

• Policyholder deficit (EPD)

Expected Policyholder Deficit is the expected value of the difference between

the amount the insurer is obligated to pay the claimant and the actual amount

paid by the insurer, provided that the former is greater. Mathematically, it is∫ ∞

capital+E(X)

(x− capital− E(X)) · f(x) dx (44)

where E(X) is the expected loss and capital refers to the excess of assets over

liabilities. When considering the EPD as the risk measure, one usually uses the

ratio of the EPD to the expected loss (called the EPD ratio) to adjust to the

scale of different risk element sizes. That is, an EPD ratio of ε would set capital

to be the amount such that∫∞
capital+E(X)

(x− capital− E(X)) · f(x) dx

E(X)
= ε (45)

Expected policyholder deficit considers the severity as well as the probability of

the deficit. However, it is highly sensitive to extreme events.

• Tail value at risk (Tail VaR)

Tail Value at Risk is also called tail conditional expectation or expected shortfall

and it is the conditional expected value of losses:

TailVaRα(X) = E (X|X ≥ VaRα(X)) (46)

That is, for a selected probability α, TailVaR at α is the expected value of

those losses greater than or equal to VaRα(X). Unlike VaR, TailVaR considers
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the loss severity. It is also less sensitive to extreme losses than the expected

policyholder deficit measure.

Among the risk measures stated so far in this section, TailVaR is the only coherent

risk measure in the sense discussed in the paper Coherent Measures of Risk [1]. A risk

measure is said to be coherent if it satisfies four axioms: sub-additivity, monotonicity,

positive homogeneity, and translation invariance.

The sub-additivity axiom ensures that the merging of two portfolios of risks does

not create extra risk. Monotonicity says that if portfolio X always generates losses

smaller than portfolio Y , then the risk measure for X should not be larger than that

of Y . Positive homogeneity tells us that merging two identical portfolios doubles the

risk measure. Finally, translation invariance says that if we add a constant to all

losses of a portfolio, then the risk measure of the portfolio should also increase by the

same constant (see [1, 21]). For our model we have selected Tail VaR at 99% as our

risk measure.

In addition to the risk measures mentioned above, there are many other risk

measures such as CAPM (see [9]), marginal cost of capital with and without the

application of game theory [18, 22], and worse conditional expectation [1] (this is

also a coherent risk measure). One should also take them into consideration when

selecting a risk measure.

4.2 Capital Requirements

For insurance companies operating in the United States, the capital requirements are

heavily regulated by the NAIC risk-based capital standards. Reinsurance companies

(especially non-US reinsurers), on the other hand, are usually not as heavily regulated

as primary insurance companies are with respect to capital requirements. In our

model we will simplify matters and not consider how the NAIC risk based capital

requirements would be affected in the pricing of a single excess-of-loss treaty. Rather

we will take the position that we are evaluating the treaty on a stand-alone-basis.

Moreover, the capital requirements are directly tied to the selected risk measure.

One main reason to purchase reinsurance is to mitigate large losses and to reduce

the volatility of the underwriting results. As a result of the reinsurance purchase, the

amount of capital required to guard against unexpected losses and high volatility is

reduced. We consider the reduction in capital as rented capital from the reinsurer.

That is, the reduction in required capital from before reinsurance to after reinsurance
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is the amount of capital that reinsurer provides. The ceding insurer must pay a fee

for renting this capital from the reinsurer. The amount of rented capital depends on

the reinsurance coverage and can be computed directly from the simulation results.

Illustration

The simulation results from our auto liability example are as follows:

Table 11: Aggregate loss distribution statistics before and after reinsurance.
Percentile Gross Net

5.0 % 0 0
10.0 % 2,034,094 2,034,094
25.0 % 4,105,924 4,105,924
50.0 % 7,578,306 7,459,913
75.0 % 13,198,430 12,000,000
90.0 % 20,148,295 17,003,454
92.0 % 22,175,644 18,257,892
98.0 % 37,985,818 27,054,490
99.0 % 51,212,932 38,456,724
99.5 % 76,985,851 62,732,939
99.8 % 143,818,339 122,821,239
100.0 % 904,128,288 882,361,851

The following graph makes the reinsurance effect clearer:
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Figure 15: Gross versus net loss distributions.
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With the chosen risk measure of Tail VaR at 99%, we first find the VaR

at 99% and then compute the conditional expected value of losses given

that they are larger than or equal to the 99% VaR. In our simulation we

have to take the average of all losses greater than or equal to the 99%

VaR value. The following table shows the VaR values and the Tail VaR

values at 99% on a gross and net bases.

