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Homeowners Insurance

Homeowners represents a large segment of the personal
property and casualty (general) insurance business
In the US, premiums are over $57 billions of US dollars (I.I.I.
Insurance Fact Book 2010)

This is 13.6% of all property and casualty insurance premiums
This is 26.8% of personal lines insurance.

It is difficult to think about buying a house without purchasing
homeowners insurance
Homeowners is typically sold as an all-risk policy, which covers
all causes of loss except those specifically excluded.
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Perils of Homeowners Insurance

Many actuaries interested in pricing homeowners insurance are
now decomposing the risk by peril, or cause of loss (e.g., Modlin,
2005).

Decomposing risks by peril is not unique to personal lines
insurance nor is it new.

Customary in population projections to study mortality by cause of
death (e.g. Board of Trustees, 2009).
Robert Hurley (Hurley, 1958) discussed statistical considerations of
multiple peril rating in the context of homeowner insurance.
Referring to “multiple peril rating,” Hurley stated: The very name,
whatever its inadequacies semantically, can stir up such partialities
that the rational approach is overwhelmed in an arena of turbulent
emotions.

Rollins (2005) - multi-peril rating is critical for maintaining
economic efficiency and actuarial equity.
Decomposing risks by peril is intuitively appealing because some
predictors do well in predicting certain perils but not others.

Example - “dwelling in an urban area” may be an excellent predictor
for the theft peril but provide little useful information for the hail peril.
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Some Perils - Hail

What Is Hail?
a large frozen raindrop produced by intense thunderstorms

As the snowflakes fall, liquid water freezes onto them, forming ice
pellets that will continue to grow as more and more droplets
accumulate.
Upon reaching the bottom of the cloud, some of the ice pellets are
carried by the updraft back up to the top of the storm.
As the ice pellets once again fall through the cloud, another layer of
ice is added and the hail stone grows even larger.

The Largest Hailstone
Recorded fell in Coffeyville, Kansas, on September 3, 1970.
It measured about 17.5 inches in circumference (over 5.6 inches in
diameter) and weighed more than 26 ounces (almost 2 pounds)!
Most hail is small – usually less than two inches in diameter.
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Some Perils - Lightning

What is Lightning?
Lightning is caused by the attraction between positive and negative
charges in the atmosphere, resulting in the buildup and discharge
of electrical energy.

Twenty percent of lightning strike victims die and 70% of survivors
suffer serious long-term after-effects.
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Some Perils - Fire
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Some Perils - Wind

Source: Federal Alliance for Safe Homes (http://www.flash.org/)
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Sample Selection

We drew a random sample of size n = 404,664 from a
homeowners database maintained by the ISO Innovative
Analytics.

This database contains over 4.2 million policyholder years.
Based on the policies issued by several major insurance
companies in the US, thought to be representative of most
geographic areas.

For covariates, there are a variety of geographic-based plus
several standard industry variables that account for:

weather and elevation,
vicinity,
commercial and geographic features,
experience and trend, and
rating variables.

See the web site http://www.iso.com/Products/ISO-Risk-
Analyzer/ISO-Risk-Analyzer-
for more info.
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9 Perils in Homeowners Insurance

Table: Summarizing 404,664 Policy-Years

Peril (j) Frequency Number Median
(in percent) of Claims Claims

Fire 0.310 1,254 4,152
Lightning 0.527 2,134 899
Wind 1.226 4,960 1,315
Hail 0.491 1,985 4,484
WaterWeather 0.776 3,142 1,481
WaterNonWeather 1.332 5,391 2,167
Liability 0.187 757 1,000
Other 0.464 1,877 875
Theft-Vandalism 0.812 3,287 1,119
Total 5.889∗ 23,834∗ 1,661
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Types of Models

Single Cause of Loss (Single-Peril)
Frequency-Severity
Pure Premium

Multiple Causes of Loss (Multi-Peril)
Independent Perils

Frequency-Severity
Pure Premium

Models of Dependence
Instrumental Variables
Alternative Approaches
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Single-Peril Models

Some notation
yi - describes the amount of the loss.
xi - the complete set of explanatory variables.
ri - a binary variable indicating whether or not the ith subject has a loss.

