Big Data Impact on Optimal (Re)Insurance Premium Pricing and Limits Accumulations

Ivelin Zvezdov, AIR Worldwide

- Set up the objective and the case study
- Premium components and "thin data" pricing
 - Catastrophe platforms & big data tools for premium pricing
- Dependencies in premium accumulation: umbrella policies
- Dependencies in limits accumulation: likelihood of full payout
- Constructing fair premium bounding intervals

Setting Up the Objective and Defining the Case Study

- The Objective
 - Derive fair technical flood CAT premiums for commercial risks

- The Case Study
 - Two risks in a geo-spatial area with minimal or none historical claims
 - A Historical flood map is available

- The Problem
 - Define the shortcomings of 'thin data' in premium pricing
 - Discuss the role of catastrophe models and big data platform in 'sustainable' pricing and limits accumulation

Premium Components and 'Thin Data' Pricing

Technical Components of Catastrophe Premium Pricing

- Base Premium depends on modeled means, or averages of historical data
 Average historical loss
- Top Premium Load(s) depend on:
 - Variability of loss and standard deviation
 - TVAR & full loss distribution

Base Premium and Components of 'Thin Data' Pricing: Historical Flood Map

- Average historical flood intensity at the insured risk location
 - Insured Risks are not in a Historical flood zone
 - Geo / Proximity to:
 - 100 year Zone with 1 feet of Flood depth
 - 500 year Zone with 3 feet of Flood depth

Base Premium Definition: Damage and Vulnerability Factor Table

- Relationship between physical peril intensity and Insured risk damageability
- Derived from historical Engineering experience
- Using Water depth in nearest
 Flood Zone i.e., low accuracy ^{0%}

Nearest Flood Zone Water Depth	Approximate Vulnerability	Actual Water Depth & Vulnerability
100 Year, 1 foot	9%	None
500 Year, 3 feet	12%	None

Some Shortcomings with the Base Premium Definition with Minimal 'Thin Data'

- Risks outside of 0.2% or 1% annual chance flood planes no intensity data
- Uniformity of Flood Intensity for Large Areas flat riskiness and vulnerability

Blend for Coastal and River-Rain Flood maps is not available in near future

Catastrophe Modeling Platforms and Big Data Tools for Premium Pricing

Financial & Hazard Big Data Components Are Contained in a Catastrophe Modeling Platform

Catastrophe Modeling Platforms Provide Aggregate River Flood and Storm Surge Flood View of Risk at High Resolution

AIR

CONFIDENTIAL

Financial Data Layer: Premium Pricing Components from Modeled Stochastic Loss

- Stochastic full distributions for combined inland flood and coastal storm surge loss
- Summary per-risk stats
 - Mean and Standard Deviation
 - PML and TVaR

Premium(risk) = Expected Loss + k * Standard Deviation

Fair Technical Premium Pricing: Basic Methods

Pure Technical CAT Premium = *AAL* + *k* * *Standard Deviation*

- Historical loss is fully arbitrary, interpolated from nearest flood zone intensity
- Risk loading measured by standard deviation is not available with the historical data approach

Complex Underwriting Metrics: Probability of breaching Deductibles

- Complex risk and underwriting metrics require 'rich' data sets
- Modeling and big data platforms preserve full single risk distributions

Dependencies in Premium Accumulation: Umbrella Policies

A Business Case for Accounting for Dependencies in Premium Pricing

Policy Set Up	Coverage
Policy 1	90M
Policy 2	110M
Umbrella π(1 + 2)	200M

- What dependencies impact pricing of a combined umbrella policy?
- Does accumulation of premiums lead to diversification, and does it allow for premium discount?
- What data components are needed to model dependencies?

Distance Dependencies and Correlations Have an Impact on Pricing of Accumulated Combined Premium

Pure Technical CAT Premium = *AAL* + *k* * *Standard Deviation*

Policy Set Up	Coverage	Premium
Policy 1: π(1)	90M	512K
Policy 2: π(2)	110M	725K

Diversification and Independence as Business Logic for Premium Economies of Scale

- For Fully Dependent (100% correlation) risks in close proximity, the sum of single risk premiums approaches the price of an umbrella product
- For Less Dependent (30% correlation) and Independent risks, the price of a combined product could be less than the sum of single risk premiums

Big Data Components for Dependencies and Correlations Modeling

- Geospatial grid application
- Distances between single risks
- Full single risk simulations
- Covariance and correlations

- High resolution geospatial grid application for estimation of distances and dependencies between single risks
- Preserving full single risk 10K simulations for estimation of distance-based covariance matrices

Dependencies in Limits Accumulation: Likelihood of Full Payout

Business Case: What Is the Likelihood of Paying Out the Full Insured Limits

Likelihood of full payout

- Capital reserving impact
- Risk management and MI

Scenario outcomes:

- Dependent policies
- Fully dependent policies

Limits Roll-Up Limit(policy 1 + policy 2) = Limit(policy 1) + Limit(policy 2)

