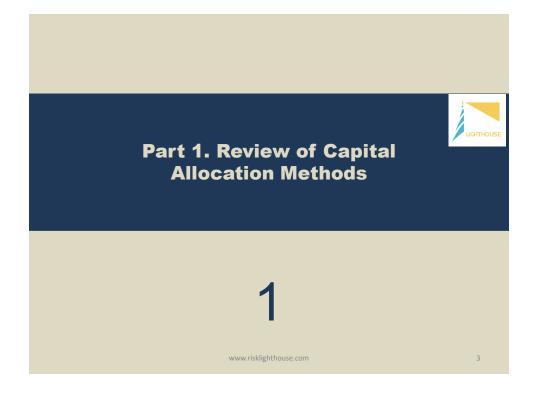


Capital Allocation: A Benchmark Approach

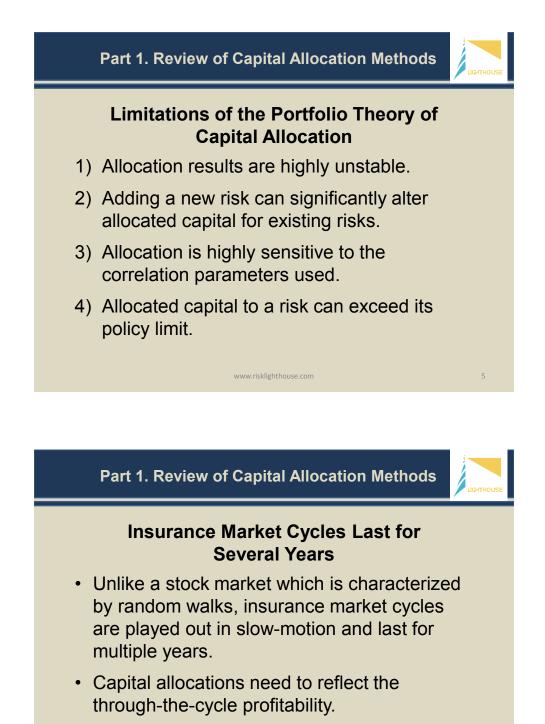
Risk Lighthouse, LLC


by Dr. Shaun Wang October 5, 2012

Acknowledgement:

Support from

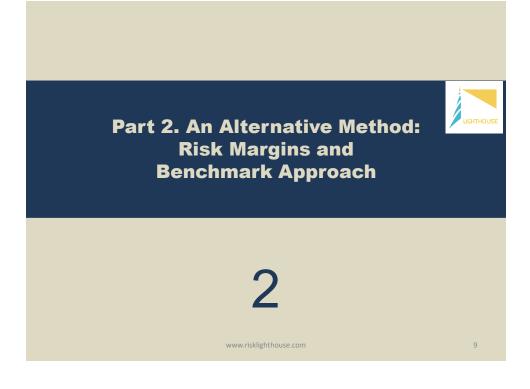
Tokio Marine Technologies LLC

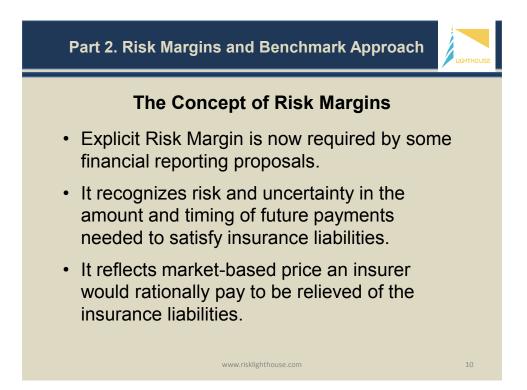


Portfolio Theory of Capital Allocation

- Most current capital allocation methods are variations of the Markowitz Portfolio Theory, based on portfolio Value-at-Risk and marginal contributions.
 - Diversification benefit is a key driver that impacts allocated capital.
 - ✓ It is hard to select correlation parameters among lines of business.

 In insurance, customer relation is an important factor in long-term profitability.


Part 1. Review of Capital Allocation Methods **Net Written Premium Growth Rate** (Percent) 1975-78 1984-87 2000-03 25% Net Written Premiums fell 0.7% in 2007 (first decline since 1943) by 2.0% in 20% 2008, and 4.2% in 2009, the first 3-year decline since 1930-33. 15% 10% 5% 0% NWP was up 0.9% in 2010 with forecast growth of 1.4% in 2011 -5% Shaded areas denote "hard market" periods Sources: Insurance Information Institute, A.M. Best, ISO www.risklighthouse.com