Pure Premium (Tweedie) Modeling Strategy:
yi is the dependent variable, xi is the set of explanatory variables.
Loss distribution contains many zeros (corresponding to no claims) and
positive amounts
Tweedie distribution - motivated as a Poisson mixture of gamma random
variables.
Readily estimated using generalized linear model (GLM) techniques
Logarithmic link function - the mean parameter may be written as
µi = exp(x′iβ ).

Frequency-Severity (Two-Part Models) Modeling Strategy:
Use a binary regression model with ri as the dependent variable and x1i as
the set of explanatory variables. (Typical models: logit, probit).
Conditional on ri = 1, specify a regression model with yi as the dependent
variable and x2i as the set of explanatory variables.
(Typical models: lognormal, gamma).
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Multi-Peril Independence Frequency Severity

Decompose the risk into one of 9 types.
rij - binary variable to indicate a claim due to the jth type, j = 1, . . . ,c.
yij - the amount of the claim due to the jth type.

Explanatory variables selected by peril j for the frequency, xF,i,j, and
severity, xS,i,j, portions, j = 1, . . . ,9.

For example, these variables range in number from eight for the Other peril
to nineteen for the Water Weather peril.

Modeling Strategy
Frequency - a logistic regression model with ri,j as the dependent variable
and xF,i,j as the set of explanatory variables, with corresponding set of
regression coefficients β F,j.
Severity - gamma regression model with yi,j as the dependent variable and
xS,i,j as the set of explanatory variables, with corresponding set of
regression coefficients β S,j.
We do this for each peril, j = 1, . . . ,9.

Modeling - equivalent to assuming that
perils are independent of one another and
that sets of parameters from each peril are unrelated to one another.

We call these the “independence” frequency-severity models
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Multi-Peril Independence Pure Premium
Model

For each peril, j = 1, . . . ,9, we:
yij is the dependent variable
Define the union of the frequency xF,i,j and severity xS,i,j variables
to be our set of explanatory variables for the jth peril, xi,j
Fit the model using generalized linear model (GLM) techniques with
Logarithmic link function - the mean parameter may be written as
µi,j = exp(x′i,jβ j).

We call these the “independence” pure premium models.
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Dependencies Among Perils

Current actuarial practice involves modeling each peril in
isolation of the others.

Use a set of variables x1,j to predict the frequency and
another a set x2,j to predict the severity for each peril, j = 1, . . . ,c.

This amounts to assuming that perils are independent of one
another
We anticipate dependence among perils

Event classification can be ambiguous (e.g., fires triggered by
lightning)
Unobserved latent characteristics of policyholders (cautious
homeowners who are sensitive to potential losses due to
theft-vandalism and liability) may induce dependencies among
perils
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Dependencies - Empirical Evidence

We found substantial evidence of dependencies among frequencies
- less evidence among severities

To see this, for j = 1, . . . ,9,
Run a logistic regression model for each peril.
Calculate fitted probabilities q̂ij - estimates of the probability of a claim
for policyholder i, peril j
Number of joint claims (jth and kth perils) = ∑

n
i=1 rij× rik.

Assuming independence among perils, this has mean and variance

E

(
n

∑
i=1

rij× rik

)
=

n

∑
i=1

qij×qik

and

Var

(
n

∑
i=1

rij× rik

)
=

n

∑
i=1

qijqik− (qijqik)
2.

To assess dependencies, use a t-statistic

tjk =
∑

n
i=1 rij× rik−∑

n
i=1 qij×qik√

∑
n
i=1 qijqik− (qijqik)2

.

This t-statistic is a standard two-sample t-statistic except that we
allow the probability of a claim to vary by policy i.
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Dependencies - Empirical Evidence

Table: Test Statistics From Logistic Regression Fits

Light Water Water Non
Fire ning Wind Hail Weather Weather Liability Other

Lightning 1.472
Wind 1.662 1.530
Hail 0.754 0.247 -1.240
WaterWeath 3.955 -1.166 3.185 -0.100
WaterNWeath 2.732 0.837 3.369 1.697 7.429
Liability 1.023 -0.485 2.436 -0.303 0.333 1.825
Other 4.048 2.229 3.919 -2.616 0.478 4.004 4.929
TheftVand 3.085 1.816 2.270 -0.235 2.227 3.503 1.147 3.766

Strong statistical evidence of dependencies!!
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Instrumental Variables

Instrumental variable (IV) estimation is a classic econometric technique.

