Predictive Power of External Data in Pricing: Credit and Beyond

Concurrent Session PL-1 2004 CAS Ratemaking Seminar Richard A. Smith EPIC Consulting, LLC

Informal poll

- How many are directly involved in analyzing credit-based insurance scores?
- How many are indirectly involved? (e.g., work with legal and/or public affairs)
- How many believe that credit-based insurance scores are <u>not</u> related to expected loss?

Study on Credit-Based Insurance Scores

- Sponsored by four trade associations
 - Published in June, 2003
 - Authored by Michael J. Miller and Richard A. Smith
 - Available at <u>www.ask-epic.com</u>
- Focused on private passenger auto
- Purpose was to answer three questions
 - Correlation
 - Overlap / Interaction
 - Business purpose / Importance

Data for Study

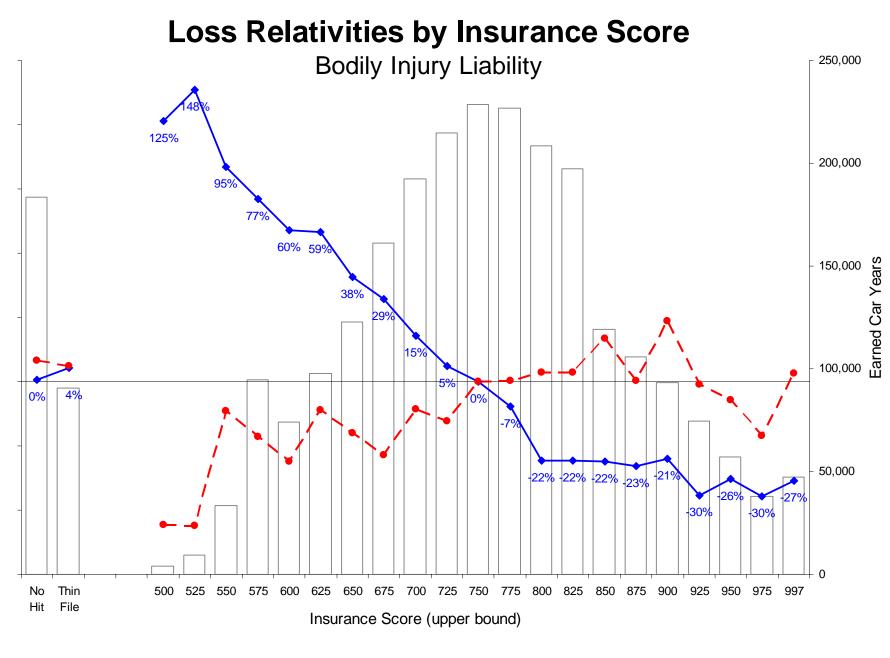
- Provided by multiple companies
- Distribution of business designed to be roughly similar to actual U.S. population distribution
- Random sample
- Approximately 2.7 million earned car years
- Six major personal auto coverages

External Data

Needed surrogate for territories
Census data candidates
Population density
Vehicle density
Considered several others
Wanted surrogate for symbols
Vendors: MSRP

Overview: Non-Modeled Results

- Claim frequency primary driver of cost differences
- Frequency relationships consistent for all coverages
- Claim severity differences for some coverages
 - Collision and comprehensive: poor scores suggest higher severities
 - Bodily injury: modest reversal: poor scores suggest lower severities. This becomes insignificant during modeling process

