Challenge in modeling US Flood

CAS Presentation

Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.

Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.

It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Damaging Winds Centered Around Landfall Location Near Rockport

🔶 A I R

Damage Survey from Rockport, TX Shows the Extent of the Wind Damage

But Subsequent Flooding Devastated the Region, Centering to the North Around Houston

- Harvey stalled following landfall and it proceeded to rain for 4+ days
- >50" of rain fell in some places and many areas received >40" of rain

Inundation Map for Harvey Shows Flooded Metro Areas and Significant Penetration Inland

Different approaches to modeling Flood

- Assume FEMA maps are absolutely correct
- Create a natural model to simulate flooding
- Create a statistical model to approximate flood height

Precipitation Is Simulated by Coupling Global Circulation and Numerical Weather Prediction Models

A Model that Is Robust at Multiple Scales Is Necessary for Developing Accurate Views of Risk

AIR

30m DTM* for water surface elevation

*DTM – Digital Terrain Model from National Elevation Dataset

FEMA Coverage Has Gaps ---- Gaps in FEMA

AIR Has Full Coverage of the Lower 48

Modeled Flow Quantiles Match Well with Observed Flow Quantiles

Historical Events Are Validated Using Observed Gauge Station Flow

Claims

- NFIP has been in existence since 1968
- Flood is common exclusion
 - "Sewer backup"
 - Surge

The AIR Inland Flood Model Includes Separate Damage Functions for Modeling On- and Off-Floodplain Losses

Industry issue: Lack of data capture / data quality

- Address accuracy
 - North / South 456 Main Street
 - "In the river"
- Secondary Modifiers
 - First floor height
 - Basement type
 - Service equipment
 - Flood Defenses
 - "Flood certificate"

Secondary Modifiers Play a Key Role in the Accuracy of Loss Estimates

Secondary Modifiers Play a Key Role in the Accuracy of Loss Estimates

2017 CAS In Focus Seminar

ISO Commercial Property Flood Loss Costs

October 2, 2017

SERVE | ADD VALUE | INNOVATE

Policy Statement

The policy of Verisk Analytics and subsidiary companies is to comply in all respects with federal and state antitrust laws. With this in mind, we want to mention that during all seminars held under our auspices, this policy prohibits discussion of certain topics. Because we want to avoid even the appearance of an antitrust violation, we go beyond the letter of the law, and we will not discuss any matter that violates the spirit of the antitrust laws or could be perceived as doing so.

A copy of our Policy Statement on Discussion at Meetings can be found at <u>www.Verisk.com/statement</u>.

Loss Cost Page

Cape May County:

			Flood	Zone	
Coverage	Construction	Α	X500	X	D
Building	Frame and Non-				
	Combustible	###	###	###	###
	Joisted Masonry and				
	Masonry Non-Combustible	###	###	###	###
	Modified Fire Resistive				
	and Fire Resistive	###	###	###	###
Contents	Frame and Non-				
	Combustible	###	###	###	###
	Joisted Masonry and				
	Masonry Non-Combustible	###	###	###	###
	Modified Fire Resistive				
	and Fire Resistive	###	###	###	###

All Other Counties:

			Flood	Zone	
Coverage	Construction	Α	X500	X	D
Building	Frame and Non-				
	Combustible	###	###	###	###
	Joisted Masonry and				
	Masonry Non-Combustible	###	###	###	###
	Modified Fire Resistive				
	and Fire Resistive	###	###	###	###
Contents	Frame and Non-				
	Combustible	###	###	###	###
	Joisted Masonry and				
	Masonry Non-Combustible	###	###	###	###
	Modified Fire Resistive				
	and Fire Resistive	###	###	###	###

Flood Zone and Construction Map

For NFIP Flood Zone:	Use Flood Zone:
A, AE, A1-A30, A99, AH, AHB, AO, AOB, V, VE, V1-V30, AR, AR/AE, AR/A1-30, AR/AH, AR/AO, or AR/A	А
X (shaded), B, or X500	X500
X (unshaded) or C	Х
D, unmapped, or communities that do not participate in NFIP	D

Construction	Groups:
--------------	---------

Frame and Non-combustible

Joisted Masonry and Masonry Non-combustible

Modified Fire Resistive and Fire Resistive

Flood Base Loss Cost Development

- Flood Base Loss Costs are based on the following components:
 - a. Flood Zone Loss Costs