Here is a quick overview of the basic idea.

Suppose that theory suggests a linear model :

y1 = x′β 1 +β2y2 + ε

Ordinary least squares is not available because y2 is related to ε

The instrumental variable strategy
assumes that you have available “instruments” w to approximate y2
First stage: Run a regression of w on y2 to get fitted values for y2 of the
form w′g
Second stage: Run a regression of x and w′g on y1

There are conditions on the instruments. Typically, they may include
a subset of x but must also include additional variables.
Instrumental variables are employed when there are (1) systems of
equations, (2) errors in variables and (3) omitted variables.

18 / 33



Homeowners
Insurance

Frees

Homeowners
Insurance

Modeling
Home-
owners
Risk

Instrumental
Variable
Approach

Out of
Sample
Validation

Appendix

Instrumental Variables

Instrumental variable (IV) estimation is a classic econometric technique.

Here is a quick overview of the basic idea.

Suppose that theory suggests a linear model :

y1 = x′β 1 +β2y2 + ε

Ordinary least squares is not available because y2 is related to ε

The instrumental variable strategy
assumes that you have available “instruments” w to approximate y2
First stage: Run a regression of w on y2 to get fitted values for y2 of the
form w′g
Second stage: Run a regression of x and w′g on y1

There are conditions on the instruments. Typically, they may include
a subset of x but must also include additional variables.
Instrumental variables are employed when there are (1) systems of
equations, (2) errors in variables and (3) omitted variables.

18 / 33



Homeowners
Insurance

Frees

Homeowners
Insurance

Modeling
Home-
owners
Risk

Instrumental
Variable
Approach

Out of
Sample
Validation

Appendix

Instrumental Variables

Instrumental variable (IV) estimation is a classic econometric technique.

Here is a quick overview of the basic idea.

Suppose that theory suggests a linear model :

y1 = x′β 1 +β2y2 + ε

Ordinary least squares is not available because y2 is related to ε

The instrumental variable strategy
assumes that you have available “instruments” w to approximate y2
First stage: Run a regression of w on y2 to get fitted values for y2 of the
form w′g
Second stage: Run a regression of x and w′g on y1

There are conditions on the instruments. Typically, they may include
a subset of x but must also include additional variables.
Instrumental variables are employed when there are (1) systems of
equations, (2) errors in variables and (3) omitted variables.

18 / 33



Homeowners
Insurance

Frees

Homeowners
Insurance

Modeling
Home-
owners
Risk

Instrumental
Variable
Approach

Out of
Sample
Validation

Appendix

Instrumental Variables Approach to
Dependence Modeling

First consider the distribution of r1

We believe that r2, . . . ,r9 may affect the distribution of r1
The variables r2, . . . ,r9 are not sensible explanatory variables but
we can use estimates of them.

Here is an outline of our proposed procedure:
For each of the nine perils

Fit a logistic regression model using an initial set of explanatory
variables. These explanatory variables differ by peril.
Calculate fitted values to get predicted probabilities (by peril).

For each of the nine perils, fit a logistic regression model using
the initial set of explanatory variables and
the logarithmic predicted probabilities developed above.

The paper contains extensions to incorporate severities
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IV Pure Premium Model Coefficients

Table: Shown are coefficients associated with the instruments, logarithmic fitted values.

Dependent Variables
Fire Lightning Wind

Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic
Log Fitted Fire 0.3313 25.10 -0.0184 -1.52
Log Fitted Lightning 0.2200 15.49 0.4120 28.81
Log Fitted Wind -0.0468 -3.16 0.2238 15.43
Log Fitted Hail -0.0196 -4.08 0.0702 14.04 -0.1021 -23.74
Log Fitted WaterWeather 0.2167 14.16 -0.2120 -11.98 -0.0706 -4.20
Log Fitted WaterNonWeat -0.0568 -4.66 0.2822 12.54 0.3442 18.51
Log Fitted Liability -0.0696 -6.05 -0.1667 -12.82 -0.0330 -2.82
Log Fitted Other -0.0147 -1.34 0.0081 0.80 -0.2229 -20.45
Log Fitted Theft 0.7854 37.76 -0.1107 -4.77 -0.1815 -10.20

The additional variables are statistically significant for each peril.
This is just 3 of the 9 perils. Others are in the appendix.
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Homeowners Data

The “gold standard” in predictive modeling is model validation
through examining performance of an independent held-out
sample of data (e.g., Hastie, Tibshirani and Friedman, 2001)

We drew two random samples from a homeowners database
maintained by the Insurance Services Office.
Our in-sample, or “training,” dataset consists of a representative
sample of 404,664 records taken from this database.