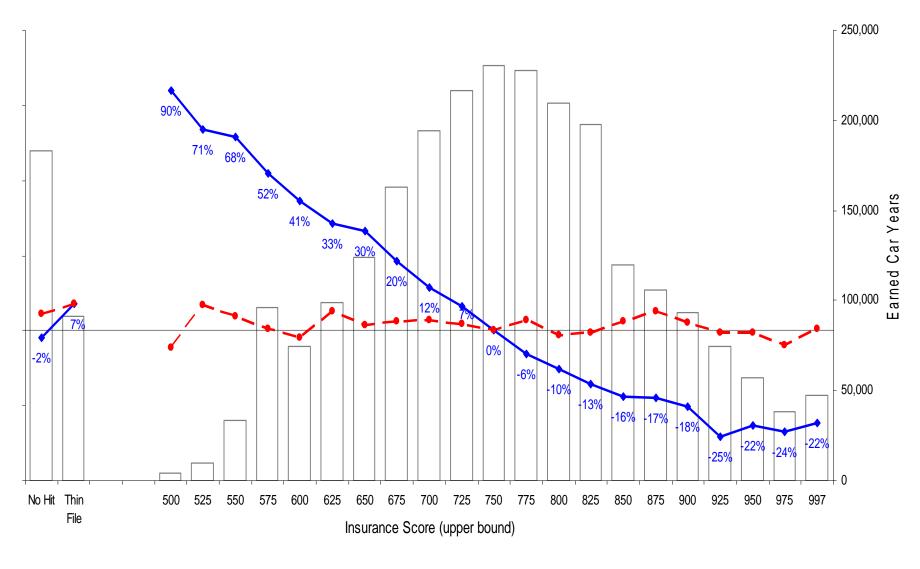


Earned Car Years — Frequency — – Severity

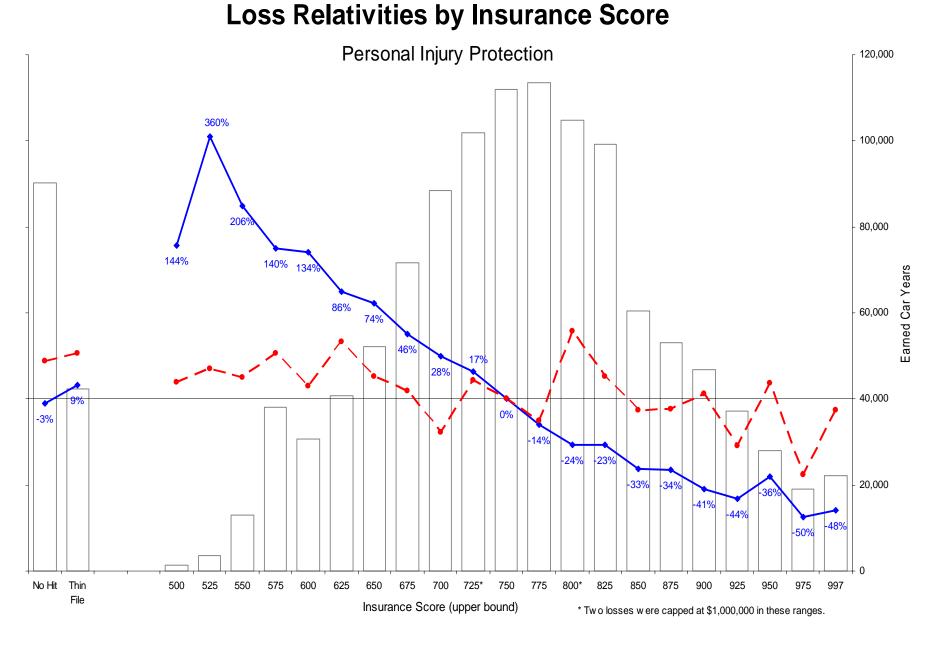
Copyright 2004, EPIC Consulting, LLC

Loss Relativities by Insurance Score

Property Damage Liability



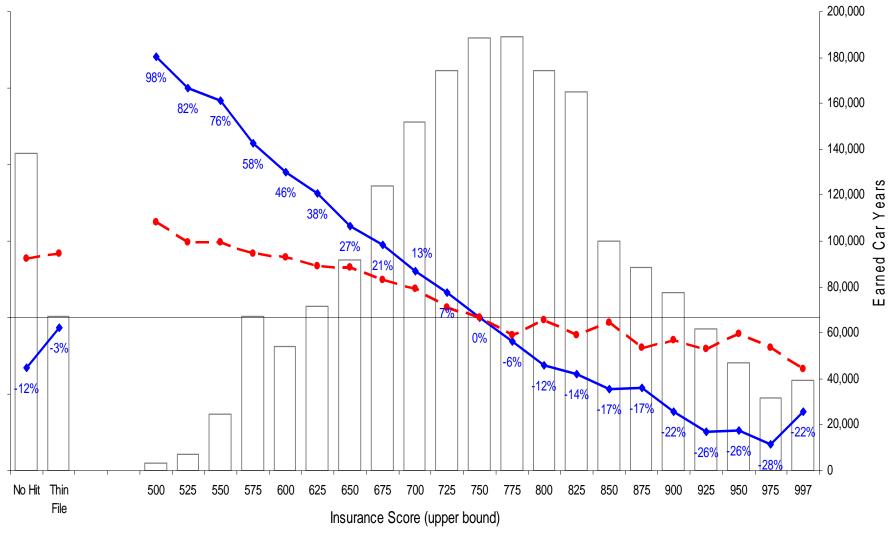
Earned Car Years — Claim frequency — Average cost per claim



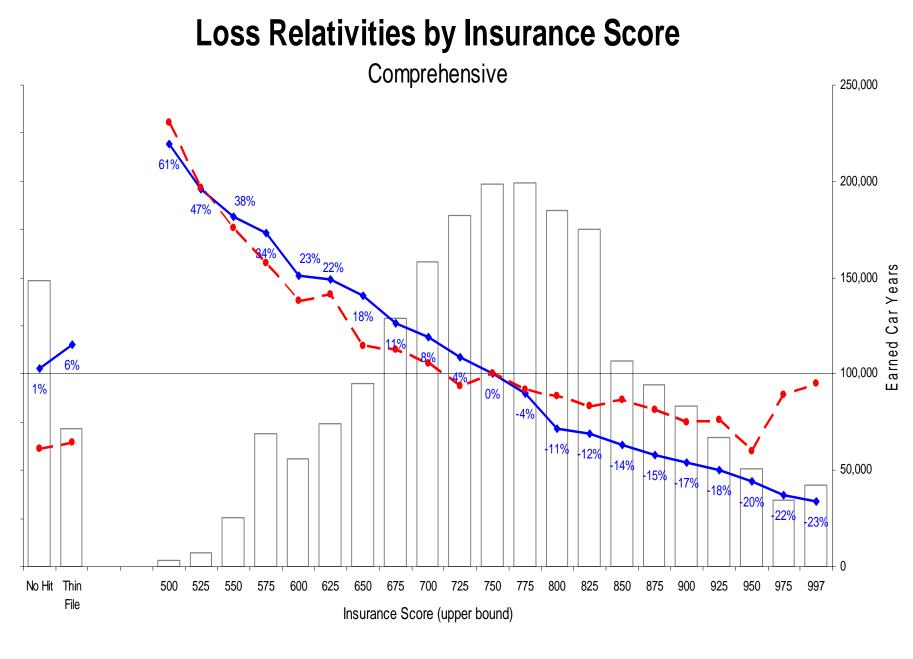
Earned Car Years — Frequency — Earned Car Years

Loss Relativities by Insurance Score

Collision



Earned Car Years — Frequency — Earned Car Years



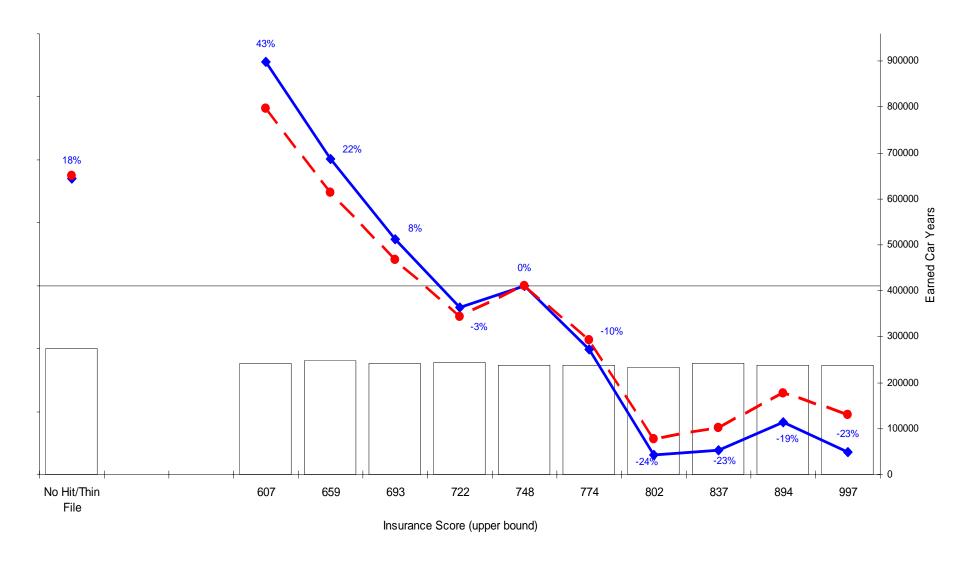
Earned Car Years — Frequency — Earned Car Years

Copyright 2004, EPIC Consulting, LLC

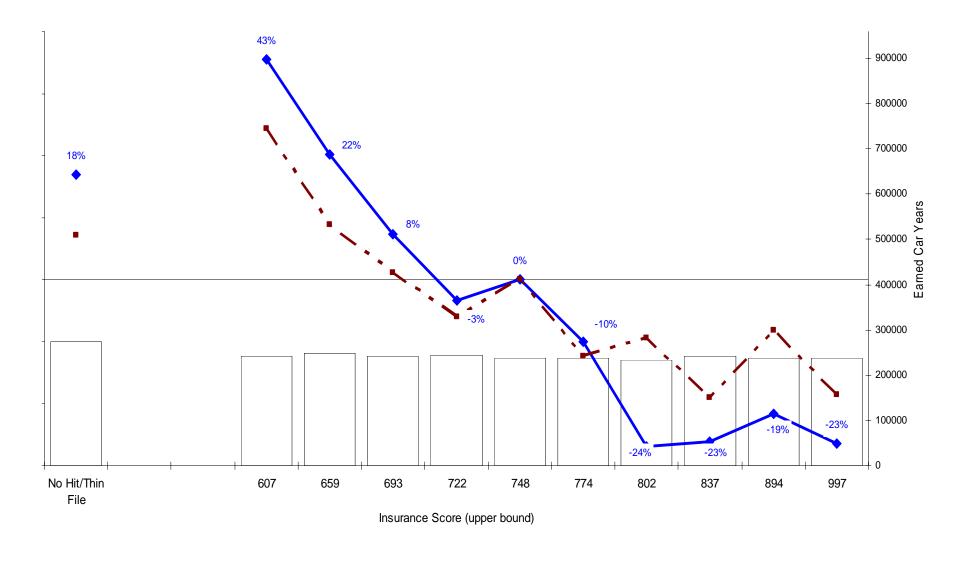
Correlation and "Overlap"

- Modeled frequency and severity, then combined to yield pure premiums
- Included the usual "suspects":
 - Age/gender, limits, deductibles, accidents/violations, multi-car, multi-line, tenure, model year, vehicle use, state
 - Population density as surrogate for territory
- Overlap / Interaction
 - Modeled all characteristics excluding scores
 - "Froze" those factors, and modeled the remaining variation with insurance scores

