9/15/2011

1

Risk pricing for Australian Auto

October 2011

Contents

Contents

Scope

- Portfolio
 - Several brands, all Australian states
 - 9 million policy years worth of exposure
- Brief
 - Build a "state of the art" risk pricing model
- Coverage
 - All brands, all states
- This presentation concentrates on atfault collision frequency

Modelling philosophy

• Our aim when determining how complex our model should be, is to minimise Prediction Error in Test/Holdout Datasets

How many models?

How many models?

Contents

Large universe of potential predictors

Partitioning and sampling

- 44M records, 3000 potential predictors
 - SAS dataset is 1400GB uncompressed!
- Need to reduce this to a size that we can deal with
 - Partition and sample "horizontally"
 - Learn, test and holdout sets
 - Keep all the "1"s but only some of the zeros
 - Partition and sample "vertically" for variable selection
- Have a strategy for time based testing

Partitioning and sampling - horizontal

12

Time based testing

Contents

Filtering tool of choice - Treenet

- What is Treenet? Or MART or GBM
 - A gradient based boosting algorithm using small decision trees as the base learners
 - Performs both classification and regression, with various choices of loss functions
 - Falls into the general class of ensemble based predictive models
- Gives very good "out of the box" models which often take some time and effort to surpass, <u>but</u>
 - Maximum capacity (of Salford implementation) is about 300 variables and 1M observations
 - Overfits generally, and
 - Gives preferential treatment to high level categorical variables

Filtering – general process

- Partition dataset (horizontal) and variables (vertical)
- For each variable partition
 - Main rating variables included in each partition
 - High level categorical variables grouped or excluded
- Fit Treenet models to each partition
- The best variables from each partition enter the "super group"
- Using Treenet, the super-group gets shaved from the bottom until performance on the test set peaks
- Proc Varclus (SAS) used to discard correlated variables
- More Treenet shaving

Initial variable filtering

Filtering – variable shaving

© Taylor Fry Pty Ltd

Correlated variables

Problem

- Highly correlated variables are undesirable in GLMs:
 - Misleading parameters and significance
 - Odd shapes
 - Longer fit times
- Removal one of a pair of closely correlated variable generally has negligible impact on model performance

Solution

- Apply hierarchical variable clustering (Proc Varclus) to identify sets of correlated variables
- Keep one or two variables from each cluster – based on rank in TreeNet importance lists
- Rerun TreeNet on reduced variable list to check performance not materially degraded
- Produce correlation matrix to check that no major correlations remain

Contents

Modelling - techniques

- Machine learning models
 - Non-parametric
 - Easy to build
 - Adequate fit with little effort
 - Push button to update
 - Performance often not as good as good GLM
 - Can be over-parameterised
 - Little insight (except decision trees)
 - Recalibration can lead to large changes at the observation level
 - TF preferred for variable selection and interaction searches

- Generalised Linear Models (GLMs)
 - Structure, form, INSIGHT
 - Equal or better model with fewer parameters
 - More stable over time
 - Push button to update but with some care
 - Harder to build good models
 - Can be very hard if the structure is complex (but this is very rare)
 - May not pick all structural nuances
 - TF preferred for main model

Modelling - GLM fitting strategy

• All GLMs fitted in SAS using TF custom macros

Mean/variance and distribution

Variance diagnostics

© Taylor Fry Pty Ltd

Simplifying continuous variables

Simplifying categorical variables

	pvalue						
	C_distributionchannel						
	AGENT	BRANCH	BROKER	CALLCENTR	HONDA	Missing	WEB
R_distributionchannel							
AGENT							
BRANCH	0.00						
BROKER	0.39	0.04					-
CALLCENTR	0.45	0.00	0.43				
HONDA	0.70	0.00	0.35	0.43			
Missing	0.08	0.00	0.61	0.13	0.11		-
WEB	0.13	0.01	0.20	0.06	0.31	0.02	

Contents

Extensive search for interactions

Contents

Vehicle and geographic overlays

- Final model
 - 54 predictors and 200 parameters, including
 - 100 state/brand interactions and 36 other interactions
- Vehicle characteristics and geography largely accounted for and integrated
- Still possible residual effects from high level categorical variables
 - Make, model and zone?

Credibility overlays

• Credibility overlays used to model residual vehicle and geographic variation

 Each level in the hierarchy has a relativity factor applied, representing a portion of the actual observed relativity.

Vehicle credibility overlay - details

 Adaptation of approach suggested by Ohlsson, Scandinavian Actuarial Journal, 2008 (for log link)

 $y^* = f_{make}f_{model}f_{variant}y$ $f_{make=k} = (1-z_k)+z_kr_k$ $z_k = w_k/(w_k + T)$

 $w_k = \sum_k y$, for Poisson model

- Relativities are done sequentially, using test set to set optimal T (see other TF presentation at this seminar)
- Combined assigned relativities
 - Within +/- 15%
 - 95% within +/- 10%

© Taylor Fry Pty Ltd

Alternative geographic overlays

Alternative geographic overlays

Contents

Overall fit diagnostic

Actual versus Expected by Predicted Band

© Taylor Fry Pty Ltd

Comparison with recalibrated base

Comparison with recalibrated base

Contents

Sources of value

© Taylor Fry Pty Ltd

Contents

Final tests

Machine overlays

Different machine learning overlays

Effect of Treenet overlay

