

### NAT-2 EARTHQUAKES: MODELING AND MANAGEMENT OF THE SHAKE, RATTLE AND ROLL

John Elbl, Vice President AIR Worldwide

David Langdon, Senior Vice President Towers Watson





### **Antitrust Notice**

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

#### Agenda

- How earthquakes are modeled
- Accounting for building vulnerability
- Catastrophe risk management
- Managing earthquake risk using models
- Managing earthquake risk with mapping



### What Questions Are Catastrophe Models Designed to Answer?

- Where are future events likely to occur?
- How intense are they likely to be?
- For each potential event, what is the estimated range of damage and insured loss?
- Catastrophe models are designed to estimate the probability of loss, not to forecast future events









©2012 AIR WORLDWIDE

## Catastrophe Modeling Framework: Event Generation



Where are future events likely to occur? How intense are they likely to be? How frequently are they likely to occur?



#### What Causes an Earthquake?

An earthquake is a sudden, rapid shaking of the Earth caused by the breaking and shifting of rock beneath the Earth's surface



Research conducted by Professor H.F. Reid in the aftermath of the 1906 San Francisco earthquake led him to postulate the **Elastic Rebound Theory (1910)**,

which holds that the surface of the earth gradually distorts from the accumulating strain of relative ground motion until the strain is suddenly and violently released in the form of an earthquake.



**Original Position** 



**Rupture and Release of Energy** 



Deformation



**Rocks Rebound to Original Shape** 

© 2001 Brooks/Cole - Thompson



#### Earthquakes Typically Occur Along Plate Boundaries Where Tectonic Plates Slide Past One Another





©2012 AIR WORLDWIDE

## Plate Boundaries Are Classified By Relative Direction of Motion



8

#### Japan Is a Mega-Thrust Convergence Zone





## Seismic Hazard in the United States Is the Result of Several Tectonic Environments





### To Create a Simulated Earthquake Event, AIR Uses Several Physical Parameters

- Epicenter location
- Magnitude
- Focal depth
- Rupture length
- Rupture azimuth and dip angle
- Fault rupture mechanism



#### Measurement of an Earthquake: Intensity and Magnitude

Magnitude: Magnitude refers to quantification of strain energy released during an individual earthquake event





produces 32 times more energy than a magnitude 6.0 earthquake. The energy release best indicates the

destructive power of an

earthquake.

CONFIDENTIAL: For the exclusive use of CAS Taming Cats Seminar attendees

### Earthquake – Modeled and Non-Modeled Perils

### **Modeled Perils**

- Shake
- Fire Following
- Sprinkler Leakage
- Liquefaction

#### **Modeled Coverages**

- Coverage A Dwelling
- *Coverage B* Other Structures
- Coverage C Contents / Personal Property
- Coverage D Additional Living Expense / Business Interruption

### **Non Modeled Perils**

- Landslide
- Loss from Levee or Dam Failures
- Fire Loss Following EQ due to Arson
- Tsunami

#### **Non Modeled Loss Components**

- Loss Adjustment Expenses
- •Debris Removal
- •Hazardous Waste Removal
- Loss inflation due to political pressure



### Catastrophe Modeling Framework: Damage Estimation



• What level of damage is experienced at each location?