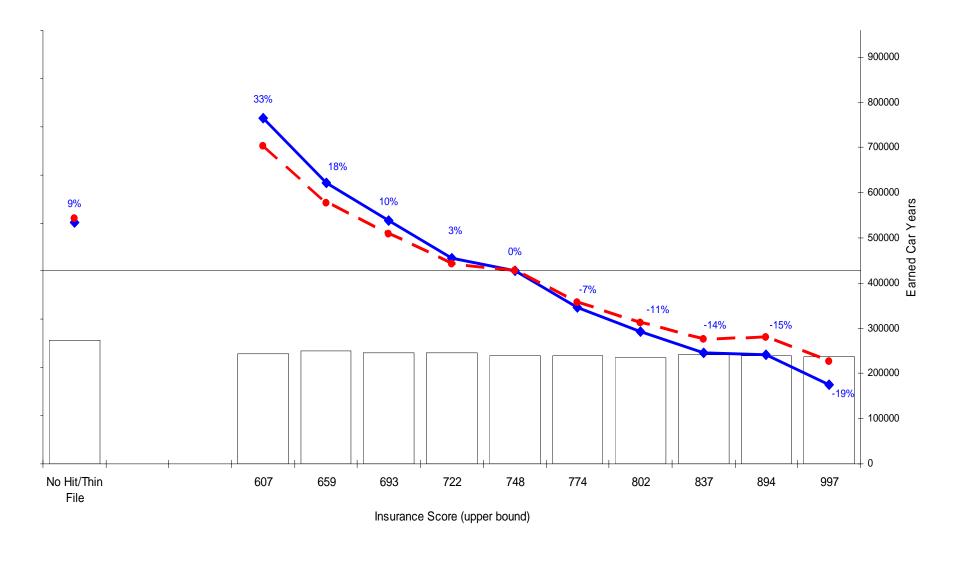
Indicated Relative Pure Premium by Insurance Score Bodily Injury Liability



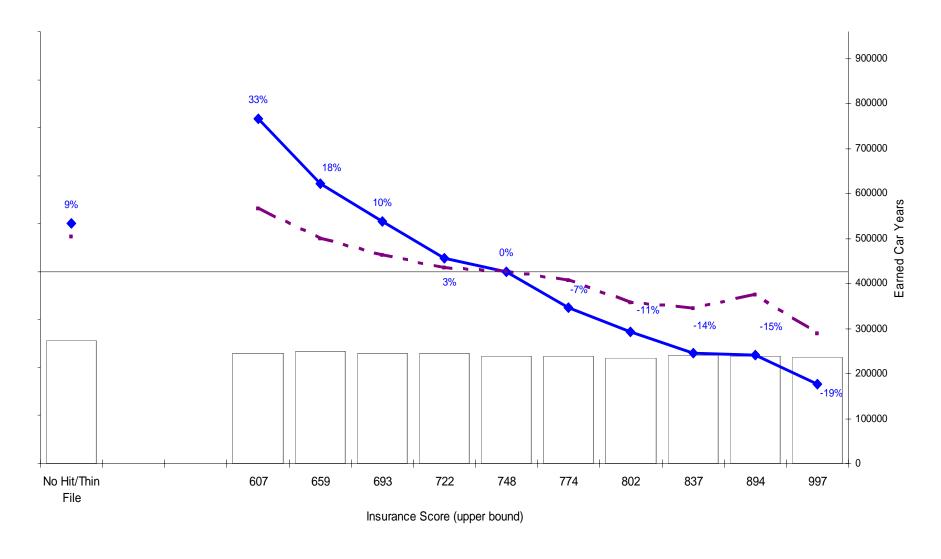
Indicated Relative Pure Premium by Insurance Score Bodily Injury Liability



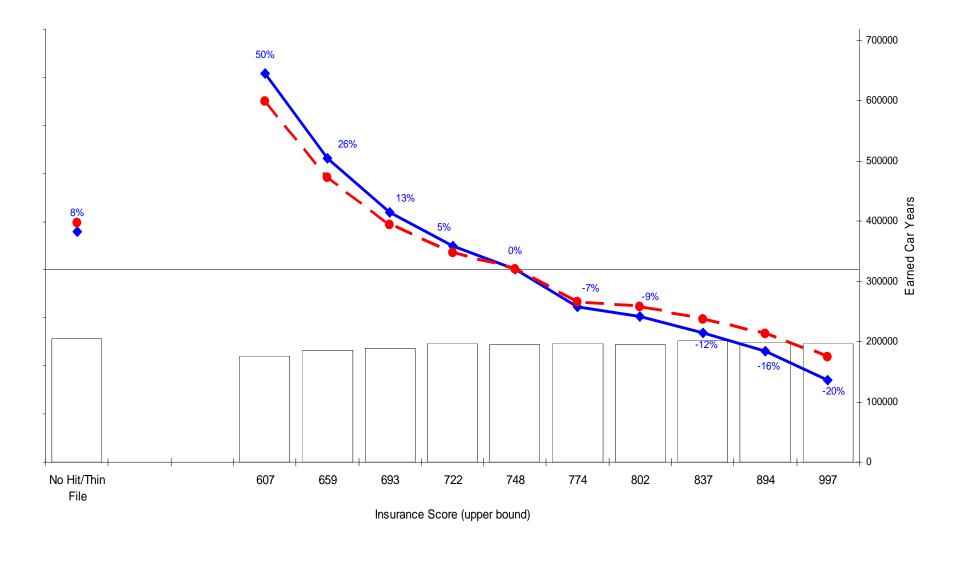
Indicated Relative Pure Premium by Insurance Score Property Damage Liability



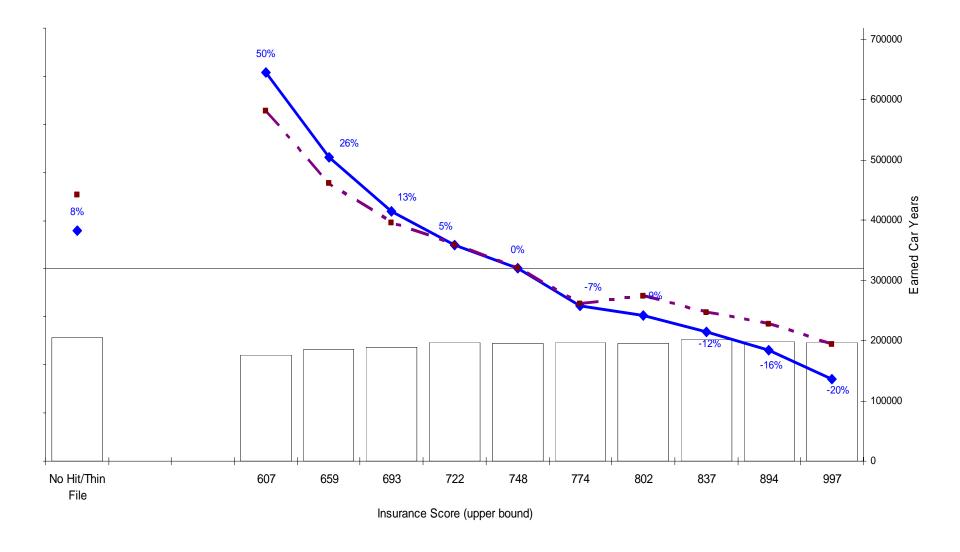
Indicated Relative Pure Premium by Insurance Score Property Damage Liability