We estimated several competing models from this dataset

We use a held-out, or “validation” subsample of 359,454 records,
whose claims we wish to predict.

We present 8 scores that were calculated using the estimated
models from the in-sample data and the explanatory variables from
the held-out sample
The paper includes additional scoring methods

21 / 33
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Scores from the Homeowners Example

Score Description
Basic, Single-peril

BasicFS Frequency and Severity model
BasicTweedie Pure premium (Tweedie) model
INDFreqSev Multi-peril Frequency and Severity model

Assumes independence among perils
Instrumental Variable Multi-peril Frequency and Severity models

IVFreqSevA Uses instruments for frequency component
IVFreqSevB Uses instruments for severity component
IVFreqSevC Uses instruments for frequency and severity components

Multi-peril pure premium (Tweedie) models
INDTweedie Assumes independence among perils
IVTweedie Instrumental Variable version
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Out-of-Sample Results

Figure 1 emphasizes that there are important differences among
scoring methods
The paper documents several methods for comparing scores to
held-out losses

This presentation focuses on the “Gini” index
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Figure: Single versus Multi-Peril Frequency-Severity Scores. This graph is
based on a 1 in 100 random sample of size 3,594. The correlation coefficient is
only 79.4%.
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Gini Results from the Homeowners Example

Comparison Score
Base Basic IND IVFreqSev IND IV

Premium FS TW FreqSev A B C Tweedie Maxima
ConsPrem 28.81 28.11 28.00 29.42 28.18 29.44 28.46 28.42 29.44
BasicFS - 4.41 7.15 9.15 7.32 9.09 9.25 9.49 9.49
BasicTW 9.13 - 8.55 10.31 8.79 10.53 9.68 9.54 10.53
INDFreqSev 11.28 8.99 - 10.47 4.42 10.26 9.55 11.09 11.28
IVFreqSevA 7.15 3.98 -2.27 - -2.15 1.93 4.48 5.07 7.15
IVFreqSevB 11.03 8.52 -1.62 10.13 - 9.92 8.87 10.32 11.03
IVFreqSevC 7.43 3.89 -0.91 0.82 -1.68 - 4.50 4.55 7.43
INDTweedie 8.57 6.82 4.20 7.40 4.25 7.30 - 3.66 8.57
IVTweedie 8.38 6.58 5.40 7.21 5.55 7.50 4.11 - 8.38

Standard errors are about 1.4 for each Gini coefficient
When constant exposure is the base, all of the comparison
scores do so well it is difficult to distinguish among them
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Gini Results from the Homeowners Example

Comparison Score
Base Basic IND IVFreqSev IND IV

Premium FS TW FreqSev A B C Tweedie Maxima
ConsPrem 28.81 28.11 28.00 29.42 28.18 29.44 28.46 28.42 29.44
BasicFS - 4.41 7.15 9.15 7.32 9.09 9.25 9.49 9.49
BasicTW 9.13 - 8.55 10.31 8.79 10.53 9.68 9.54 10.53
INDFreqSev 11.28 8.99 - 10.47 4.42 10.26 9.55 11.09 11.28
IVFreqSevA 7.15 3.98 -2.27 - -2.15 1.93 4.48 5.07 7.15
IVFreqSevB 11.03 8.52 -1.62 10.13 - 9.92 8.87 10.32 11.03
IVFreqSevC 7.43 3.89 -0.91 0.82 -1.68 - 4.50 4.55 7.43
INDTweedie 8.57 6.82 4.20 7.40 4.25 7.30 - 3.66 8.57
IVTweedie 8.38 6.58 5.40 7.21 5.55 7.50 4.11 - 8.38

The relativities are based on ratios of scores
The two-sample test shows that relativities based on differences of
scores are statistically indistinguishable - we need not consider
both

The two-sample test shows that the IVFreqSevB performs more
poorly than "A" and "C" on a number of tests - not a viable
candidate
A “mini-max” strategy for selecting a score suggests that
IVFreqSevA is our top performer.
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Concluding Remarks

We examined other types of multivariate frequency models, including
alternating logistic regressions and dependence ratio models. See
Frees, Meyers and Cummings (2010, Astin Bulletin). These did not
fare as well.