#### Key Contributors to Earthquake Vulnerability

- Height
- Construction type
- Age
- Load resisting mechanisms
- Special cases



#### Building Behavior in an Earthquake Is Characterized By a Building's Mass and Stiffness

The response of a building to shaking is fundamentally determined by

#### - QUANTITY AND DISTRIBUTION OF MASS

#### Often show a reduction of

**Tall Structures** 

mass as height increases to stabilize the structure

#### - RESISTANT CAPABILITIES OR STIFFNESS

Flexible: the structure deforms considerably under stress

**Stiff:** the structure deforms slightly under stress





CONFIDENTIAL: For the exclusive use of CAS Taming Cats Seminar attendees

# Short and Tall Buildings Behave Differently to Ground Motion





#### Structural Characteristics of a Building May Affect Seismic Response

#### **Soft Story Effect**



*1971 M6.6 San Fernando Earthquake* 



©2012 AIR WORLDWIDE

**Corner Buildings** 





Pounding Effect





1994 M6.7 Northridge Earthquake

CONFIDENTIAL: For the exclusive use of CAS Taming Cats Seminar attendees

**Catastrophe Risk Management** 



#### **Risk Management 101**



#### How Earthquake Fits In

towerswatson.com

#### Peril Comparison

|                   | Low                                                                                                                                                                    | MODERATE                                                                                                                                                                                                   |  | High                                                                                                               |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------------------|--|
| Industry<br>Focus | Severe<br>Convective<br>Storm                                                                                                                                          | Earthquake I                                                                                                                                                                                               |  | Hurricane                                                                                                          |  |
|                   | Least focus                                                                                                                                                            | <ul> <li>Focus of initial models</li> </ul>                                                                                                                                                                |  | • Highest Focus                                                                                                    |  |
|                   | <ul> <li>Not generally a threat to<br/>exceeding reinsurance limits</li> <li>Despite high frequency, outbreak<br/>nature makes it difficult to<br/>evaluate</li> </ul> | <ul> <li>Low frequency, and lack of major<br/>US event has lead to second-tier<br/>status</li> <li>Low take-up rates influence<br/>attention, but fire following could<br/>become a major issue</li> </ul> |  | <ul> <li>Recent activity provides large<br/>amount of claims data</li> <li>Reasonable historical record</li> </ul> |  |

#### **Cat Risk Management - Overview**

- Sources
  - Loss
    - Modeled Perils
    - Non-modeled losses
    - Non-modeled Perils
  - Uncertainty
    - Data quality
    - Model inaccuracies
- Analytics
  - Models
    - Full range of output
    - Multiple viewpoints
  - Mapping

- Spatial analysis
- Implementation
  - Strategic / tactical



#### **Source - Data Quality**

| Characteristic | Information                                   | AAL    | % Change |  |
|----------------|-----------------------------------------------|--------|----------|--|
| Zip            | 32901                                         | 220.96 | —        |  |
| Street Address | Street Address 621 Burr Street, Melbourne, FL |        | 5.2%     |  |
| Parcel         | arcel 28.069065 -80.609726                    |        | 3.6%     |  |
| Occupancy      | Single Family                                 | 222.34 | -7.7%    |  |
| Construction   | Wood Frame                                    | 245.99 | 10.6%    |  |
| # Stories      | 1                                             | 235.89 | -4.1%    |  |
| Year Built     | 1987                                          | 282.04 | 19.6%    |  |
| Area           | 1440                                          | 317.43 | 12.5%    |  |
| Secondary      | Gable roof, unknown pitch                     | 354.36 | 11.6%    |  |
| Overall        |                                               | 354.36 | 60.4%    |  |

| Homeowners | Coverage A: | 60,000 |  |
|------------|-------------|--------|--|
| HO-3       | Coverage B: | 6,000  |  |
|            | Coverage C: | 30,000 |  |
|            | Coverage D: | 12,000 |  |

#### **Analytics - Model Output**

- Deterministic loss estimates
  - Realistic disaster scenarios (RDS)
- Probabilistic loss estimates
  - Occurrence / aggregate exceeding probability (OEP / AEP)
  - TVaR / XSAAL
  - Marginal impact
- Results by portfolio / region / location
  - Key drivers of loss

towerswatson.com

Location level analysis





#### **Analytics – Multiple Viewpoints**

- Medium term / Long term / Warm SST / Standard Catalog
  - Recognizes current environment vs. Science not understood enough to be predictive
- Blending models

- Stabilizes results vs. Creates new model that isn't directly based on research
- Standardizes multiple viewpoints of risk vs. incorporates wrong answer
- Recent releases have led more companies to adopt this approach

#### Models - Occurrence View vs. Aggregate View

- Most of traditional cat risk management has been focused on the occurrence exceeding probability analysis
  - Reinsurance structure purchase to 1 in X year loss level
- Recent activity has changed the focus toward the aggregate exceeding probability
  - Impact on balance sheet from multiple events
    - Severe convective storm losses
    - 2004 / 2005 hurricane seasons

- Earthquake cat risk management general focuses on occurrence exceeding probabilities since frequency is low
  - However, historic events like the recent New Zealand earthquakes and the New Madrid earthquakes in the early 1800s raise questions on clustering

#### **Implementations - Strategic vs. Tactical**

- Catastrophe risk management should focus on analyses that create strategic direction as well as guidelines that support tactical decisions
- Earthquake risk management

- Strategic plans focus on controlling aggregate exposures within specific seismic zones and developing growth plans and non-renewal efforts
- Tactical tools assist underwriters in evaluating new and renewal risks by evaluating hazard levels
  - Modeling the average annual loss
  - Overview of hazard including risk indexes and soil information

#### **Implementations - Risk Aggregate Zones**

- Control overall loss levels for single event by controlling total insured values in each zone for each peril
  - OEP curve
  - Need to define zones such that any loss in that zone does not exceed loss thresholds
- Earthquake aggregate zones may focus on seismic zones
  - Southern CA, Northern CA, Pacific Northwest, New Madrid
  - Actual implementations will vary by company based on risk appetite