Part 1. Review of Capital Allocation Methods							
A Case Example: Wildly Different Capital Allocation Methods Gary Venter, Feb 2002 Actuarial Review							
In 2001, the CAS Call For Papers to analyze a		Philbrick & Painter *	Bohra & Weist **				
<u>hypothetical insurer</u> , recommend a reinsurance		% of Surplus Allocated	% of Surplus Allocated	Relative Ratio			
program, allocate capital, etc.	Workers Comp Auto Liab	41% 26%	11% 29%	3.73 0.90			
	HO/CMP Prop Auto Phys Dmg GL/CMP Liab	11% 1% 21%	51% 1% 8%	0.22 1.00 2.63			
	Total * From Swiss Re ** From Munich-/		100%				

www.risklighthouse.com

4

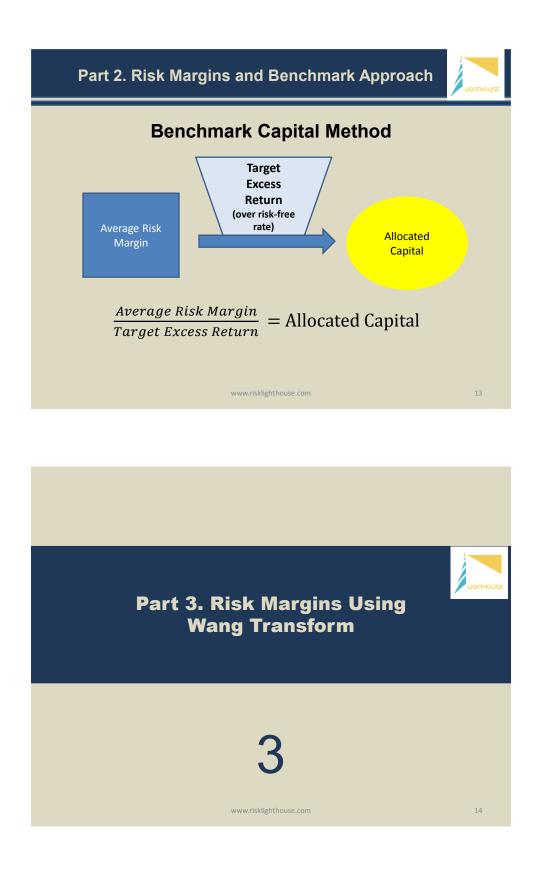
8

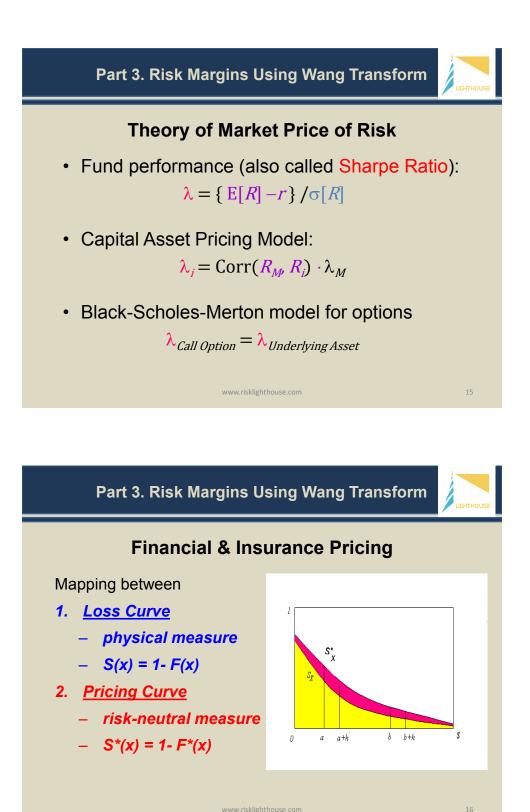
Part 2. Risk Margins and Benchmark Approach

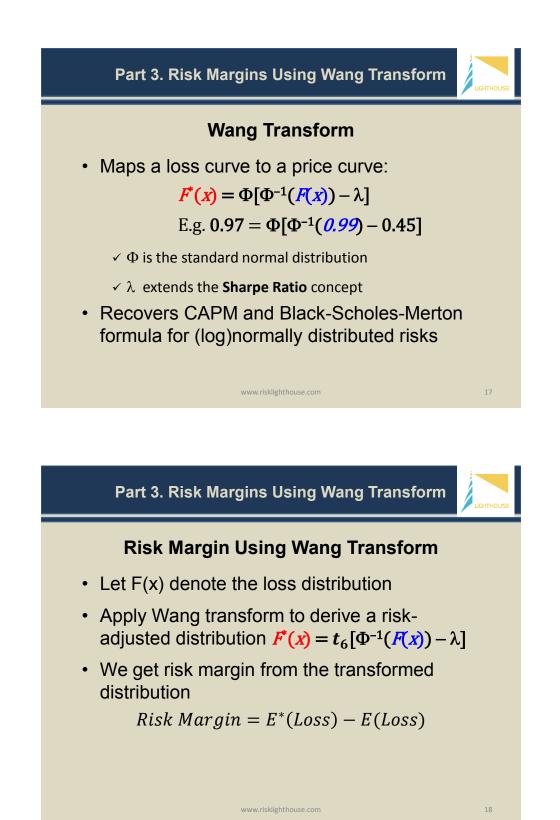
Average Risk Margin

- Insurance markets vary widely across products and market segments. We define Average Risk Margin as an aggregated average, or central value, over a portfolio of insurance contracts for a fixed time period.
- At any specific time, the prevailing market risk margin may differ from the Average Risk Margin.

www.risklighthouse.com




Benchmark Capital Method


 The basic idea: allocated capital is calculated as the ratio of Average Risk Margin and Target Excess Return.