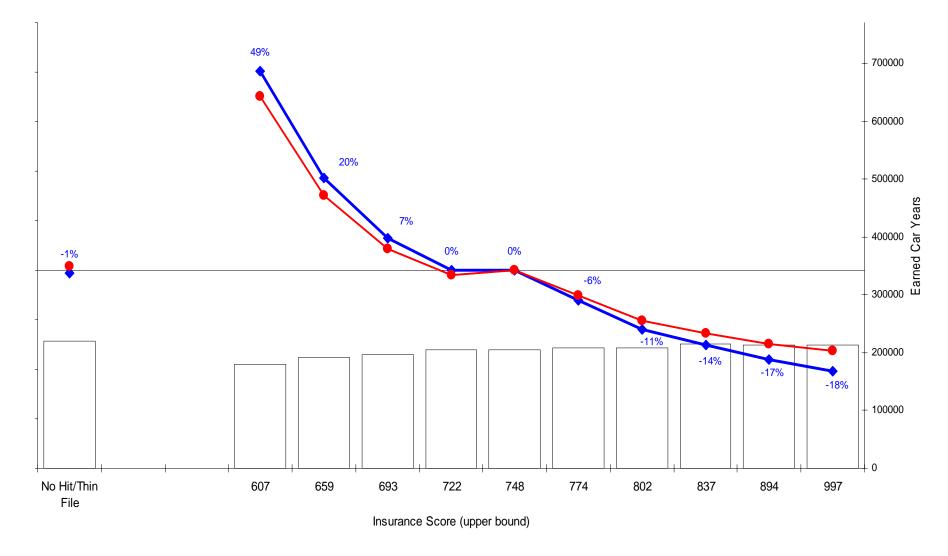
Indicated Relative Pure Premium by Insurance Score Collision



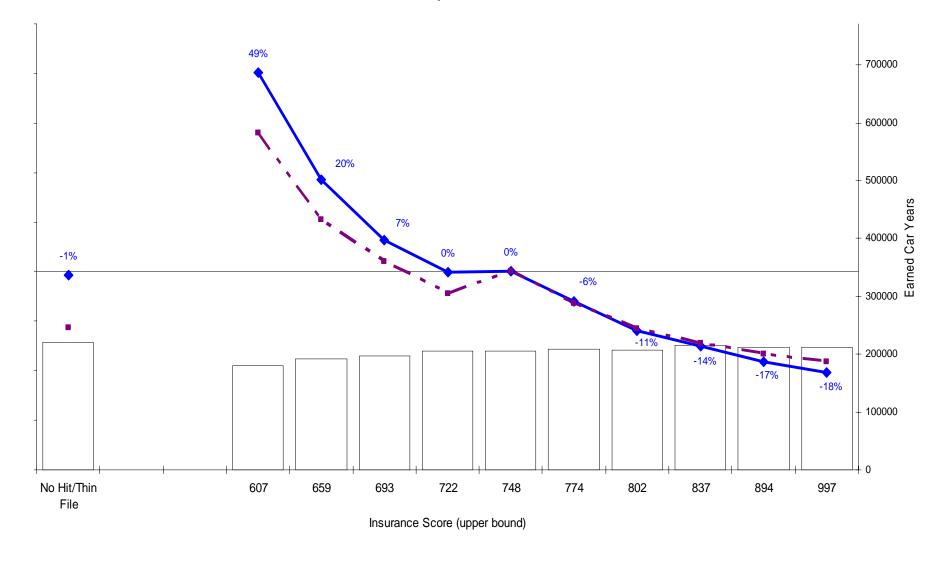
Indicated Relative Pure Premium by Insurance Score Collision



Indicated Relative Pure Premium by Insurance Score Comprehensive



Indicated Relative Pure Premium by Insurance Score Comprehensive



Importance of Insurance Scores*

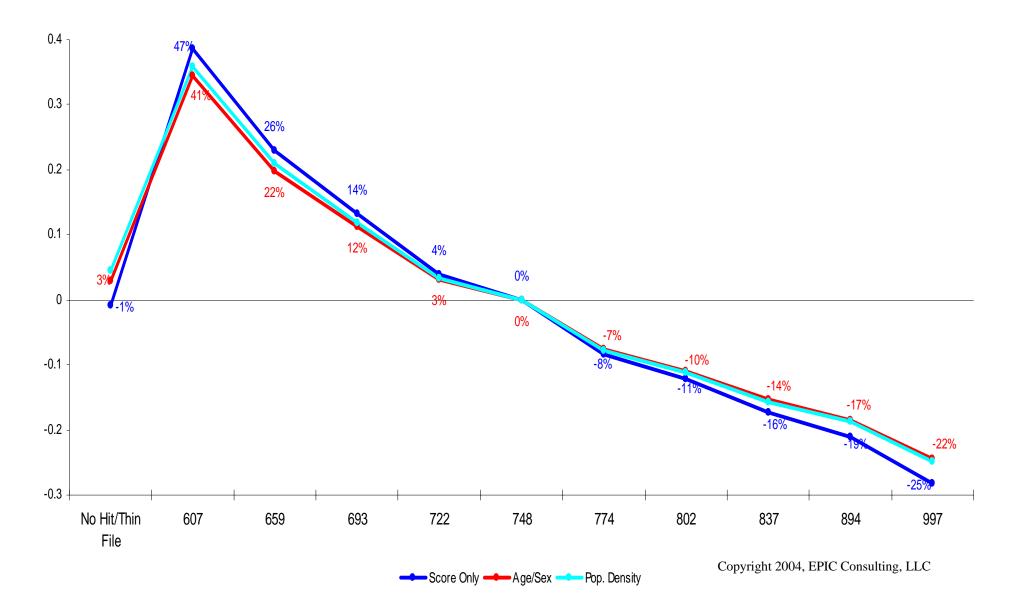
* Based on average absolute differences

Back to External Data

- Use to supplement, not replace
- Census variables can act as surrogates for some traditional characteristics
 - Percentage of multi-car penetration / zip
 - Percentage of home ownership / zip
 - Age distributions by zip
- Ultimately chose to keep things simple
 - Addition of variables had declining impact on insurance score factors

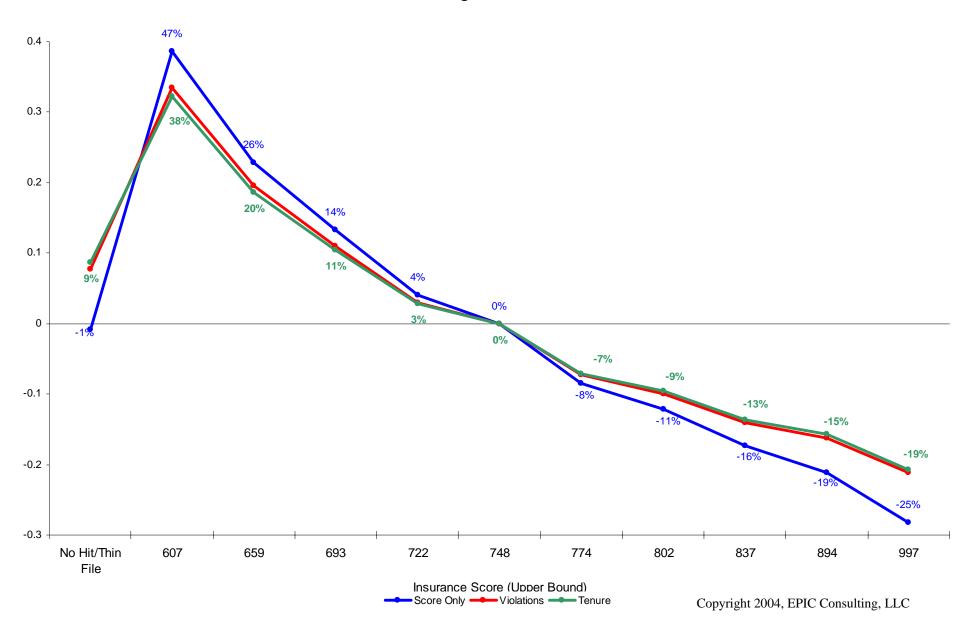
Impact on Indicated PD Frequency Score Relativities

