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Strategies to address climate changes

Human activities release greenhouse gases (GHGs) that
trigger climate changes with negative impacts on the
environment and human societies.

Different strategies to address these threats:

Mitigation measures are options to reduce GHG
emission levels (e.g., use renewables instead of fossil fuels).

Adaptation measures provide strategies to reduce
impacts of climate changes (e.g., crops for new climate
conditions, dykes to protect against sea level rises or medical
preventions against spreading tropical diseases).

Geoengineering measures are options to modify the
climate system (e.g., solar radiation management).
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E3 model classification

Bottom-up:
A techno-economic approach that leads to disaggregated
models representing the energy sector with great details;
Example: TIMES (Loulou et al., 2005).

Top-down:
A macro-economic approach that leads to aggregate
models in the sense that they use aggregate economic
variables;
Example: GEM-E3 (Capros et al., 1997).

Hybrid:
Models that incorporate within the same framework both
modeling approaches;
Example: MARKAL-MACRO (Manne and Wene, 1992).
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Integrated assessment models

Integrated assessment (IA) is an interdisciplinary
approach that uses information from different fields of
knowledge, in particular economy and climatology.
Integrated assessment models (IAMs) are tools for
conducting an integrated assessment, as they typically
combine key elements of the economic and biophysical systems,
elements that underlie the anthropogenic global climate change
phenomenon.
Examples of IAMs are BaHaMa (Bahn et al., 2008, 2010,
2012, 2015), DICE (Nordhaus, 1994, 2007), MERGE (Manne
et al., 1995; Manne and Richels, 2005), RICE (Nordhaus and
Yang, 1996) and TIAM (Loulou and Labriet, 2008).

O. Bahn (HEC) Climate policies: Insights from E3 & IA models



Introduction
Models and applications

Conclusion

Geoengineering: Insights from BaHaMa
Adaptation: Insights from AD-MERGE
Mitigation: Insights from MERGE
Mitigation: Insights from TIMES

Outline

1 Introduction
Climate changes
E3 models
IA models

2 Models and applications
Geoengineering: Insights from BaHaMa
Adaptation: Insights from AD-MERGE
Mitigation: Insights from MERGE
Mitigation: Insights from TIMES

3 Conclusion

O. Bahn (HEC) Climate policies: Insights from E3 & IA models



Introduction
Models and applications

Conclusion

Geoengineering: Insights from BaHaMa
Adaptation: Insights from AD-MERGE
Mitigation: Insights from MERGE
Mitigation: Insights from TIMES

Geoengineering strategy: A study with BaHaMa

Is there room for geoengineering in the optimal
climate policy mix?

O. Bahn a, M. Chesney b,*, J. Gheyssens d, R. Knutti c, A.C. Pana b

aGERAD and Department of Decision Sciences, HEC Montréal, Canada
b Institute of Banking and Finance, University of Zurich, Switzerland
c Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland
dUNEP Financial Initiative, Geneva, Switzerland

1. Introduction

Climate change due to anthropogenic greenhouse gas (GHG)

emissions is viewed as one of the most serious challenges

faced by humankind (Stern, 2006). Strategies for dealing with

climate change enter three main categories: mitigation,

adaptation, and climate geoengineering. International agree-

ments call for reductions in GHG emissions – the mitigation

approach. Despite its direct impact on temperature levels, its

technical feasibility, and its ethical appeal, several factors

limit the implementation of mitigation: (i) the strong inertia in

the carbon cycle creates a gap between present abatement

costs and future climate benefits (Keller et al., 2007); (ii) the

decades-to-millennia-long lifespan of GHG render mitigation

ineffective in case of abrupt climate changes; (iii) the

atmosphere is a common good and unilateral actions are

discouraged by the possibility of free riding (Millard-Ball, 2012).

An alternative for dealing with climate change is adapta-

tion, the development of strategies that effectively reduce

climate change impacts (Tol, 2005). Adaptation covers a large

array of sectors, and can be ‘proactive’ or ‘reactive’ (de Bruin,

2011). While proactive adaptation is directed towards infra-

structure and medium-to-long-term economic transforma-

tions (Agrawala et al., 2011), reactive adaptation can be

deployed almost instantaneously to mitigate unforeseen or

underestimated damages. Several features distinguish adap-

tation from mitigation: (i) adaptation can be implemented
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a b s t r a c t

We investigate geoengineering as a possible substitute for mitigation and adaptation

measures to address climate change. Relying on an integrated assessment model, we

distinguish between the effects of solar radiation management (SRM) on atmospheric

temperature levels and its side-effects on the environment. The optimal climate portfolio

is a mix of mitigation, adaptation, and SRM. When accounting for uncertainty in the

magnitude of SRM side-effects and their persistency over time, we show that the SRM

option lacks robustness. We then analyse the welfare consequences of basing the SRM

decision on wrong assumptions about its side-effects, and show that total output losses are

considerable and increase with the error horizon. This reinforces the need to balance the

policy portfolio in favour of mitigation.