Data Components for Computing Joint Likelihood Weighted Outcome in Full Payout

Loss accumulation with dependencies

Single and Joint Likelihoods of Full Policy Payout

Limits' Set Up	Limit Value	Likelihood
Limit Policy 1	90M	0.04
Limit Policy 2	110M	0.09
Limit (P1+P2): 100% correlation	200M	0.09
Limit (P1+P2): 30% correlation	200M	0.07
Limit (P1+P2): 0% correlation	200M	0.004

Business Conclusions: Data Components and Tools for Modelers

- Detailed full probabilistic curves at highest risk granularity
- Modeling platform with Big Data capability and fast compute
- Geospatial grid and distance compute functions
- Distance based correlation matrices
- Accurate dependence and accumulation algorithms

Constructing Premium Bounding Intervals: Competitiveness and Cost Savings

The Business Case for Fair Technical Premium Bounds

• Definition and demand for lowest and upper fair and sustainable technical bounds for insurance premium

Average Historical Loss \leq *Policy Premium* \leq *Modeled VaR*_{0.004} \leq *Modeled TVaR*_{0.004}

- What data tools are needed for the task?
- Desired outcome: long term sustainable premium pricing guidelines

Historical and Simulated Loss: Data Components

Average Historical Loss \leq Policy Premium \leq Modeled VaR_{0.004} \leq Modeled TVaR_{0.004}

Case Conclusions: Functions of Premium Bounds

- Lower Bound guarantees that economies of scale and diversification do not degrade underwriting discipline
- **Upper Bound** provides a fair technical sustainability of premium at macro level insureds, insurers and share-holders
- **Risk Ranking** of policies with comparative profiles is possible and recommended with TVaR a consistent and sub-additive risk measure

Some Final Thoughts and Further Work

Advantages of Big Data & Compute Platforms

- Aggregate and blended inland flood and storm surge flood view of risk
- Tail risk modeling at high granularity and sensitivity to physical environment
- Probabilistic tail risk metrics
- Solving complex actuarial and pricing problems

Further work

- Continuing improvements in computational performance
- Expansion to larger simulations to enhance view of tail risk by high granularity of risk – single policy & location
- Visualization: Fast printing out of loss cost and physical intensity (flood depth) maps for historic and stochastic events
- Transparency in peril and financial modeling operations

Contributors

Many thanks for help and contribution from

Vinu Kuriakose, FCAS, CPCU, MAAA - Liberty Mutual Cheng Khang Saw, ACAS - Nationwide Insurance

CONFIDENTIAL

Premium Accumulation and Dependence

Additivity of two premiums:

Notation: π -premium; Q_t , S_t - modeled loss for risk 1 and risk 2; E[.] – expected mean loss $\sigma[.]$ – standard deviation of expected loss; $COV[S_t; Q_t]$ - covariance

$$\boldsymbol{\pi}(Q_t) + \boldsymbol{\pi}(S_t) = E[S_t] + \sigma[S_t] + E[Q_t] + \sigma[Q_t]$$

$$\mathbf{\pi}(Q_t) + \mathbf{\pi}(S_t) = E[S_t + Q_t] + \sigma[S_t] + \sigma[Q_t]$$

Dependencies in accumulation of Premium

 $\pi(Q_t) + \pi(S_t) = E[S_t + Q_t] + \sqrt{\sigma^2[S_t] + \sigma^2[Q_t] + 2 * COV[S_t;Q_t]}$

Dependence, Sub-Additivity and Diversification

• 100% correlation models full dependence and leads to full additivity

 $\pi(Q_t) + \pi(S_t) = E[S_t + Q_t] + \sqrt{\sigma^2[S_t] + \sigma^2[Q_t] + 2 * 100\% * \sigma[S_t] * \sigma[Q_t]}$

 Less than full dependence (i.e., less that 100% correlation) allows for sub-additivity

 $\mathbf{\pi}(Q_t) + \mathbf{\pi}(S_t) \ge E[S_t + Q_t] + \sqrt{\sigma^2[S_t] + \sigma^2[Q_t] + 2 * 30\% * \sigma[S_t] * \sigma[Q_t]}$

Sub-additive effects for less than full dependence support diversification

 $\boldsymbol{\pi}(Q_t + S_t) \leq \boldsymbol{\pi}(Q_t) + \boldsymbol{\pi}(S_t)$

Exposed Limits with Probability Weighted Outcomes

• Independent Joint Probability of Limits Roll-Up

 $p_{1+2}[Lim(S_t + Q_t)] = p_1[Lim(S_t)] * p_2[Lim(Q_t)]$

• Dependent Joint Probability of Limits Roll-Up

 $p_{1+2}[Lim(P1_t + P2_t)] = f_{P1_t, P2_t} \{Lim(P1_t) + Lim(P2_t)\}$

 Critical Knowledge: f_{P1t}, P2t
 the joint distribution function with a dependence structure, described by a Covariance Matrix -COV[P1: P2]

Physical Geospatial Data for Definition of Insurance Policy Premium

AIR

- Coastal Elevation
- Distance to Water Body
- Soil Type
- Flood Defenses
- Land Use / Land Cover
- Flood Intensity Grid resolution