From Introducing Additional Variables



Impact on Indicated PD Frequency Score Relativities

From Introducing Additional Variables

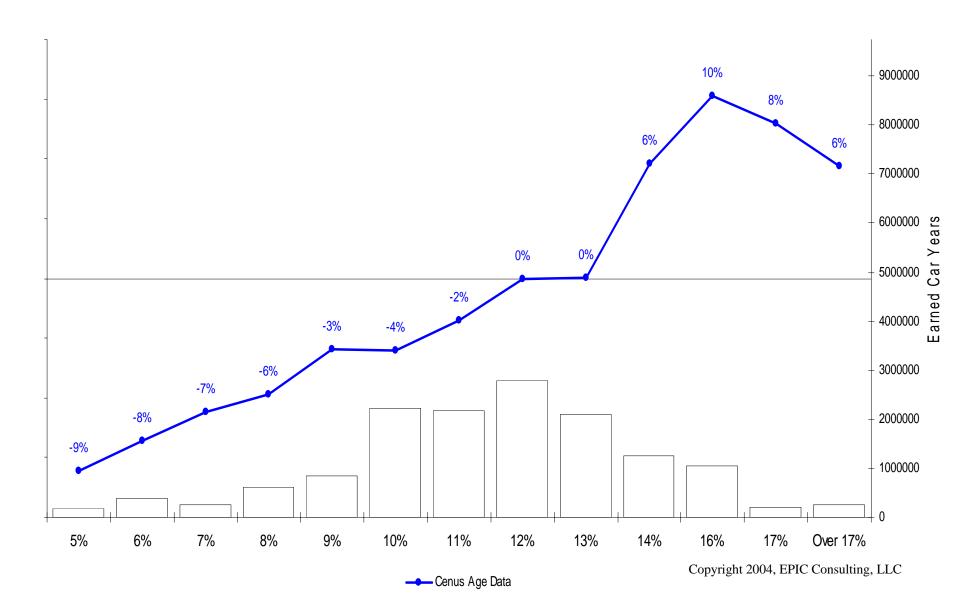


Example - Texas Collision Frequencies

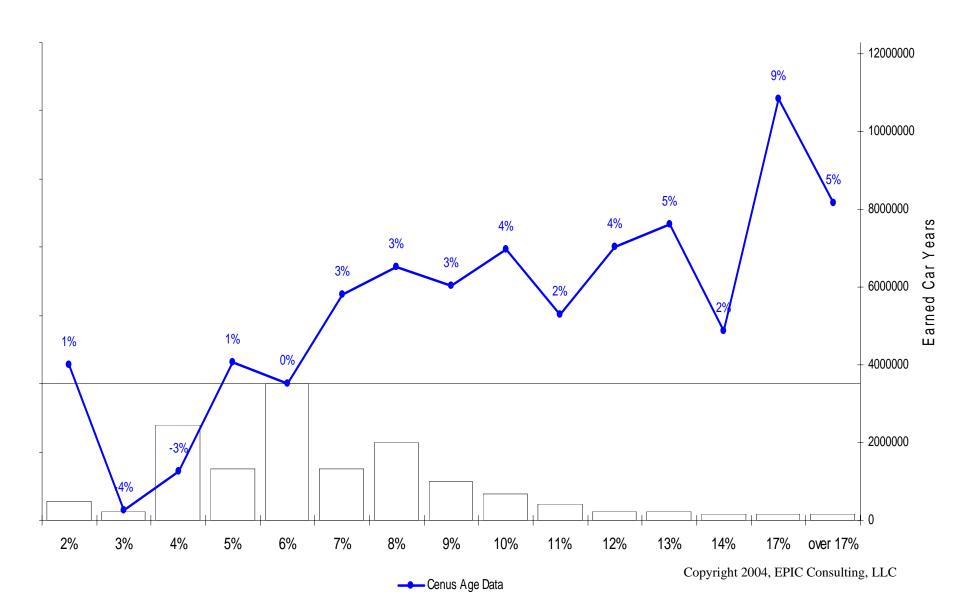
Modeled territory versus

- Driver classification
- Census age range statistics
- External data is predictive
- Census age factors not as effective as actual information
- Not surprisingly, indicated territorial factors differ, in some cases substantially