# 2014 Elsevier Ltd. All rights reserved.
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BaHaMa: Modelling of an SRM strategy

BaHaMa includes a Solar Radiation Management (SRM)
measure that targets the reduction of incoming solar radiation by
injection of sulfur in the stratosphere.

Possible advantages of SRM:
Ability to keep temperature levels artificially low, instead
of reducing GHG emissions, at a low cost;
Provide quick and effective temperature backstop in case
of abrupt climate changes, with rare but catastrophic
impacts.

SRM brings along important risks:
Cause ozone depletion;
Alter ecosystems and trigger regional imbalances;
Achieves only an ‘artificial’ reduction in temperature: A
disruption in sulphur injections would lead to a significant jump in
temperatures (at the corresponding concentration level).
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Modelling the impacts of geoengineering

We rely on a binomial tree representation in order to model the evolution of
side-effects over time (αGE ) and capture the uncertainty and variability in their
size:

αGE (t)
αGE (t + 1) = (1 + u) · αGE (t) with probability p

αGE (t + 1) = (1 + d) · αGE (t) with probability (1 − p)
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Scenarios

Five policy scenarios are analyzed:

‘Mitigation’ where mitigation is the only strategy available.

‘Mitigation and Adaptation’ where both mitigation and
adaptation are available, but not geoengineering.

‘Mitigation, Adaptation, SRM’ where all strategies are
available. Here we consider three illustrative cases for SRM
side-effects:

- ‘Mild side-effects’: constant side-effects (αGE(t) = 0.015);

- ‘Strong side-effects’: αGE increases monotonically to αGE ;

- ‘Weak side-effects’: αGE decreases monotonically to αGE .
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Results: Distributional analysis for SRM side-effects
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Adaptation policies: A study with AD-MERGE
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MERGE: Overview
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Scenarios
AD-MERGE database corresponds to version 5 of the MERGE
model except: i) key parameters of the climate module have been revised;
ii) damage module has been revised and re-calibrated; and iii) adaptation
options are modelled.

Five scenarios are analyzed:
A counterfactual ‘Baseline’ where climate change damages are not felt
and consequently where GHG emissions are not limited.

In the next four policy scenarios, climate change damages are felt and
regions react following a cost-benefit approach. Mitigation is always a possible
option, but adaptation may only be available on a limited basis:

- ‘No-adapt.’: adaptation is not possible;

- ‘Proactive’: only proactive (stock) adaptation is available;

- ‘Reactive’: only reactive (flow) adaptation is available;

- ‘Full-adapt.’: all forms of adaptation are available.
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Results: World energy-related CO2 emissions
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Results: Temperature increase (from 2000)
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Results: Net damages
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Results: World primary energy supply
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Results: World electricity generation in 2100
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THC preservation policies: A study with MERGE

Energy policies avoiding a tipping point in the climate system
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a b s t r a c t

Paleoclimate evidence and climate models indicate that certain elements of the climate system may

exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and

potentially irreversible regime shifts with serious consequences for socio-economic systems. Such

thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate

of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one

example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to

levels that prevent such a climate threshold being reached, we use the MERGE model of Manne,

Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress,

our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission

reduction from today’s level, with transition to nuclear and/or renewable energy, possibly combined

with the use of carbon capture and sequestration systems.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

While it remains extremely difficult to define the level of
‘dangerous anthropogenic interference with the climate system’
as referred to in Article 2 of the United Nations Framework
Convention on Climate Change (UNFCCC, 1992), it is becoming
increasingly clear that certain elements of the climate system may
be particularly vulnerable to human activities (in particular
greenhouse gas—GHG—emissions), with relatively small changes
in emissions above a certain threshold potentially resulting in
irreversible regime shifts and significant losses to human welfare.
Such elements are referred to by Lenton et al. (2008) as tipping
elements, and the associated thresholds as tipping points.
Examples include dieback of the Amazon rainforest, loss of
Arctic summer sea ice, melting of the West Antarctic ice sheet,
and a collapse of the Atlantic thermohaline circulation (THC).
Here we choose to focus on the latter possibility, the dynamics of
which are relatively well understood, if not well quantified, but
our approach could equally well be applied to any other tipping
point for which a threshold could be identified in a climate model.