Table 12: Tail VaR calculation.
Gross Net

VaR99% 51, 212, 932 38, 456, 724
TailVaR99% 128, 583, 553 115, 354, 489

Therefore, we have a capital reduction of

128, 583, 553− 115, 354, 489 = 13, 229, 064

and this is the amount of rented capital that will be incorporated in the

premium calculation. 2

5 Reinsurance IRR Pricing Model

Our pricing methodology follows closely the paper Financial Pricing Model for Prop-

erty and Casualty Insurance Products: Modeling the Equity Flows [10]. Readers

interested in the reasoning and intuitions of the details should refer to the paper.

The goal of IRR pricing is to generate the equity flows (net cash flows) associated

with the treaty being priced. The amount of premium is an unknown that must

be solved for so that the IRR on the resulting equity flows is equal to the pricing

target. In theory an iterative process is used to solve for the premium. In practice

the premium is found by running the goal seek algorithm in Excel c©.

With the objective of generating the equity flow, the model is designed to calculate

the cash flows necessary for the calculation of the equity flow. These cash flows are:

• U/W cash flows

• Investment income cash flows

• Federal income tax flows (“+” denotes a refund; “−” denotes a payment)
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• Asset flows

The equity flow is then calculated via the basic relation:11

Equity Flow = U/W Flow + Investment Income Flow

+ Tax Flow− Asset Flow + DTA Flow. (47)

We use the convention that a positive equity flow denotes a flow of cash from

the insurer to the equityholders, and a minus a payment by the equityholders to the

insurer.

5.1 Illustration

Recall the illustrative excess-of-loss treaty from Section 3. It is assumed to be effective

Jan 1, 2005.

Certain treaty characteristics serve as inputs to the model. These characteristics

consist of the following costs for the layer being priced:

• amount of expected ultimate loss for the layer ($1,108,974 as detailed in Sec-

tion 3),

• brokerage expenses as a percentage of base premium (10%),

• LAE as a percentage of base premium (3%),

and the following collection/payment patterns :

• premium collection pattern (assumed to be 100% at treaty inception)

• loss payment pattern:

Table 13: Loss payment pattern.
Loss Loss

Year payment Year payment
2005 22.2% 2010 4.7%
2006 29.3 2011 4.3
2007 15.9 2012 3.7
2008 7.9 2013 3.5
2009 5.8 2014 2.7

11Properly speaking, the change in the deferred tax asset (DTA) is not a cash flow, if by cash one
means cash equivalents. Since assets include DTA, the change in assets is also not a cash flow. But,
then item (assets−DTA) consists of cash equivalents and hence ∆(assets−DTA) is a cash flow. We
have simply expressed ∆(assets−DTA) as the difference ∆assets minus ∆DTA.
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The model uses annual valuations. With the exception of the written premium and

UEPR which incept on Jan 1, our simplifying assumption is that all accounting and

cash flow activity occur at year end.

The model also requires certain parameter inputs consisting of:

• investment rate of return on invested assets (5.5%),

• effective tax rate for both investments and U/W income (assumed to be 35%

for both),

• surplus assumptions (specifics discussed in Section 4.2 above),

• the target return on capital (12%), and

• IRS loss & LAE reserve discount factors:

Table 14: Internal Revenue Service discount factors.
Discount Discount Discount

Year Factor Year Factor Year Factor
2005 0.7410 2010 0.7583 2015 0.8805
2006 0.7367 2011 0.7554 2016 0.9221
2007 0.7438 2012 0.7823 2017 0.9766
2008 0.7040 2013 0.8117 2018 0.9766
2009 0.7264 2014 0.8441 beyond 0.9766

5.1.1 Assets

Required Surplus

Surplus is held only for the policy term in our illustration. It exists to cover unforeseen

contingencies and is determined to maintain an acceptable level of risk. As discussed

above in section 4.2 we used a rented capital approach using a 99% TVaR level of risk

to give a surplus need of $13,229,064.This surplus we assume is held for the first year

only. This assumption reflects the fact that new business writings pose a greater risk

than business in reserve run-off which has capital embedded in reserves to support

unforeseen contingencies.