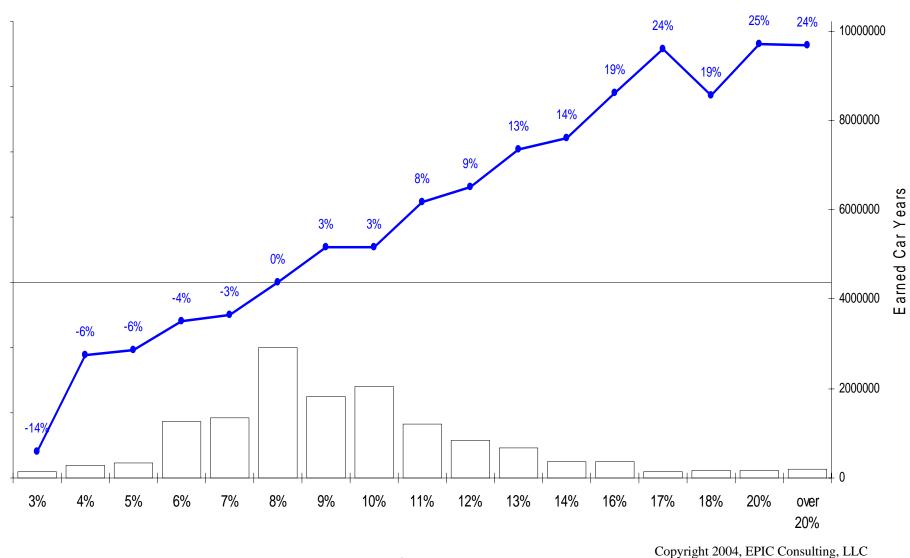
Percent of ZIP aged 15-20



Percent of ZIP aged 21-24

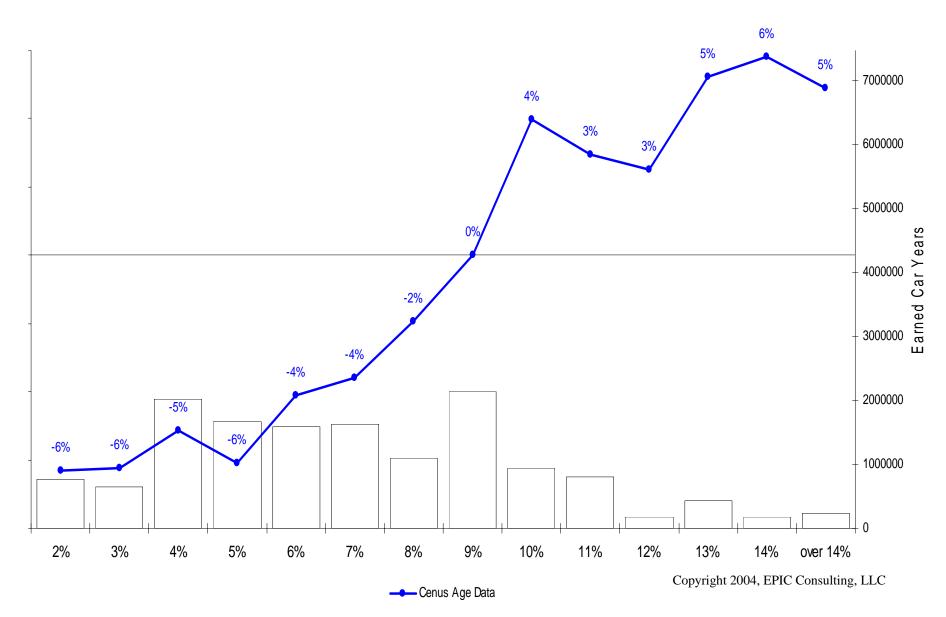


Percent of ZIP aged 25-29

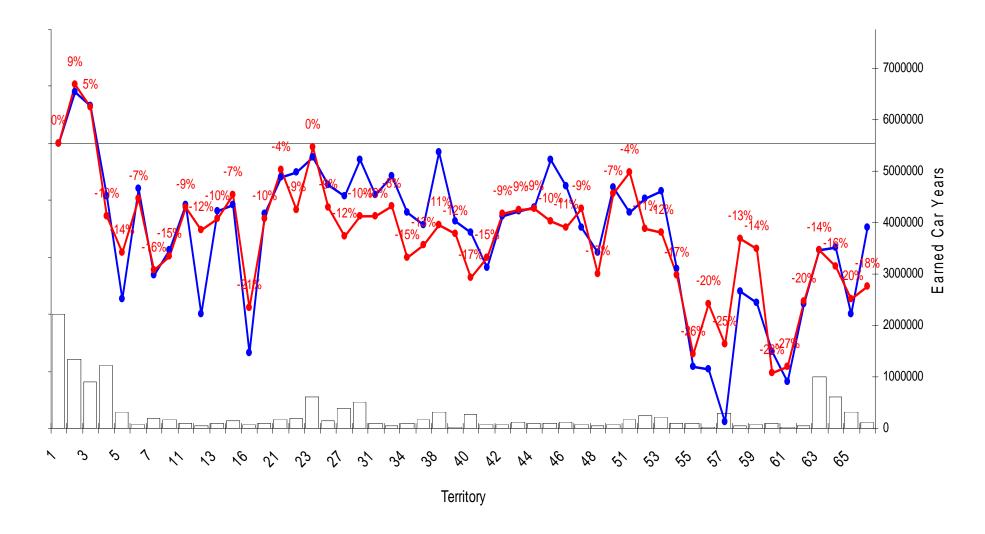


---- Cenus Age Data

Percent of ZIP aged 65-74

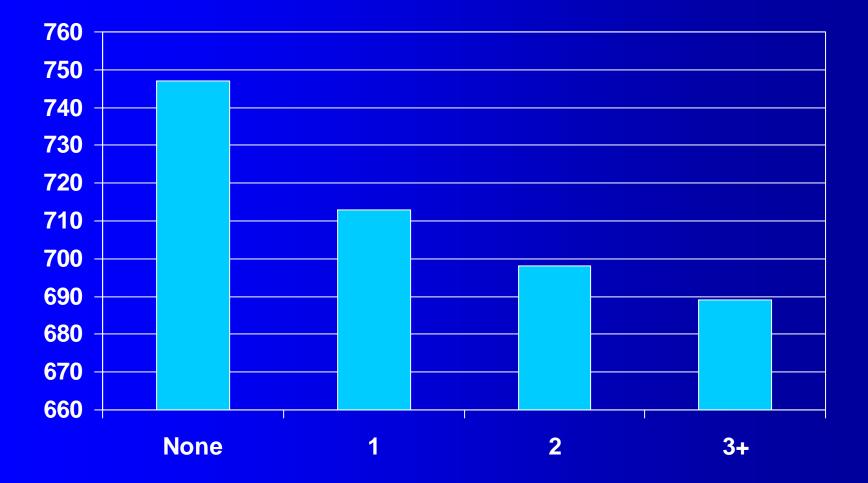


Indicated Factors using Census versus Driver Classification

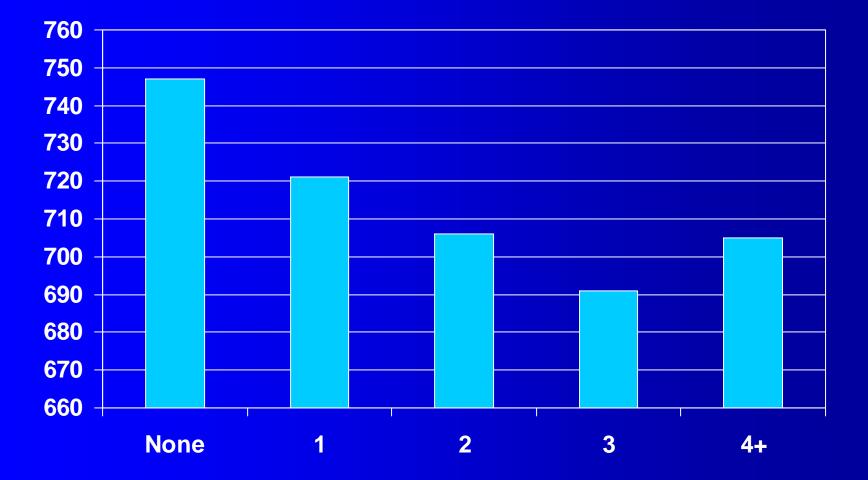


---- Cenus Age Data ---- Driver Class Data

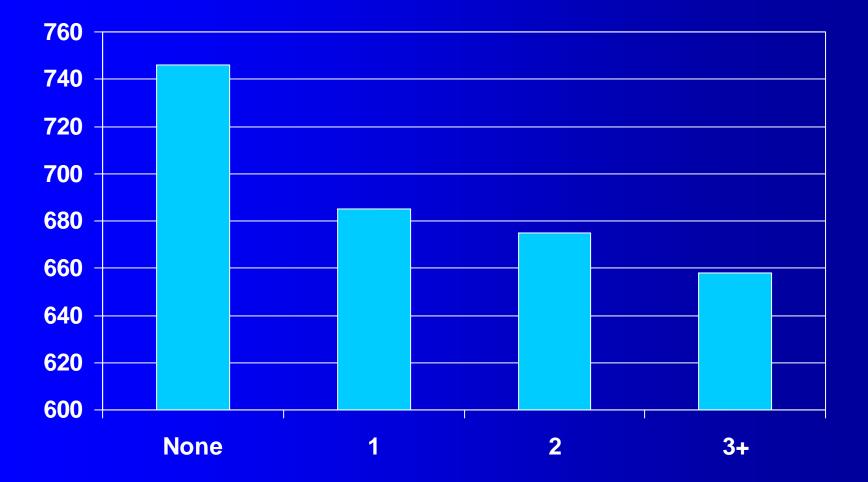
Average Score by Prior Accidents



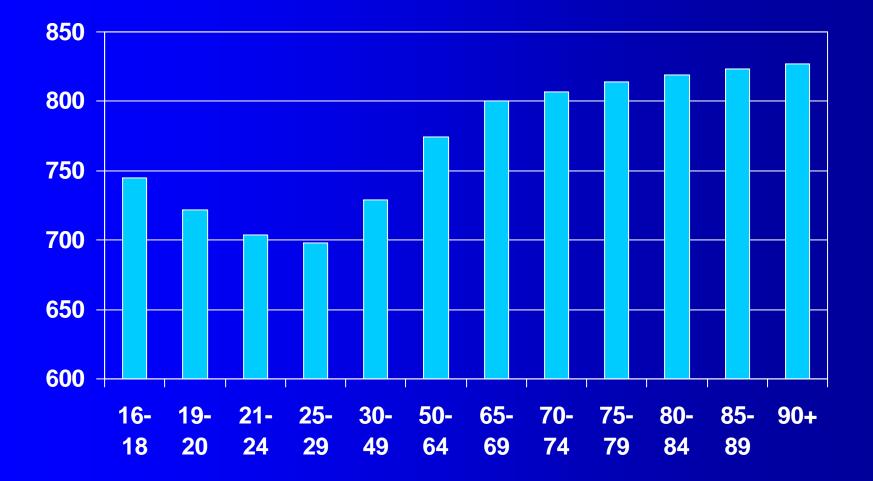
Average Score by Prior Minor Violations



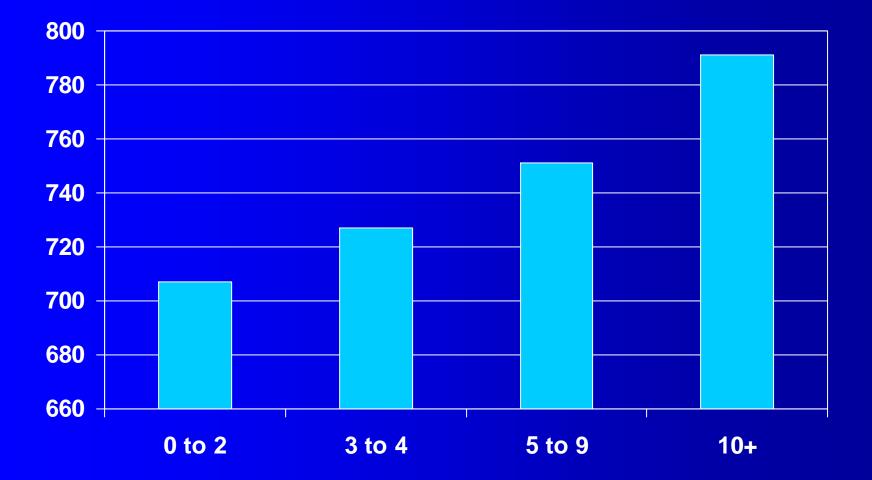