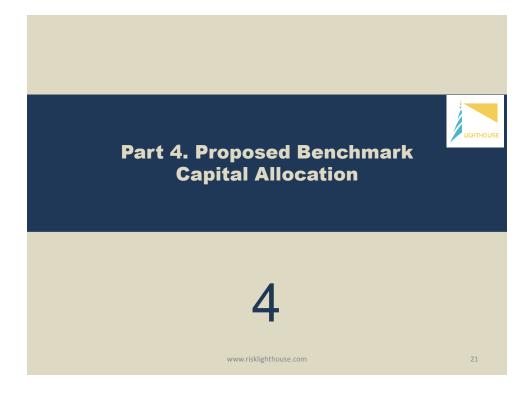
 $\frac{Average Risk Margin}{Target Excess Return} = Allocated Capital$

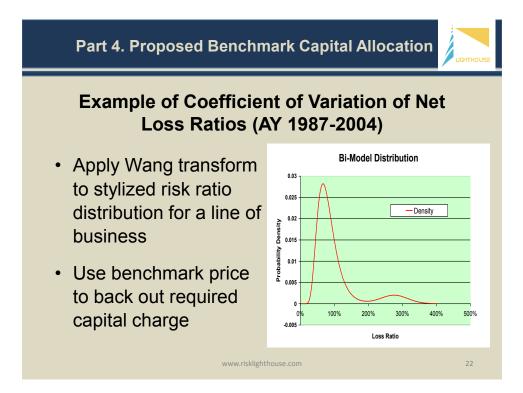
• We estimate Average Risk Margin and Target Excess Return using aggregate industry statutory report data.

Part 3. Risk Margins Using Wang Transform

Estimated "lambda" values from CAT bond transactions: Effects of 2005 Katrina

		After 2005 Katrina	
U.S. Wind	0.48	0.77	
Europe Wind	0.41	0.53	
Japan Earthquake	0.50	0.50	


Part 3. Risk Margins Using Wang Transform



19

Estimated "lambda" values from CAT bond transactions: Effect of 2001 Japan Earthquake

Peril	Before 2011	After 2011
U.S. Earthquake	0.54	0.55
Japan Earthquake	0.50	0.64

Part 4. Proposed Benchmark Capital Allocation **Applications in Calculating Capital Charges** 30% 🛛 Total 25% Large National 20% Super Regional 15% Small Regional 10% 5% 0% Product Liability Occurrence Medical Professional Liability Commercial Multiple Peril Workers' Compensation Commercial Auto Liability Private Passenger Auto www.risklighthouse.com

Part 4. Proposed Benchmark Capital Allocation

Use Wang transform to derive Capital Charge Factors for ground-up risks

		Sharpe Ratio		Target Excess Return Over Risk- free Rate
		0.3		10%
	UW Year	Payout	Annualized	Annual Capital
Line of Business	<u>Volatility</u>	Duration	<u>Volatility</u>	Charge Factor
PPA Liab	4.0%	2.3	2.6%	0.08
Prem/Ops Small	11.3%	3	6.5%	0.20
Prem/Ops Large	26.4%	6	10.8%	0.32
Comml Auto NonFleet	6.9%	3.8	3.5%	0.11
Comml Auto Fleet	37.1%	3.8	19.0%	0.57
Worker Comp Small	12.6%	10	4.0%	0.12
Worker Comp Large	28%	11.3	8.2%	0.25

www.risklighthouse.com

24

Part 4. Proposed Benchmark Capital Allocation

Apply Wang transform to derive relativity (excess vs. ground-up) in capital charge factors

	150 xs 100	250xs250	500xs500	1M xs 1M	3M xs 2M	5M xs 5M
Pers Auto Liab		1.67				
Comm Auto Liab NonFleet			1.67			
Comm Auto Liab Fleet	1.2	1.45	1.67	2	2.8	3.5
Prems/Op Small	1.2	1.45	1.67	2	2.8	3.5

www.risklighthouse.com

Part 4. Proposed Benchmark Capital Allocation

Adjust for Payment Duration "D"

- Let D denote the duration of payment pattern for a line of business.
- The market price of risk for an Accident Year λ_{AY} can be adjusted for duration to derive an 1-year parameter: $\lambda_1 = \frac{\lambda_{AY}}{\sqrt{D}}$.
- This gives a middle ground of the two extremes: MunichRe vs. SwissRe methods.

Thank you!

Contact

Dr. Shaun Wang, FCAS, MAAA One Atlanta Plaza, Suite 2160 950 E. Paces Ferry Road NE Atlanta, GA 30326-1384 Phone: 678-732-9112 shaun.wang@risklighthouse.com www.risklighthouse.com

www.risklighthouse.com

27