Total Reserve

The total reserve at any point in time is the sum of the unearned premium reserve

and the held loss & LAE reserves. We assume no reserve deficiency and so as losses

pay out the held loss reserves are taken down dollar for dollar.
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Required Assets

The amount of assets the insurance company needs to support the policy is equal to

total reserves as defined above, plus the required:

Required Assets = Total Reserves + Required Surplus (48)

Illustration

On Jan 1, 2005 the UEPR is equal to the WP which is $3,044,605. The

contract is yet fully unearned and the loss reserves are $0. With surplus

of $13,229,064 put up at treaty inception the total assets are $16,273,669.

By year end the UEPR is $0, loss reserves are equal to $862,782 (ultimate

losses less paid losses of $246,192), and surplus is $0 for total assets of

$862,782.

Table 15: Asset calculation.
Held Surplus Held

UEPR Reserve Capital Asset
1/ 1/2005 3,044,605 0 13,229,064 16,273,669

12/31/2005 0 862,782 0 862,782
12/31/2006 0 537,964 0 537,964
12/31/2007 0 361,694 0 361,694
12/31/2008 0 274,218 0 274,218
12/31/2009 0 209,898 0 209,898
12/31/2010 0 157,776 0 157,776
12/31/2011 0 110,090 0 110,090
12/31/2012 0 69,058 0 69,058
12/31/2013 0 30,244 0 30,244
12/31/2014 0 0 0 0

2

Income Producing Assets

Not all of the assets held by the company to support the policy generate investment

income. Both the premium receivable (if any) and the deferred tax asset are non-

income producing assets:

Income Producing Assets = Required Assets− Premium Receivable−DTA (49)
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In our formulation weve assumed all premium is collected up front and consequently

the premium receivable asset is zero. The calculation of DTA is discussed below.

Investment Income

The Investment Income earned over the year is simply calculated as the product of

the annual effective investment rate of return times the amount of income producing

assets held at the beginning of the year:

Invest Inc@time T = Annual Invest ROR · Investible Assets@time T−1 (50)

Table 16: Investment income calculation.
Held Non-Income Income Investment

Asset Producing Producing Income
1/ 1/2005 16,273,669 0 16,273,669 0

12/31/2005 862,782 28,656 834,125 895,052
12/31/2006 537,964 17,134 520,830 45,877
12/31/2007 361,694 4,028 357,666 28,646
12/31/2008 274,218 8,307 265,911 19,672
12/31/2009 209,898 6,756 203,142 14,625
12/31/2010 157,776 3,919 153,857 11,173
12/31/2011 110,090 4,163 105,927 8,462
12/31/2012 69,058 3,269 65,789 5,826
12/31/2013 30,244 1,994 28,251 3,618
12/31/2014 0 0 0 1,554

5.1.2 Taxes

IRS Discounted Reserves

The IRS Discounted Reserves are calculated by multiplying the company’s Held Re-

serves by a discount factor. The discount factor varies by line of business, accident

year, and by age of the accident year. Our basic formula for IRS discounted reserves

is thus

IRS Discounted Reserves = IRS Discount Factor · Held Reseves (51)

Taxable U/W Income
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The IRS defines the taxable U/W income earned over an accounting year as

Written Premium− 0.8 ·∆UEPR− Paid Expenses

− [Paid Losses + ∆IRS Disc Reserves] (52)

where all activity is over the relevant accounting year. In our illustration the treaty

is effective Jan 1 and so the change in the UEPR is identically zero. Table 17 shows

the computation of the tax on U/W income.

Tax on Investment Income

This tax is simply calculated as 35% of earned investment income for the year.

Total Tax

The total federal income tax paid each year is equal to the sum of the yearly tax on

U/W income and the yearly tax on investment income.