#### **Implementations - Risk-Balanced Portfolio**

- Manages overall portfolio so that all catastrophes in given time period will not impact company over a threshold
  - AEP curve
- Looks to efficiently use capital by avoiding concentrations
  - Identifying key drivers
  - Targeted growth

#### **Potential Impact from Risk-Balancing Portfolio**

|                    | Current Process |                | Risk-Balanced  |             | % Change  |       |
|--------------------|-----------------|----------------|----------------|-------------|-----------|-------|
| Return Period      | Ground-up       | Gross          | Ground-up      | Gross       | Ground-up | Gross |
| 10                 | 43,876,468      | 14,904,180     | 35,313,144     | 10,182,542  | -20%      | -32%  |
| 20                 | 103,515,562     | 43,517,921     | 73,733,314     | 26,748,875  | -29%      | -39%  |
| 50                 | 219,854,703     | 108,584,478    | 138,887,732    | 59,920,594  | -37%      | -45%  |
| 100                | 325,384,468     | 177,414,010    | 198,654,305    | 94,019,126  | -39%      | -47%  |
| 250                | 461,131,530     | 274,719,592    | 292,670,256    | 153,143,929 | -37%      | -44%  |
| 500                | 567,474,232     | 352,550,184    | 374,637,322    | 208,614,522 | -34%      | -41%  |
| 1,000              | 686,997,292     | 440,047,558    | 463,999,033    | 271,550,197 | -32%      | -38%  |
| AAL                | 19,383,390      | 8,681,896      | 14,078,673     | 5,230,033   | -27%      | -40%  |
| StDec              | 66,849,274      | 37,846,014     | 44,779,635     | 22,809,266  | -33%      | -40%  |
|                    |                 |                |                |             |           |       |
| Policy Count       |                 | 19,299         |                | 25,140      |           | 30%   |
| Total TIV          |                 | 12,644,349,045 | 16,447,015,381 |             |           | 30%   |
| Average Coverage A |                 | 448,754        | 448,754        |             |           | 0%    |
| Average TIV        |                 | 655,182        | 654,205        |             |           | 0%    |
|                    |                 |                |                |             |           |       |
| Total Premium      |                 | 19,900,063     |                | 19,900,063  |           | 0%    |
| 1:250 PML/Premium  |                 | 13.80          | 7.70           |             |           | -44%  |
| 1:100 PML/Premium  |                 | 8.92           | 4.72           |             |           | -47%  |
| AAL/Premium        |                 | 0.44           |                | 0.26        |           | -40%  |

#### **Risk-Balanced Portfolio**



#### **Catastrophe Risk Management – Center of Excellence**



# Managing Earthquake Risk with Catastrophe Models



### **Application of Catastrophe Models to Primary Insurance Companies**



## What is ERM and Why Does it Require Model Results?

- A framework for mapping (identifying), measuring, monitoring, and managing a wide variety of risks, both independently and in combination
  - Catastrophe risk is the greatest threat to solvency
  - Catastrophe risk also highly correlated to operational and asset disruptions



#### Portfolio Optimization Through Tail Value at Risk Management

 Tail value-at-risk (TVaR): average of all simulated event losses beyond specified probability, such as 1% or 0.4%



#### TVaR is a standard output of AIR software products



©2012 AIR WORLDWIDE

#### Catastrophe Risk Transfer Decisions Have Several Elements

- Main goal: modify EP curve net of transfer so that enterprise-wide risk appetite and tolerance goals are achieved
  - But trade-offs in ERM among catastrophe and other risks (credit, liquidity) may ensue
  - Traditional reinsurance most common mechanism, but new ways of risk transfer such as issuance of Cat Bond is gaining popularity
- Price per unit (rate on line) determined by supply and demand for capital
  - But often depends on "technical prices" derived using model results
- Quantity of transfer often directly determined by model results
  - Occurrence (XOL) retention, top limit, and coinsurance
  - Aggregate (XOL) retention and limit
  - Per-risk and facultative retentions and limits on large single risks
  - Participation in state funds determined indirectly by models



## Software Users Analyze Occurrence and Aggregate EP Curves to Understand Risk Transfer Needs





#### Direct Insurance Premiums Are Determined By Many Complex, Interdependent Base Rates and Differentials

- Base Rates
  - Set to provide sufficient overall revenue to insure entire portfolio
  - In regulated environments, include provisions for specific cost components
    - Normal losses (non-catastrophe)
    - Catastrophe retained losses
    - Catastrophe risk transfer (e.g. reinsurance) costs
    - Expenses, taxes and profit
- Rating Factors
  - Set to equitably distribute premiums among risks of different loss potential
    - Geographic location (territory, building code zone)
    - Property attributes (construction, occupancy, mitigation features)
    - Coverage modifiers (deductibles, coinsurance)
    - Marketing preferences (multi-policy discount)