The instrumental variable estimation technique is motivated by
systems of equations, where the presence and amount of one peril
may affect another.
For our data, each accident event was assigned to a single peril.

For other databases where an event may give rise to losses for multiple
perils, we expect greater association among perils.
Intuitively, more severe accidents give rise to greater losses and this
severity tendency will be shared among losses from an event.
We conjecture that instrumental variable estimators will be even more
helpful for companies that track accident event level data.
This is also true for other lines of business, e.g., personal auto.

26 / 33



Homeowners
Insurance

Frees

Homeowners
Insurance

Modeling
Home-
owners
Risk

Instrumental
Variable
Approach

Out of
Sample
Validation

Appendix

Concluding Remarks

We examined other types of multivariate frequency models, including
alternating logistic regressions and dependence ratio models. See
Frees, Meyers and Cummings (2010, Astin Bulletin). These did not
fare as well.
The instrumental variable estimation technique is motivated by
systems of equations, where the presence and amount of one peril
may affect another.

For our data, each accident event was assigned to a single peril.
For other databases where an event may give rise to losses for multiple
perils, we expect greater association among perils.
Intuitively, more severe accidents give rise to greater losses and this
severity tendency will be shared among losses from an event.
We conjecture that instrumental variable estimators will be even more
helpful for companies that track accident event level data.
This is also true for other lines of business, e.g., personal auto.

26 / 33



Homeowners
Insurance

Frees

Homeowners
Insurance

Modeling
Home-
owners
Risk

Instrumental
Variable
Approach

Out of
Sample
Validation

Appendix

Concluding Remarks

We examined other types of multivariate frequency models, including
alternating logistic regressions and dependence ratio models. See
Frees, Meyers and Cummings (2010, Astin Bulletin). These did not
fare as well.
The instrumental variable estimation technique is motivated by
systems of equations, where the presence and amount of one peril
may affect another.
For our data, each accident event was assigned to a single peril.

For other databases where an event may give rise to losses for multiple
perils, we expect greater association among perils.
Intuitively, more severe accidents give rise to greater losses and this
severity tendency will be shared among losses from an event.
We conjecture that instrumental variable estimators will be even more
helpful for companies that track accident event level data.
This is also true for other lines of business, e.g., personal auto.

26 / 33



Homeowners
Insurance

Frees

Homeowners
Insurance

Modeling
Home-
owners
Risk

Instrumental
Variable
Approach

Out of
Sample
Validation

Appendix

Concluding Remarks

Incorporating dependencies into pricing structure can provide
substantial additional predictive abilities.

One could also use this strategy to model homeowners and
automobile policies jointly or umbrella policies, that consider several
coverages simultaneously.
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Instrumental Variable Pure Premium Model
Coefficients

Table: Shown are coefficients associated with the instruments, logarithmic fitted values.

Dependent Variables
Fire Lightning Wind

Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic
Log Fitted Fire 0.3313 25.10 -0.0184 -1.52
Log Fitted Lightning 0.2200 15.49 0.4120 28.81
Log Fitted Wind -0.0468 -3.16 0.2238 15.43
Log Fitted Hail -0.0196 -4.08 0.0702 14.04 -0.1021 -23.74
Log Fitted WaterWeather 0.2167 14.16 -0.2120 -11.98 -0.0706 -4.20
Log Fitted WaterNonWeat -0.0568 -4.66 0.2822 12.54 0.3442 18.51
Log Fitted Liability -0.0696 -6.05 -0.1667 -12.82 -0.0330 -2.82
Log Fitted Other -0.0147 -1.34 0.0081 0.80 -0.2229 -20.45
Log Fitted Theft 0.7854 37.76 -0.1107 -4.77 -0.1815 -10.20