Table 18: Tax calculation.
Tax on Tax on Tax
UW Inc Inv Inc Total

1/ 1/2005
12/31/2005 617, 167 313, 268 930, 436
12/31/2006 −28, 656 16, 057 −12, 599
12/31/2007 −17, 134 10, 026 −7, 108
12/31/2008 −4, 028 6, 885 2, 857
12/31/2009 −8, 307 5, 119 −3, 188
12/31/2010 −6, 756 3, 910 −2, 845
12/31/2011 −3, 919 2, 962 −957
12/31/2012 −4, 163 2, 039 −2, 124
12/31/2013 −3, 269 1, 266 −2, 003
12/31/2014 −1, 994 544 −1, 450

Deferred Tax Asset

There are two components to the DTA: the portion due to the Revenue Offset; and

the portion due to IRS Discounting of Loss & LAE Reserves.

The DTA due to the Revenue Offset is equal to

35% · 20% · UEPR (53)
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For our illustration the year end UEPR is identically equal to zero.

The DTA due to IRS Discounting at the end of Accounting Year T is equal to

35% · [(Held Loss Reserveat time T − IRS Loss Reserveat time T )

− (Held Loss Reserveat time T+1 − IRS Loss Reserveat time T+1)] (54)

The amount in each square bracket is the amount that reverses in the year (which is

all that is statutorily recognized).

Illustration

At year end 2005 the held loss reserve is $862,782 while the IRS discounted

reserve is $639,279. If the full DTA were recognized it would be (862, 782−
639, 279) · 35% = 78, 226. But only the amount that reverses in one year

is recognized. That is, the fully recognized DTA at year end 2006 would

be (537, 964 − 396, 336) · 35% = 49, 570. Thus the amount that reverses

during 2006 is $28,656 and this is the amount of DTA at year end 2005.

2

Table 19: Deferred tax asset calculation.
Held IRS Disc DTA

Reserve Reserves (Reserve Disc)
1/ 1/2005

12/31/2005 862, 782 639, 279 28, 656
12/31/2006 537, 964 396, 336 17, 134
12/31/2007 361, 694 269, 021 4, 028
12/31/2008 274, 218 193, 054 8, 307
12/31/2009 209, 898 152, 468 6, 756
12/31/2010 157, 776 119, 648 3, 919
12/31/2011 110, 090 83, 160 4, 163
12/31/2012 69, 058 54, 022 3, 269
12/31/2013 30, 244 24, 548 1, 994
12/31/2014 0 0 0

5.1.3 Cash Flows

The relevant cash flows for determining the Equity Flow are described below.

U/W Cash Flow
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This item is defined as

U/W Cash Flow = WP− Paid Expenses− Paid Loss (55)

Investment Income Flow

This item is defined as the yearly investment income earned. The calculation is

described above.

Tax Flow

The Tax Cash Flow is defined at the negative (to denote a flow from the company) of

the federal income taxes paid that year. The calculation of this flow item is described

above.

DTA Flow

The DTA Flow is defined as the change in the DTA asset over a year.

Asset Flow

The asset flow is defined as the change in the required assets. The composition and

calculation of the required assets are described above.

Equity Flow

To compute the Equity Flow at each year we use the cash flow definition:

Equity Flow = −Asset Flow + U/W Flow

+ Investment Income Flow + FIT Flow + DTA Flow (56)

Recall that we use the convention that a positive equity flow denotes a flow of cash

from the insurer to the equityholders, and a negative a payment by the equityholders

to the insurer. The relevant cash flows for our illustration are summarized in Table 20.

The IRR on the resulting equity flows is 12%. The premium of $3,044,605 was

iteratively determined with this goal.
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6 Summary

The pricing of high layers of reinsurance is a difficult task primarily because of the

nature of extreme events. The practicing actuary requires a diverse toolbox to tackle

this pricing problem. As part of the toolbox he needs well grounded statistical meth-

ods for analyzing the data at hand, a good understanding of the modeling techniques

and risk assessment, and a comprehensive pricing model that does not sweep un-

der the rug many of the regulatory, tax, and business constraints of the insurance

company.

In the past very large losses would be labeled as outlier observations, rationalized

as extremely improbable, and sometimes even removed from the data set. For the

reinsurance actuary these observations are likely to be the most important observa-

tions in the data set.

