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Introduction Climate changes
E3 models
IA models

Strategies to address climate changes

@ Human activities release greenhouse gases (GHGs) that
trigger climate changes with negative impacts on the
environment and human societies.

@ Different strategies to address these threats:

e Mitigation measures are options to reduce GHG
emission levels (e.g., use renewables instead of fossil fuels).

e Adaptation measures provide strategies to reduce
impacts of climate changes (e.g., crops for new climate
conditions, dykes to protect against sea level rises or medical
preventions against spreading tropical diseases).

o Geoengineering measures are options to modify the
climate system (e.g., solar radiation management).
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E3 model classification

@ Bottom-up:

e A techno-economic approach that leads to disaggregated
models representing the energy sector with great details;
e Example: TIMES (Loulou et al., 2005).

@ Top-down:

e A macro-economic approach that leads to aggregate

models in the sense that they use aggregate economic
variables;

e Example: GEM-E3 (Capros et al., 1997).

@ Hybrid:
e Models that incorporate within the same framework both
modeling approaches;
e Example: MARKAL-MACRO (Manne and Wene, 1992).
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Integrated assessment models

@ Integrated assessment (IA) is an interdisciplinary
approach that uses information from different fields of
knowledge, in particular economy and climatology.

@ Integrated assessment models (IAMs) are tools for
conducting an integrated assessment, as they typically
combine key elements of the economic and biophysical systems,
elements that underlie the anthropogenic global climate change
phenomenon.

@ Examples of IAMs are BaHaMa (Bahn et al., 2008, 2010,
2012, 2015), DICE (Nordhaus, 1994, 2007), MERGE (Manne
et al., 1995; Manne and Richels, 2005), RICE (Nordhaus and
Yang, 1996) and TIAM (Loulou and Labriet, 2008).
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Geoengineering strategy: A study with BaHaMa

Models and applications
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BaHaMa: Modelling of an SRM strategy

Models and applications

@ BaHaMa includes a Solar Radiation Management (SRM)
measure that targets the reduction of incoming solar radiation by
injection of sulfur in the stratosphere.

@ Possible advantages of SRM:
o Ability to keep temperature levels artificially low, instead
of reducing GHG emissions, at a low cost;
e Provide quick and effective temperature backstop in case
of abrupt climate changes, with rare but catastrophic
impacts.

@ SRM brings along important risks:
e Cause ozone depletion;
o Alter ecosystems and trigger regional imbalances;
e Achieves only an ‘artificial’ reduction in temperature: A
disruption in sulphur injections would lead to a significant jump in
temperatures (at the corresponding concentration level).
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Mitigation: Insights from TIMES

Economic dynamics

Carbon economy

vs. ‘ Low-carbon economy

Net CC damages
(after adaptation)
GHG emissions SRM damages Adaptation

Gross CC damages
(before adaptation)

GHG impact on SRM impact on Net impact on
temperature temperature temperature

Climate change (CC) dynamics
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Modelling the impacts of geoengineering

Models and applications

We rely on a binomial tree representation in order to model the evolution of
side-effects over time (age) and capture the uncertainty and variability in their
size:

Qo.M

aGE(U]

Q

age(t+1) =1+ u)-age(t) with probability p
age(t) <
age(t+1)=(1+d) - age(t) withprobability (1 — p)
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Models and applications

Scenarios

Five policy scenarios are analyzed:
@ ‘Mitigation’ where mitigation is the only strategy available.

@ ‘Mitigation and Adaptation’ where both mitigation and
adaptation are available, but not geoengineering.

@ ‘Mitigation, Adaptation, SRM’ where all strategies are
available. Here we consider three illustrative cases for SRM
side-effects:

- ‘Mild side-effects’: constant side-effects (age(t) = 0.015);
- ‘Strong side-effects’: age increases monotonically to age;

- ‘Weak side-effects’: age decreases monotonically to age.
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Results: Transition to the low-carbon economy

Models and applications
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Results: Adaptation vs. SRM

Models and applications
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Results: Temperature and GHG concentrations

Models and applications
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Results: Distributional analysis for SRM side-effects
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Results: Impacts of unexpected SRM side-effects

Atmospheric GHG concentration
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Adaptation policies: A study with AD-MERGE

Models and applications
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Models and applications

MERGE: Overview
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Cost-Benefit Analyses
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Models and applications

MERGE: ETA
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Models and applications

Scenarios

AD-MERGE database corresponds to version 5 of the MERGE
model except: i) key parameters of the climate module have been revised;
i) damage module has been revised and re-calibrated; and iii) adaptation
options are modelled.