The present-day circulation of the Atlantic features a strong
surface current, the Gulf Stream and its extension, which
transports warm water into high northern latitudes and is largely
responsible for the relatively mild climate of western Europe. This

wind-driven circulation pattern is strongly connected with the
formation and sinking of dense water in the North Atlantic, driven
by strong heat loss to the atmosphere and by changes in salinity
due to precipitation and ice formation, hence the term ‘thermoha-
line circulation’. Changes in surface density in the North Atlantic,
driven by anthropogenic surface warming, increased precipitation
and glacial meltwater runoff from Greenland, thus have the
potential to cause a drastic reduction in the strength of this
thermohaline circulation on a decadal timescale, with ensuing
changes in climate in the North Atlantic region and beyond, as
indicated by paleodata (Stocker, 2000) and model simulations
(Stouffer and Manabe, 1999; Vellinga and Wood, 2002; Knutti
et al., 2004; Stouffer et al., 2006; Meehl et al., 2007).

The potential impacts of a collapse in the THC could include
regional changes in climate of the order of several degrees (Schaeffer
et al., 2002; Vellinga and Wood, 2002), and global and local changes
in sea level of up to 25–80 cm (Knutti and Stocker, 2000; Levermann
et al., 2005; Vellinga and Wood, 2008; Kuhlbrodt et al., 2009; Yin
et al., 2009). Initial estimates of THC-induced changes in ocean
carbon uptake and in oceanic and terrestrial primary productivity
(Joos et al., 1999b; Obata, 2007; Swingedouw et al., 2007; Zickfeld
et al., 2008; Kuhlbrodt et al., 2009) suggest that these would be
small compared to warming-induced changes, but changes in
regional current patterns could lead to the collapse of certain
Atlantic fish stocks (Kuhlbrodt et al., 2009).

A comprehensive risk analysis must weigh the potentially
drastic impacts of a collapse of the THC against its relatively low
probability according to the IPCC (Meehl et al., 2007). However,
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THC scenarios

Different levels of climate sensitivity:

‘Low CS’, with low climate sensitivity (1.5 ◦C) and short lag for ocean
warming (45 years);
‘Medium CS’, with medium climate sensitivity (3 ◦C) and mean lag (57
years), that is our original parameterization;
‘High CS’, with high climate sensitivity (4.5 ◦C) and long lag (77 years).

Three scenarios:

A counterfactual ‘Baseline’ where climate change damages are not
felt and consequently where GHG emissions are not limited.
‘Post-Kyoto’ scenarios where constraints on CO2 emissions
are imposed (AI: 2010 Kyoto, then -10% per decade; Non-AI: -5% per
decade from 2030).
‘THC preservation’ scenarios where constraints on maximum
absolute warming and maximum warming rate are imposed.
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THC: Temperature increase (from 2000)
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THC: Temperature increase rate
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THC: CO2 emissions
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Mitigation policies: A study with TIMES

Transformations for major reductions in GHG emissions
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TEFP S3a-R60: Strategies for deep decarbonization

The main transformations needed to achieve deep
decarbonization can be grouped into three main categories:

1 Electrification of end-use sectors: Electricity is mainly
used for space and water heating, road transportation and
industrial and agricultural processes.

2 Decarbonization of electricity supply: Massive
investments in renewable (hydro, but also wind) and nuclear
generation.

3 Efficiency improvements: The biggest gains are achieved in
the transport sector (EV for road transportations); the second ones
in residential and commercial buildings (e.g., efficient appliances
and improved building envelopes).
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Conclusion

Geoengineering (SRM measure) brings along important
risks (it may produce unintended consequences and harmful
side-effects): It does not appear to be a robust component
of an optimal climate policy.
Adaptation is an important complement to mitigation: the
combination of both strategies is efficient to reduce GDP
losses, but may delay the needed transition to ‘clean’
energy systems.
Avoiding abrupt climate changes may require a faster
decarbonization path (precautionary principle).
In Canada, deep decarbonization can be achieved
through massive electrification coupled with a
decarbonized electricity supply and significant efficiency
gains.
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