In this paper we have introduced results from a well grounded statistical theory

to deal with extreme events. The first result tells us that the distribution of the

maximum of a sample converges to one of the three extreme value distributions. This

result is analogous to the central limit theorem. The second result shows that the

distribution of excess losses converges to the generalized Pareto distribution as the

threshold increases. This is the key result for pricing very high layers of reinsurance.

We also introduce the peaks over threshold method from extreme value theory and a

powerful graphical technique, the QQ-plot, to assess distributional assumptions.

The paper also provides a hands-on approach to loss modeling. We present the

collective risk model and use it to calculate the aggregate loss distribution for the

example that is carried throughout the paper. We also introduced various measures to

quantify risk and our treatment of capital requirements. Our discussions on collective

risk models and risk measures are by no means complete but the framework we have

laid should provide the practicing actuary with a foundation that can be put to

practice.

Finally, the cash flow model (IRR pricing model) brings everything together to

determine the price of a reinsurance layer. It is designed to calculate the equity flows;

that is, the cash flows between the company and its equity holders. This pricing model

is comprehensive: it includes all relevant components of cash flow for an insurance

company to derive the final price given the risk premium and other parameters.
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Appendix A

In this appendix, we will show that the distribution F̂ (x) in equation (21) in sec-
tion 2.4 is a generalized Pareto distribution by deriving the associate parameters.

F̂ (x) = (1− Fn(u)) Gξ,σ(x− u) + Fn(u)

= (1− Fn(u))

(
1−

(
1 +

ξ

σ
(x− u)

)−1/ξ
)

+ Fn(u)

= 1− (1− Fn(u))

(
1 +

ξ

σ
(x− u)

)−1/ξ

= 1−
(

(1− Fn(u))−ξ

(
1 +

ξ

σ
(x− u)

))−1/ξ

= 1−

(
(1− Fn(u))−ξ +

ξ

(1− Fn(u))ξ · σ
(x− u)

)−1/ξ

= 1−

(
1 +

ξ

(1− Fn(u))ξ σ

(
x−

{
u− σ

ξ

[
1− (1− Fn(u))ξ

]}))−1/ξ

= 1−
(

1 +
ξ

σ̃
(x− ũ)

)−1/ξ

= Gξ,σ̃(x− ũ)

where σ̃ = σ(1− Fn(u))ξ and ũ = u− [σ(1− (1− Fn(u))ξ)/ξ].
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Appendix B IRR cash flow model exhibits

Paid Nominal
WP UEPR LAE Brokerage Loss Reserve
(1) (2) (3) (4) (5) (6)

11/ 1/2005 3, 044, 605 3, 044, 605 91, 338 304, 461
12/31/2005 246, 192 862, 782
12/31/2006 324, 817 537, 964
12/31/2007 176, 270 361, 694
12/31/2008 87, 476 274, 218
12/31/2009 64, 320 209, 898
12/31/2010 52, 122 157, 776
12/31/2011 47, 686 110, 090
12/31/2012 41, 032 69, 058
12/31/2013 38, 814 30, 244
12/31/2014 30, 244 0

(3) = (1) · 3.0%
(4) = (1) · 10.0%

Held Surplus Held Non-Income Income
Reserve Capital Asset Producing Producing

(7) (8) (9) (10) (11)
1/ 1/2005 0 13, 229, 064 16, 273, 669 0 16, 273, 669

12/31/2005 862, 782 0 862, 782 28, 656 834, 125
12/31/2006 537, 964 0 537, 964 17, 134 520, 830
12/31/2007 361, 694 0 361, 694 4, 028 357, 666
12/31/2008 274, 218 0 274, 218 8, 307 265, 911
12/31/2009 209, 898 0 209, 898 6, 756 203, 142
12/31/2010 157, 776 0 157, 776 3, 919 153, 857
12/31/2011 110, 090 0 110, 090 4, 163 105, 927
12/31/2012 69, 058 0 69, 058 3, 269 65, 789
12/31/2013 30, 244 0 30, 244 1, 994 28, 251
12/31/2014 0 0 0 0 0