- b. Base Deductible Adjustment
- c. Non-modeled Flood Load
- d. Loss Adjustment Expense Factor
- e. Construction Relativity
- Flood Base Loss Costs = $a \times b \times c \times d \times e$

Flood Zone Loss Costs

- Calculate census block weighted average loss cost for each ZIP code/flood zone group combination.
 Allocate exposure reported under ISO's statistical plans to ZIP code/flood zone group.
 Calculate state-wide exposure weighted average loss cost for each
 - flood zone group.

Flood Zone Loss Costs

- Calculate census block weighted average loss cost for each ZIP code/flood zone group combination.
 - Allocate exposure reported under ISO's statistical plans to ZIP code/flood zone group.
 - Calculate state-wide exposure weighted average loss cost for each flood zone group.

Census block map

https://www.census.gov/geo/maps-data/maps/block/2010/

Census block map

https://www.census.gov/geo/maps-data/maps/block/2010/

Flood Zone Loss Costs

Flood Zone Loss Costs

- Calculate census block weighted average loss cost for each ZIP code/flood zone group combination.
 Allocate exposure reported under ISO's statistical plans to ZIP code/flood zone group.
 - Calculate state-wide exposure weighted average loss cost for each flood zone group.

Base Deductible Adjustment and Loss Adjustment Expense Factor

- Base Deductible Adjustment Factor was applied to ground-up loss costs to reflect \$500 base deductible in the base policy.
- Loss Adjustment Expense Factor was selected and applied to the modeled loss costs since the model doesn't account for the loss adjustment expense.
 - The data underlying the selection is based on ten years of Insurance Expense Exhibit (IEE) databases acquired from A.M. Best

Non-modeled Flood Load

- Non-modeled losses include losses as a result of
 - o precipitation due to tropical storms and hurricanes
 - o storm surge due to tropical storms
 - o winter storm surge in applicable states
- Non-modeled flood load is **state specific** and is adjusted by the following formula:

1 + [Selected non-modeled loss percentage/ (1- Selected non-modeled loss percentage)]

Non-modeled Flood Load – contd.

National Hurricane Center

http://www.nhc.noaa.gov/data/#tracks_all

Non-modeled Flood Load – contd.

Tropical Cyclone Rainfall Data

Construction Relativity

For Countrywide:

Construction Type	Flood	Surge	Combined
Masonry	MF	Ms	MF
Wood Frame	WF	Ws	WF
Reinforced Concrete	RF	Rs	R⊧

For Example New Jersey:

Construction Type	Cape May County	All Other Counties
Masonry	Мсм	ΜΑΟ
Wood Frame	Wсм	WAO
Reinforced Concrete	Rсм	Rao

Deductible and Insurance-To-Value Factors

• Flood Deductible Options:

- Factors are provided for flat dollar deductible amount from \$500 up to \$1,000,000
- Flood Insurance-To-Value Options:
 - Listed as 1% through 4%, then in increments of 5%
 from 5% through 80%. 90% and 100% coinsurance
 levels are also reflected on the table
- Factors can be used to rate ground-up and excess of NFIP polices

Flood Base Loss Cost by States

Future Improvements – Territorial Refinement

• Territories defined based on ZIP code

 Reflect high variation in loss costs within flood zone in a given state

Future Improvements – Secondary Rating Variables

- Develop modification factors for the following rating variables:
 - Year Built
 - Number of Stories
 - 1st Floor Height
 - Occupancy Type
 - Floor of Interest
 - Basement/Foundation Type

Rating Variable Comparison

Base Loss Costs	ISO	NFIP
NFIP Flood Zone	Х	Х
State Differentials	Х	
Construction Differentials*	Х	
Elevation	Х#	Х

* NFIP rates pre- and post- FIRM buildings differently

Available in secondary rating variables

Questions?

No part of this presentation may be copied or redistributed without the prior written consent of ISO. This material was used exclusively as an exhibit to an oral presentation. It may not be, nor should it be relied, upon as reflecting a complete record of the discussion.

<u>Raymond.Tobias@verisk.com</u> ielbl@air-worldwide.com

