

The Impact of Big Data in the Role of Future P&C Actuaries

Carl Lambert & Frédérick Guillot

CAS In Focus Seminar

October 27-28, 2016

"We always overestimate the change that will occur in the next 2 years and underestimate the change that will occur in the next 10 years." - Bill Gates

We always overestimate the change that will occur in the next 2 years and underestimate the change that will occur in the next 10 years. - Bill Gates

We are a Co-op Owned by 42 Co-op

Ajouter Edge Benefits

We are the Canadian Analytic Carrier of the Year 2016

Canadian analytics carrier of the year 2016

And more ...

JD Powers 2016 Best Canadian insurer, auto and home Alberta, Ontario, Atlantic provinces

Business Intelligence at The Co-operators

Example 1.1 – Flood Insurance

2013

2 floods in 2 weeks

Canada was the only G8 country without flood insurance

Challenge #1- Misunderstandings

Coverages

"70% of insureds believed they are covered for flood"

Confusion with Sewer Backup, DFAA, ...

Risk

"Insureds are underestimating their flood risk potential"

1 in 100/500 years events don't occur in a lifetime ...

Challenge #2- New & Complex Phenomenon

Causes Fluvial, Pluvial, Coastal

Hydrology Flow, depth, floodplains

Computations Geocoding, Point-in-polygons

Challenge #3- No Claim Experience Data

No Coverage ↓ No internal data

 \checkmark

Can you imagine a traditional actuary without data ?

As useless as a skier without snow ...

Fortunately, our actuaries had creativity!

Solution #1- Involve Academics

Find specialists + Research opportunities

Solution #2- Involve Experts

Validate findings + Create partnerships

Solution #3- Use External Data

Elevation	ResolutionCanadawide (?)
Watercourses	GeolocationFlow
Rainfalls	 Averages Observations
Floodplains	Internal vs external modelCanadawide (?)
Other Sources	 Soil type – Past events – Defenses Other partners

Solution #4- Use text mining

"Due to the severe flooding this time the water almost reached the furnace - approx 3 feet of water."

"6 inches of water & raised subfloor, was not sewage but clear water."

Identify past flood claims

Determine flood causes

> Estimate water depth

Validate models

1

Solution #5- Involve Hydrologists

Model water / Assess pure risk !

1

Solution #6- Involve Civil Engineers

Assess performance of man-made flood defenses

Solution #7- Leverage Cloud Computing

Geocoding + Nearest Watercourse + Flood Zoning

Solution #8- Actuaries & Data Scientists

Convert Risk Indicators into Premiums

Solution #9- Involve All Sectors

Example 2.1 – Statistical Techniques Credibility vs Overfit testing ?

Auto Relative LR by "a new" rating factor

Auto Relative LR by "a new" rating factor

Example 2.2 – Statistical Techniques List of Methods

Visual Analytics	 Discovery, « insight », quick results 1st step in descriptive analysis 		
Decision tree	Easy to understand, very visual.Often used as benchmark		
Regression	 Forecast as a function of predictors Linear, exponential, GLM, logistic (1/0) 		
Unsupervised analysis	Create segmentsNo target variable		
Machine Learning	 Complex models – neural networks, SVM, KNN Often used as "benchmark" 		

2

Frequent

Sentiment Analysis	 Get tone of a conversation or voice recording. E-mails, call centers, Facebook 		
Decision Forrest	 Numerous trees « vote » for the best decision tree Reduce overfitting 		
Text Mining	 Analyse unstructured information in a text « Read » notes, medical reports 		
Cluster analysis	 Create population segments Territories, marketing segmentation 		
Factor Analysis	Reduce the number of predictorsBig data, Unstructured data		

Less Frequent

Time Series	Analyse phenomena having cyclesEconometrics, river flows,		
Multinomial Regression	Binary regression with many targetsAnalyse consumption baskets		
Discriminant Analysis	 Analyse « strength » of predictors Analyse surveys, questionnaires 		
Anova	Variance analysisValidate average differences		
Survival analysis	Truncated dataLife expectation		

Others

Internally

Internal Advanced Analytics Show & Tell

Analytic Day

Innovation training

Emerging Technology Training

Externally

Connexion with Research & Academic Community

Participation at industry events professional events conferences ...

Example 4.1 - Emerging Techniques & Tools

Text Mining

Example 4.2 – Emerging Technology

Cloud Geo-Computation

Example 4.3 – Data Scientist Designation

Statistics & Mathematics

Technology & Data

Business sense & Communication

5

Example 5.1 – In Every Pricing Projects

Canadian Geospatial Databases

Local Tide Prediction Tables

Post-Glacial Rebound Estimates

And many more ...

January 2016			February 2016		
Day	Time	Height (m)	Day	Time	Height (m)
1	12:44 AM	1.9	1	1:33 AM	1.9
1	5:59 AM	0.9	1	6:58 AM	1.0
1	1:13 PM	2.0	1	2:04 PM	1.8
1	6:35 PM	0.9	1	7:32 PM	0.9
2	1:35 AM	1.9	2	2:33 AM	1.9
2	6:54 AM	0.9	2	8:35 AM	1.0
2	2:06 PM	1.9	2	3:08 PM	1.7
2	7:39 PM	0.9	2	9:10 PM	0.9
3	2:30 AM	1.9	3	3:38 AM	1.9

Example 5.2 - Social Media

Citizen Williams (<u>@CitizenWilliams</u>) <u>12-06-21 08:29</u>

Someone needs to tell the Co-operators on the Bedford Highway that there are two Fs in affect - on both sides of their sign. :S <u>#Halifax</u>

Social Media analysis

Sign changed in the afternoon

Example 5.3 - Social Media

The future is already here, it's just not very evenly distributed. - William Gibson