Five scenarios are analyzed:

@ A counterfactual ‘Baseline’ where climate change damages are not felt
and consequently where GHG emissions are not limited.

@ In the next four policy scenarios, climate change damages are felt and
regions react following a cost-benefit approach. Mitigation is always a possible
option, but adaptation may only be available on a limited basis:

- ‘No-adapt.’: adaptation is not possible;

- ‘Proactive’: only proactive (stock) adaptation is available;
- ‘Reactive’: only reactive (flow) adaptation is available;

- ‘Full-adapt.’: all forms of adaptation are available.
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Results: World energy-related CO, emissions

Models and applications
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Results: Temperature increase (from 2000)

Models and applications
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Models and applications

Results: Net damages
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Results: World primary energy supply
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Results: World electricity generation in 2100

Models and applications
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THC preservation policies: A study with MERGE

Models and applications
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Thermohaline circulation
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Rupture of the THC
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Models and applications

THC scenarios

@ Different levels of climate sensitivity:

@ ‘Low CS’, with low climate sensitivity (1.5 °C) and short lag for ocean
warming (45 years);

@ ‘Medium CS’, with medium climate sensitivity (3 °C) and mean lag (57
years), that is our original parameterization;

@ ‘High CS’, with high climate sensitivity (4.5 °C) and long lag (77 years).

@ Three scenarios:

@ A counterfactual ‘Baseline’ where climate change damages are not
felt and consequently where GHG emissions are not limited.

@ ‘Post-Kyoto’ scenarios where constraints on CO, emissions
are imposed (Al: 2010 Kyoto, then -10% per decade; Non-Al: -5% per
decade from 2030).

@ ‘THC preservation’ scenarios where constraints on maximum
absolute warming and maximum warming rate are imposed.

0. Bahn (HEC) Climate policies: Insights from E3 & IA models



Models and applications

Geoengineering: Insights from BaHaMa
Adaptation: Insights from AD-MERGE
Mitigation: Insights from MERGE
Mitigation: Insights from TIMES

THC: Temperature increase (from 2000)
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THC: Temperature increase rate

Models and applications
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THC: World primary energy use

Models and applications
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Mitigation policies: A study with TIMES
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TIMES: Overview of the RES in NATEM
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TEFP: Scenarios
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TEFP: GHG emission targets
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TEFP S3a-R60: GHG emission reductions by sector

Models and applications
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TEFP S3a-R60: GHG emissions by sector
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TEFP S3a-R60: Decarbonization of electricity supply
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TEFP S3a-R60: Strategies for deep decarbonization

The main transformations needed to achieve deep
decarbonization can be grouped into three main categories:

@ Electrification of end-use sectors: Electricity is mainly
used for space and water heating, road transportation and
industrial and agricultural processes.

© Decarbonization of electricity supply: Massive
investments in renewable (hydro, but also wind) and nuclear
generation.

© Efficiency improvements: The biggest gains are achieved in
the transport sector (EV for road transportations); the second ones
in residential and commercial buildings (e.g., efficient appliances
and improved building envelopes).

0. Bahn (HEC) Climate policies: Insights from E3 & IA models



Conclusion

Outline

Q Conclusion

0. Bahn (HEC) Climate policies: Insights from E3 & IA models



Conclusion

Conclusion

@ Geoengineering (SRM measure) brings along important
risks (it may produce unintended consequences and harmful
side-effects): It does not appear to be a robust component
of an optimal climate policy.

@ Adaptation is an important complement to mitigation: the
combination of both strategies is efficient to reduce GDP
losses, but may delay the needed transition to ‘clean’
energy systems.

@ Avoiding abrupt climate changes may require a faster
decarbonization path (precautionary principle).

@ In Canada, deep decarbonization can be achieved
through massive electrification coupled with a
decarbonized electricity supply and significant efficiency
gains.
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