HOW SHOULD AN ACTUARY APPROACH A CAT MODEL?

Robert Muir-Wood	
Chief Research Officer	

TWO TRIBES

TAKING OWNERSHIP OF THE MODEL

Calibration

How far upstream should the actuary aim to investigate exactly how the model has been calibrated?

Bespoke tests

How should an actuary consider applying tests around their own portfolio and loss experience ?

Sensitivity Tests

What are the appropriate levers for adjusting the model to achieve relevant sensitivity tests?

Regulators

How could an insurer support their use of an adjusted model for engagements with regulators?

Resilience

What does 'resilience' mean when it comes to applying Cat model results?

METHODOLOGY

- Hybrid method with numerical modeling and observations
- Multi-peril events
- High frequency Events
- Hazard resolved onto a variable resolution grid (VRG)
- New risk Classifications
- Claims based calibration
- Secondary modifiers
- Updated industry
 Exposure / Loss Data

Define 'Events'

Calculate Damage

DISTINCT VULNERABILITIES FOR HAIL, WIND & TORNADO

Hail based on kinetic energy

- General roof shape
- Roof cover
- Roof age

Tornado based on Frating

Straight-line winds based on peak gust

• Use of claims data

Photos from RMS (Matthew Nielsen)

R<u>M</u>S

LOSS DRIVERS

Number of stories very critical

Also function
 of Construction
 class

THE BIG ONES

Tornado struck OKC area on May 3, 1999 causing \$1.5 bn loss (2009 dollars) What if it were to occur today? \$2.3 bn loss

What if this occurred today in Dallas or Chicago?

City	Tornado Insured Loss (In Billions)	Direct Exposure (In Billions)	Mean Damage Ratio	
Oklahoma City	\$2.3	\$26.8	8.6%	
Dallas	\$17.5	\$189.5	9.3%	/
Chicago	\$25.2	\$342.8	7.4%	

R<u>M</u>S

TESTING THE MODEL (1)

Deadliest tornado since 1947

EF-5 tornado struck a heavily populated area

 2nd (E)F-5 tornado recorded in Missouri since 1950

Insured loss to exceed \$2 bn

 Current estimate of ~\$4.9 bn for entire outbreak (PCS)

TESTING THE MODEL (2)

Adjacent losses can highlight relativities of risk

TESTING THE MODEL (4) AAL by windspeed for straight line wind. Unlike the situation for tornado, risk cost is not dominated by extremes. Therefore greater prospect to measure the costs actuarially

R<u>M</u>S

ALTERNATIVE PERSPECTIVES ON THE HAZARD **Overall Frequency** ۲ **Robust datasets** ۲ MODEL Exploration of trends? Climate change impacts? ٠ Relative severity ۲ Relatively short record for which one has all F values ۲ Test evidence of trends in relative severity? ۲ Geography On margins there will be less data ۲ Assume higher volatility in event rates? ۲

RELINITING	
CAT MODELS	 Potential to analyze the three perils of Tornado, Hail and Straight Line Winds independently
	 Could employ own losses for short RP & Hail wind alongside modeled Tornado and long RP Wind and Hail
	 Potential to explore comparative % claims and mean losses with those in the model
	 To refine the match with experience for losses in the 1-5 yr RP range the user could adjust high frequency event rates
	 To stress test extreme losses in the model for some geography, rates of key regional events can also be adjusted
	 RMS supports efforts by re/insurers to take ownership of the model and can assist in showing the degree to which (scientifically and empirically) there is a credible range in some parameter.
	 When dealing with a rating agency the insurer will need to present strong supporting arguments with empirical data in defence of any of these modifications
	RMS
777777777777777777777777777777777777777	