Dependent Variables
Hail Water Weather Water NonWeather

Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic
Log Fitted Fire -0.0786 -7.08 0.1162 7.13 0.3789 33.24
Log Fitted Lightning 0.1291 9.36 0.0062 0.51 -0.0555 -3.58
Log Fitted Wind 0.1194 5.43 0.0504 3.76 0.0329 2.49
Log Fitted Hail -0.0437 -8.74 0.0007 0.14
Log Fitted WaterWeather 0.2794 12.64 -0.2504 -16.37
Log Fitted WaterNonWeat -0.1302 -7.48 0.2833 18.16
Log Fitted Liability -0.4527 -35.37 -0.1764 -14.95 -0.1297 -11.58
Log Fitted Other -0.2411 -21.72 0.2419 20.33 0.0449 4.49
Log Fitted Theft 0.4334 27.43 0.2642 14.36 0.0827 5.10

Dependent Variables
Liability Other Theft

Explanatory Variables Estimate t-statistic Estimate t-statistic Estimate t-statistic
Log Fitted Fire 0.6046 50.38 -0.2285 -19.20 0.2881 25.72
Log Fitted Lightning 0.3883 31.83 0.1874 19.73 0.1567 11.36
Log Fitted Wind -0.6248 -46.63 -0.1297 -11.09 -0.0907 -7.75
Log Fitted Hail 0.0822 16.12 -0.2128 -56.00 -0.0258 -6.00
Log Fitted WaterWeather -0.4337 -22.71 0.2708 27.92 0.2515 18.22
Log Fitted WaterNonWeat -0.2227 -12.80 0.5306 28.99 -0.2138 -15.06
Log Fitted Liability -0.0341 -3.88 -0.1174 -11.40
Log Fitted Other 0.1258 12.21 0.1555 16.37
Log Fitted Theft 0.1447 7.13 -0.0658 -3.45
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Multivariate Multi-Peril Model

Model

1 Use a multivariate binary regression model with ri = (ri,1, . . . ,ri,c)
′

as the dependent variable.
2 Conditional on the frequency ri, for the severity we specify a

multivariate regression with yi = (yi,1, . . . ,yi,c)
′ as the dependent

variable.
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Multivariate Severity Models

Marginal distributions
For all perils j, gamma regressions with a logarithmic link
Differing for each peril j, explanatory variables x2i,j, regression
parameters β 2j and scale parameters scalej.

Association, use a gaussian (normal) copula

copN(u1, . . . ,uc) = φN
(
Φ
−1(u1), . . . ,Φ

−1(uc)
) c

∏
j=1

1
φ(Φ−1(uj))

.

Φ and φ are the standard normal distribution and density functions.
The multivariate normal density is

φN(z) =
1

(2π)c/2
√

detΣ
exp
(
−1

2
z′Σ−1z

)
.

The matrix Σ is a correlation matrix, with ones on the diagonal.

For a single association parameter, the maximum likelihood
estimator turned out to be 0.0746 with a t-statistic = 3.256,
positively statistically significant.
For other specifications, there are not enough joint claims to model
the association among severities in a significant fashion.
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IV Approach in Severity

Here is a way to incorporate pure premiums, say PREMj, that may
vary by peril

In our data work, we will use base cost loss costs to approximate
PREMj.

The IV approach provides motivation for using frequency to predict
severity:

Pure premium is expected frequency times severity, that is,
PREMj = πj×E yj
This suggests that a good explanatory variable for the severity portion
is PREMj/πj.
Of course, we do not know πj but can estimate from a stage 1
regression as, say, π̂j
Because we use a log-link function, this suggests including
ln(PREMj/π̂j). Often, logarithmic base cost loss cost are already in the
regression, so

Include ln π̂j as a predictor of severity.
Now, reverse the roles of frequency and severity – include ln Ê yj as a
predictor of frequency.
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Summary of IV Approach

1. Stage 1 - For each of the nine perils:
1a. Fit a logistic regression model using an initial set of explanatory
variables. These explanatory variables differ by peril. Calculate fitted
values to get predicted probabilities (by peril).
1b. Fit a gamma regression model using an initial set of explanatory
variables with a logarithmic link function. These explanatory variables
differ by peril and differ from those used in the frequency model.
Calculate fitted values to get predicted severities (by peril).

2. Stage 2 - For each of the nine perils:
2a. Fit a logistic regression model using

(i) an initial set of explanatory variables ,
(ii) the logarithm of the predicted probabilities developed in step 1(a) and
(iii) the logarithm of the fitted values in step 1(b).

2b. Fit a gamma regression model using
(i) an initial set of explanatory variables and
(ii) the logarithm of the fitted values in step 1(a).
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