Average Score by Prior Major Violations



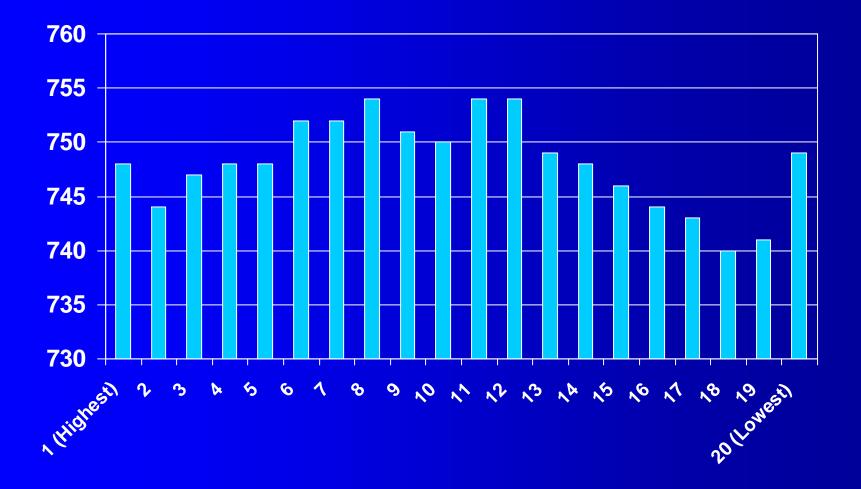
Average Score by Driver Age



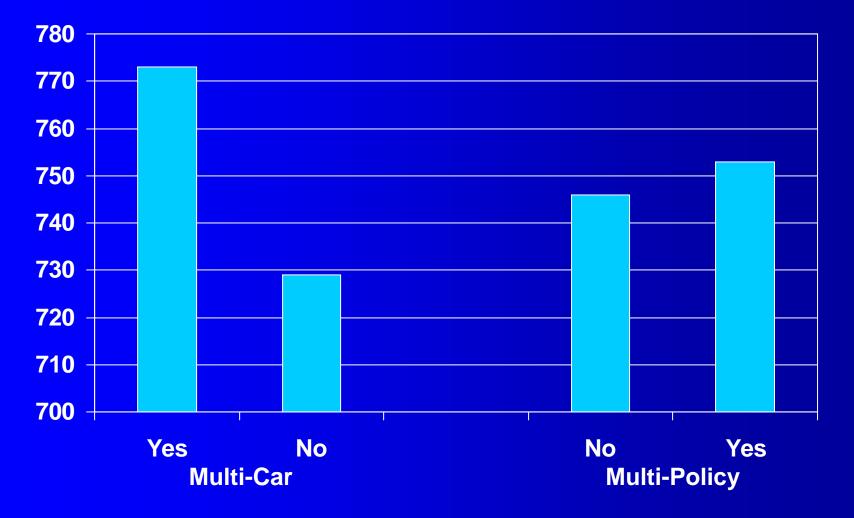
Average Score by Policy Tenure (Years)



Average Score by Population Density Group

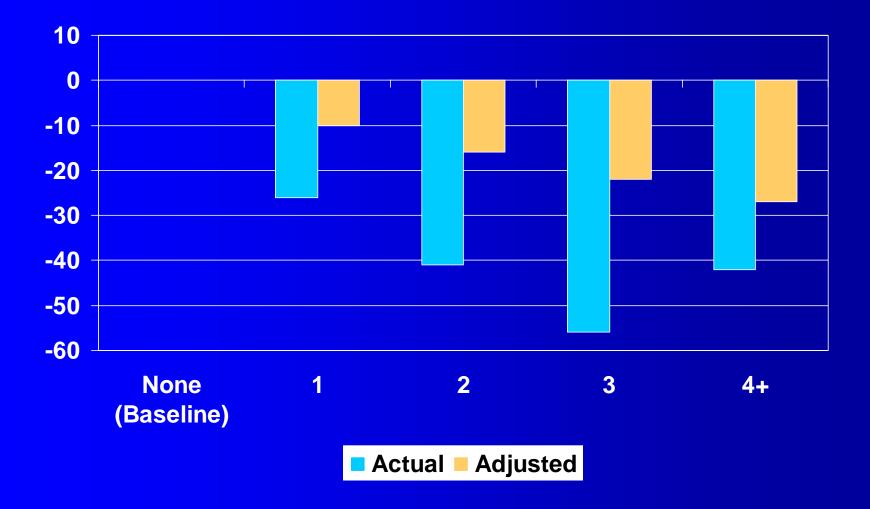


Average Score by Multiple Car/Policy

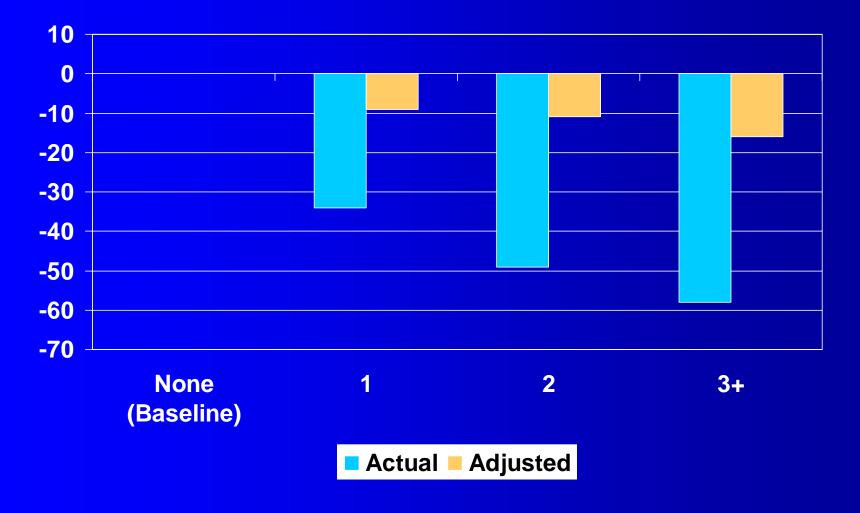


- The following slides show actual and "adjusted" average scores
- The adjusted averages "control for" correlated differences in other characteristics
- Controlling for these differences substantially lessens apparent differences in scores.
- Adjusted differences are generally small and not significant in the real world.

