

The Reaction of Primary Insurance to Climate Changes

Sylvain Nolet & Frédérick Guillot CAS In Focus Seminar October 27-28, 2016

Agenda

- Introduction
- Climate Change, a Significant Risk?
- Multi-Facet Approach
- Modeling The Impact of Climate Change Risks
- Big data
- Case Study Flood insurance at Co-operators
- Conclusion

The Co-operators. Who are we?

Cooperative owned by 42 Canadian cooperatives

Climate Change a Significant Risk?

How Significant a Risk is Climate Change?

Pure Risk

Mitigation

Residual Risk

Risk Evaluation Process

Risk Evaluation Process – Pure Risk

Risk Evaluation Process - Mitigation

Risk Management Controls & Practices

- Collaboration with ICLR
- Policy coverage limits management
- Pricing
- Reinsurance
- Sustainability advocacy plan
- Product development
-

Risk Management is More About Protecting Companies ?

What about Clients Financial Protection?

Canadian Catastrophies – Last 20 Years

CATASTROPHIC'S LOSS

■ Insured Losses (\$B)

The 5 Biggest Events in Pictures

A Multi-Facet Approach to « New » Risk

A Multi-Faceted Approach to Building Resilience

Partnership & Collaboration - Case Study Canadian Flood

Round Table Discussion

60 Senior Executives from Banks, Insurers, Reinsurers, Actuarial Society, Governement from all levels, realtors, construction companies, water conservation authorities

Winning Condition #1

Canadians and stakeholders will have a transparent understanding of the flood risk that they are exposed to and the economic impact of that risk

Winning Condition #2

Canadians and Stakeholders will utilize the understanding to make sound adaptation decisions, to incent the right behavior

"Preparedness of Fifteen Canadian Cities to Limit Flood Damage" Report

Winning Condition #3

Canadians have access to a means to transfer the risks associated with flood damage that remain after adaptation

Modeling The Impacts of Climate Change Risk

4 Questions to Underwrite a New Risk

- Do you understand the nature of the risk ?
- Do you have the internal capacity ?
- Can you get the right conditions ?
- Do you want to expose your capital?

Past is no longer predictive of the future ... or a lot less

There is a lot out there ... for FREE !

Geocoded risk elements

Meteorology

Topography

Big Data also means UNSTRUCTURED

Innovative ways to leverage Big Data ... ALL TOGETHER

Open Data Portal

121,612 datasets found

The Fort McMurray Example

Imagine if we had this during the 1998 Ice Storm

Case Study

Flood Insurance at Co-operators

2013: 2 floods in 2 weeks

Canada was the only G8 country without flood insurance

Challenge #1- Misunderstandings

Coverages

"70% of insureds believed they are covered for flood"

Confusion with Sewer Backup, DFAA, ...

Risk

"Insureds are underestimating their flood risk potential"

1 in 100/500 years events don't occur in a lifetime ...

Challenge #2- Complex New Phenomenon

Causes

Fluvial, Pluvial, Coastal

Hydrology

Flow, depth, floodplains

Computations

Geocoding, Point-in-polygons

Challenge #3- No Claim Experience Data

No Coverage ↓ No internal data ↓ Can you imagine a traditional actuary without data ?

Challenge #3- No Claim Experience Data

No Coverage ↓ No internal data ↓ Can you imagine a traditional actuary without data ?

How can I assess flood deductible / limit relativities ?

Challenge #3- No Claim Experience Data

No Coverage ↓ No internal data ↓ Can you imagine a traditional actuary without data ?

As useless as a skier without snow ...

Fortunately, will still had creativity!

Solution #1- Involve Academics

Find specialists + Research opportunities

Solution #2- Ask Experts

Validate findings + Create partnerships

Solution #3- Use Big Data ... And Transform it !

Elevation	ResolutionCanadawide (?)
Watercourses	GeolocationFlow
Rainfalls	AveragesObservations
Floodplains	Internal vs external modelCanadawide (?)
Other Sources	 Soil type – Past events – Defenses Other partners

Solution #4- Use text mining

"Due to the severe flooding this time the water almost reached the furnace - approx 3 feet of water."

"6 inches of water & raised subfloor, was not sewage but clear water."

Identify past flood claims

Determine flood causes

> Estimate water depth

Validate models

Solution #5- Involve Hydrologists

Model water / Assess pure risk !

Solution #6- Involve Civil Engineers

Assess performance of man-made flood defenses

Solution #7- Leverage Cloud Computing

Geocoding + Nearest Watercourse + Flood Zoning

Solution #8- Actuaries & Data Scientists

Convert Risk Indicators into Premiums

Solution #9- Involve All Sectors

Solution #10- Floodplain Maps

Urgent Need for Canada + Let's Work Together on it!

The Model Framework

Statistical Distribution of Water Levels

> **Events** of Various Probabilities

Digital Terrain Model

Exposure Data

Conclusion

5 Lessons Learned

- 1. Don't neglect the model understanding part
- 2. Involve every key partners
- 3. Leverage Big Data
- 4. Be creative and innovate
- 5. Plan enough time to convert risk indicator into a price

Let's BETTER cover our clients by collaborating together!

Thank You !