(7) = 100% · (6)
(9) = (2) + (7) + (8)
(10) = (21)
(11) = (9)− (10)
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Investment IRS Disc Taxable Tax Paid Taxable
Income Factors UW income UW Invest

(12) (13) (14) (15) (16)
1/ 1/2005 0

12/31/2005 895, 052 0.7410 1, 763, 335 617, 167 895, 052
12/31/2006 45, 877 0.7367 −81, 874 −28, 656 45, 877
12/31/2007 28, 646 0.7438 −48, 955 −17, 134 28, 646
12/31/2008 19, 672 0.7040 −11, 508 −4, 028 19, 672
12/31/2009 14, 625 0.7264 −23, 735 −8, 307 14, 625
12/31/2010 11, 173 0.7583 −19, 301 −6, 756 11, 173
12/31/2011 8, 462 0.7554 −11, 198 −3, 919 8, 462
12/31/2012 5, 826 0.7823 −11, 895 −4, 163 5, 826
12/31/2013 3, 618 0.8117 −9, 340 −3, 269 3, 618
12/31/2014 1, 554 0.8441 −5, 696 −1, 994 1, 554

(12)t = (11)t−1 · 5.5%
(14)t = (1)t − 80% · ((2)t − (2)t−1)− (3)t − (4)t − (5)t − ((7)t · (13)t − (7)t−1 · (13)t−1)
(15) = (14) · 35%
(16) = (12)

Tax Paid Total Tax DTA Revenue DTA Reserve Total
Inv Inc Paid Offset Disc DTA

(17) (18) (19) (20) (21)
1/ 1/2005 0 0 0 0

12/31/2005 313, 268 930, 436 0 28, 656 28, 656
12/31/2006 16, 057 −12, 599 0 17, 134 17, 134
12/31/2007 10, 026 −7, 108 0 4, 028 4, 028
12/31/2008 6, 885 2, 857 0 8, 307 8, 307
12/31/2009 5, 119 −3, 188 0 6, 756 6, 756
12/31/2010 3, 910 −2, 845 0 3, 919 3, 919
12/31/2011 2, 962 −957 0 4, 163 4, 163
12/31/2012 2, 039 −2, 124 0 3, 269 3, 269
12/31/2013 1, 266 −2, 003 0 1, 994 1, 994
12/31/2014 544 −1, 450 0 0 0

(17) = (16) · 35%
(18) = (15) + (17)
(19) = 20% · (2) · 35%
(20)t = (((7)t − (7)t−1)− ((7)t · (13)t − (7)t−1 · (13)t−1) · 35%
(21) = (19) + (20)
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Cash Investment Equity
UW Income Asset Tax DTA Flow
(22) (23) (24) (25) (26) (27)

1/ 1/2005 2, 648, 806 0 16, 273, 669 0 0 −13, 624, 863
12/31/2005 −246, 192 895, 052 −15, 410, 887 −930, 436 28, 656 15, 157, 968
12/31/2006 −324, 817 45, 877 −324, 817 12, 599 −11, 522 46, 954
12/31/2007 −176, 270 28, 646 −176, 270 7, 108 −13, 107 22, 648
12/31/2008 −87, 476 19, 672 −87, 476 −2, 857 4, 279 21, 094
12/31/2009 −64, 320 14, 625 −64, 320 3, 188 −1, 552 16, 262
12/31/2010 −52, 122 11, 173 −52, 122 2, 845 −2, 836 11, 182
12/31/2011 −47, 686 8, 462 −47, 686 957 244 9, 663
12/31/2012 −41, 032 5, 826 −41, 032 2, 124 −894 7, 056
12/31/2013 −38, 814 3, 618 −38, 814 2, 003 −1, 275 4, 346
12/31/2014 −30, 244 1, 554 −30, 244 1, 450 −1, 994 1, 010

(22) = (1)− (3)− (4)− (5)
(23) = (16)
(24)t = (9)t − (9)t−1

(25) = −(18)
(26)t = (21)t − (21)t−1.
(27) = −(24) + (22) + (23) + (25) + (26)

Appendix C Distribution Functions

In Table 21 (on the next page) we present some common distribution functions and their
parametrizations.
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