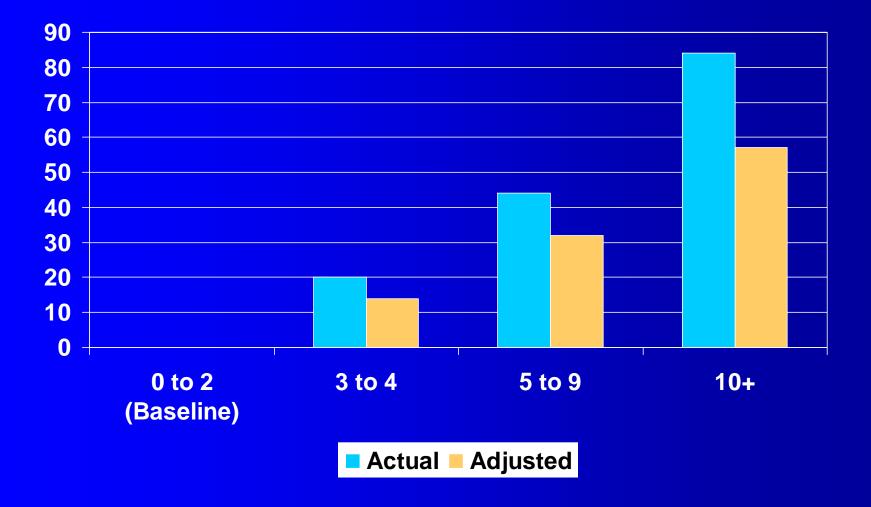
Average Score Differences by Prior Minor Violations



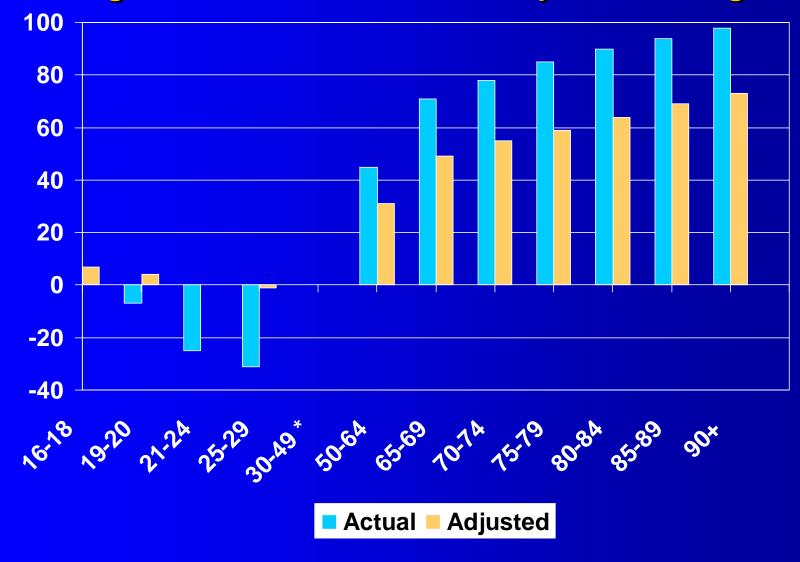
Average Score Differences by Prior Accidents



Average Score Differences by Policy Tenure (Years)

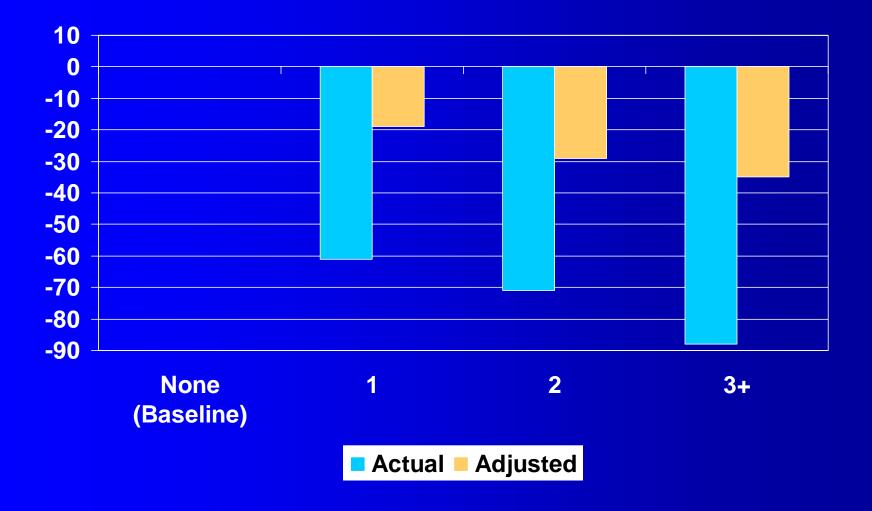


Average Score Differences by Driver Age

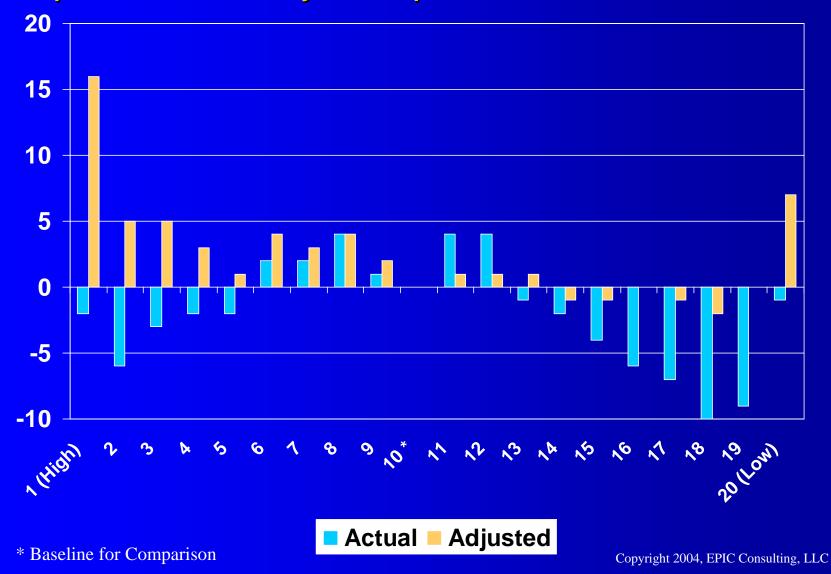


* Baseline for Comparison

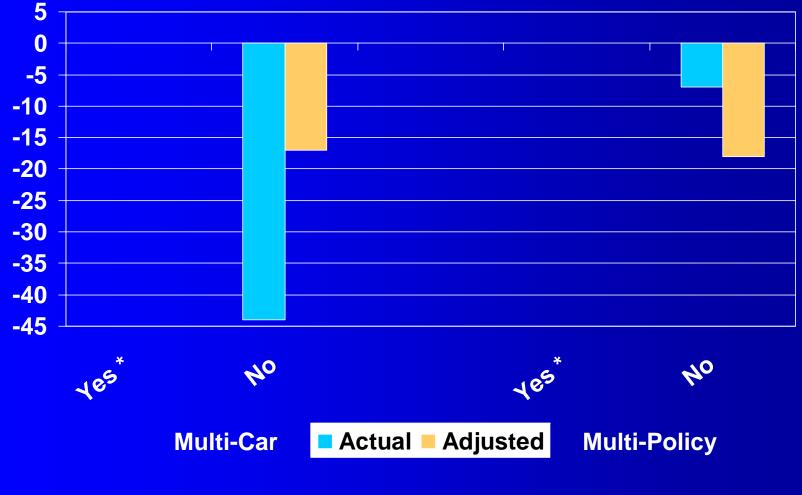
Average Score Differences by Prior Major Violations



Average Score Differences by Population Density Group



Average Score Differences by Multiple Car/Policy



* Baseline for Comparison