### Typical Rating Algorithm and Base Premium Formula – Modeled Losses Enter in Several Places



- Allocation of base premiums (via rating factors) should be based on relative loss potential including catastrophe losses from models
- Relative loss potential should be measured using both expected losses and a measure of risk (volatility)



#### Managing Capacity: 'Last Seat on an Airplane' Philosophy



- The last seat booked on a full airplane is the most expensive
- Why not use the same thought for the last dollar of capacity on a fault?
  - Non-admitted business
  - Changing rating / Underwriting guidelines as capacity "fills up"
  - Re-underwriting / rating ENTIRE book over the annual cycle to meet the increasing / decreasing demand as influenced by corporate appetite



#### Catastrophe Models Enable Fault Management to Help Control Overall Risk

|       | Loss          | Event     | Magnitude | Fault                           |
|-------|---------------|-----------|-----------|---------------------------------|
|       | 2,707,351,345 | 110007291 | 6.8       | Northridge                      |
|       | 2,684,925,863 | 110025255 | 6.9       | Northridge_                     |
|       | 2,623,156,259 | 110029266 | 6.6       | Hollywood_                      |
|       | 2,577,932,456 | 110053211 | 6.4       | Puente_Hills_(SantFe_Springs)_  |
|       | 2,552,324,744 | 110052744 | 6.4       | Elysian_Park_(Upper)            |
|       | 2,510,187,818 | 110001664 | 6.9       | Elsinore:_W_                    |
|       | 2,506,411,662 | 110022190 | 6.5       | Raymond                         |
|       | 2,454,086,323 | 110067140 | 6.6       | SantMonicalt_1_                 |
|       | 2,434,921,378 | 110023131 | 7.0       | SierrMadre                      |
|       | 2,409,796,978 | 110006646 | 7.3       | Palos_Verdes_                   |
| event | 2,403,899,137 | 110043451 | 7.8       | San_Jacinto:_SBV+SJV+A+C_       |
|       | 2,331,331,353 | 110040102 | 7.8       | San_Jacinto:_SBV+SJV+A+C_       |
|       | 2,313,906,245 | 110019304 | 6.9       | Elysian_Park_(Upper)_           |
|       | 2,265,782,580 | 110050341 | 7.0       | SantMonicConnected_alt_2_       |
|       | 2,245,010,275 | 110014048 | 6.6       | Raymond                         |
|       | 2,236,160,405 | 110033423 | 8.0       | SSan_Andreas:_PK+CH+CC+BB+NM+SM |
|       | 2,227,982,958 | 110058573 | 7.9       | SSan_Andreas:_SM+NSB+SSB+BG+CO  |
|       | 2,225,690,300 | 110020629 | 6.7       | Northridge_                     |
|       | 2,197,063,955 | 110061608 | 7.9       | SSan_Andreas:_SM+NSB+SSB+BG     |
|       | 2,143,565,649 | 110018063 | 6.9       | Puente_Hills_(LA)_              |
|       | 2,077,950,438 | 110064170 | 6.6       | Puente_Hills_(Coyote_Hills)     |
|       | 1,937,860,691 | 110040428 | 6.9       | SierrMadre Connected            |



#### AIR's NGP Provides Spatial Analytics Exposure Heat Maps to Enable Better Exposure Concentration Management





Managing Earthquake Risk with Mapping



#### **Catastrophe Risk Management - Mapping**

- Mapping is a key element of catastrophe risk management
  - Catastrophes have a fundamental spatial component
  - Mapping software provides the fundamental capabilities to visualize exposure concentrations
- Advances in technology have raised awareness and brought significant improvements in capabilities in recent years
  - Microsoft Bing / Google Maps / Google Earth
  - Satellite / aerial / street imagery
  - Parcel-level geocoding

#### **Parcel Level vs. Street Interpolated Geocoding**

#### 621 Burr St., Melbourne, FL 32901







#### **Portfolio vs. Location - Mapping**

- Portfolio
  - Review concentrations
  - Review hazards
  - Review territories
- Location

- Individual risk underwriting
  - Hazard
  - AAL / other loss metrics

#### **Portfolio Review - Map of Earthquake Hazard**



#### **Portfolio Review - Map of Exposure**



#### **Portfolio Review - Map of Hazard and Exposure Overlaid**



#### **Location Underwriting**



#### **Location Underwriting – Evaluating Hazard**



#### **Location Underwriting – Evaluating Concentration**



