

- Consider all factors simultaneously
- Allow for nature of random process
- Provide diagnostics
- Robust and transparent

Example of GLM output (real UK data)

- Formularization of GLMs
 - linear predictor, link function, offset
 - error term, scale parameter, prior weights
 - typical model forms
- Model testing
 - use only variables which are predictive
 - make sure model is reasonable
- Aliasing

- Formularization of GLMs
 - linear predictor, link function, offset
 - error term, scale parameter, prior weights
 - typical model forms
- Model testing
 - use only variables which are predictive
 - make sure model is reasonable
- Aliasing

Linear models

- Linear model Y_i = μ_i + error
- μ_i based on linear combination of measured factors
- Which factors, and how they are best combined is to be derived

$$\mu_i = \alpha + \beta.age_i + \gamma.age_i^2 + \delta.height_i.age_i$$

$$\mu_i = \alpha + \beta.age_i + \gamma.(sex_i = female)$$

$$\mu_i = (\alpha + \beta.age_i) * exp(\delta.height_i.age_i)$$

Linear models - formularization

$$E[Y_i] = \mu_i = \Sigma X_{ij}\beta_j$$

$$Var[Y_i] = \sigma^2$$

$$Y_i \sim N(\mu_i, \sigma^2)$$

What is $\Sigma X_{ij}\beta_j$?

- X defines the explanatory variables to be included in the model
 - could be continuous variables "variates"
 - could be categorical variables "factors"
- <u>β</u> contains the parameter estimates which relate to the factors / variates defined by the structure of X
 - "the answer"

What is X.<u>β</u> ?

- Write $\sum X_{ij}\beta_j$ as $\mathbf{X}.\underline{\beta}$
- Consider 3 rating factors
 - age of driver ("age")
 - sex of driver ("sex")
 - age of vehicle ("car")
- Represent $\underline{\beta}$ by α , β , γ , δ , ...

Suppose we wanted a model of the form:

$$\underline{\mu} = \alpha + \beta \underline{\text{age}} + \gamma \underline{\text{age}}^2 + \delta \underline{\text{car}}^{27} \underline{\text{age}}^{52\frac{1}{2}}$$

X.β would need to be defined as:

```
 \begin{pmatrix} 1 & age_{1} & age_{1}^{2} & car_{1}^{27}.age_{1}^{52\frac{1}{2}} \\ 1 & age_{2} & age_{2}^{2} & car_{2}^{27}.age_{2}^{52\frac{1}{2}} \\ 1 & age_{3} & age_{3}^{2} & car_{3}^{27}.age_{3}^{52\frac{1}{2}} \\ 1 & age_{4} & age_{4}^{2} & car_{4}^{27}.age_{4}^{52\frac{1}{2}} \\ 1 & age_{5} & age_{5}^{2} & car_{5}^{27}.age_{5}^{52\frac{1}{2}} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}
```


Suppose we wanted a model of the form:

$$\underline{\mu} = \alpha + \beta_1$$
 if age < 30

+
$$\beta_2$$
 if age 30 - 40

+
$$\beta_3$$
 if age > 40

+
$$\gamma_1$$
 if sex male

+
$$\gamma_2$$
 if sex female

			Age	Sex	•
			<30 30-40 >40	M F	
1		1	010	10	
2		1	100	10	
3		1	100	0 1	
4		1	001	10	
5		1	010	0 1	
	\				

 α

Suppose we wanted a model of the form:

$$\underline{\mu} = \alpha + \beta_1$$
 if age < 30

+
$$\beta_2$$
 if age 30 - 40

+
$$\beta_3$$
 if age > 40

+
$$\gamma_1$$
 if sex male

+
$$\gamma_2$$
 if sex female

What is $X.\beta$?

Suppose we wanted a model of the form:

$$\mu = \alpha + \beta_1 \text{ if } \underline{\text{age}} < 30$$

$$+ \beta_2 \text{ if } \underline{\text{age}} 30 - 40$$

"Base levels" +
$$\beta_3$$
 if age > 40

+
$$\gamma$$
 if sex male

+
$$\gamma_2$$
 if sex female

X.\(\beta\) having adjusted for base levels

Linear models - formularization

$$E[Y_i] = \mu_i = \Sigma X_{ij}\beta_j$$

$$Var[Y_i] = \sigma^2$$

$$Y_i \sim N(\mu_i, \sigma^2)$$

$$\mu_i = f(\alpha + \beta.age_i + \gamma.age_i^2 + \delta.height_i.age_i)$$

$$\mu_i = f(\alpha + \beta.age_i + \gamma.(sex_i=female))$$

$$\mu_i = g^{-1}(\alpha + \beta.age_i + \gamma.age_i^2 + \delta.height_i.age_i)$$

$$\mu_i = g^{-1}(\alpha + \beta.age_i + \gamma.(sex_i=female))$$

Linear Models

$$E[Y_i] = \mu_i = \Sigma X_{ij} \beta_j$$

$$Var[Y_i] = \sigma^2$$

Y from Normal distribution

Generalized Linear Models

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}\beta_j + \xi_i)$$

$$Var[Y_i] = \phi V(\mu_i)/\omega_i$$

Y from a distribution from the exponential family

• Each observation i from distribution with mean μ_i

$$E[Y_i] = \mu_i = g^{-1}(\sum_j X_{ij}\beta_j + \xi_i)$$

$$Var[Y_i] = \phi.V(\mu_i)/\omega_i$$

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(X \cdot \underline{\beta} + \underline{\xi})$$

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(X.\underline{\beta})$$

Some function (user defined)

Parameters to be estimated (the answer!)

Observed thing (data)

Some matrix based on data (user defined) as per linear models

What is $g^{-1}(X.\underline{\beta})$?

$$\underline{Y} = g^{-1}(\mathbf{X}.\underline{\beta}) + \text{error}$$

Assuming a model with three categorical factors, each observation can be expressed as:

$$Y_{ijk} = g^{-1}(\alpha + \beta_i + \gamma_j + \delta_k) + error$$

$$\beta_2 = \gamma_1 = \delta_3 = 0$$

age is in group i sex is in group j car is in group k

What is $g^{-1}(X.\underline{\beta})$?

•
$$g(x) = x$$
 $\Rightarrow Y_{ijk} = \alpha + \beta_i + \gamma_j + \delta_k + error$

•
$$g(x) = In(x) \Rightarrow Y_{ijk} = e^{(\alpha + \beta_i + \gamma_j + \delta_k)} + error$$

$$= A.B_i.C_j.D_k + error$$
where $B_i = e^{\beta_i}$ etc

Multiplicative form common for frequency and amounts

Multiplicative model

	Age	Factor	Group	Factor	Sex	Factor
	17	2.52	1	0.54	Male	1.00
	18	2.05	2	0.65	Female	1.25
	19	1.97	3	0.73		
	20	1.85	4	0.85		
0007.40	21-23	1.75	5	0.92	Area	Factor
\$207.10 x	24-26	1.54	6	0.96	Α	0.95
	27-30	1.42	7	1.00	В	1.00
	31-35	1.20	8	1.08	С	1.09
	36-40	1.00	9	1.19	D	1.15
	41-45	0.93	10	1.26	Е	1.18
	46-50	0.84	11	1.36	F	1.27
	50-60	0.76	12	1.43	G	1.36
	60+	0.78	13	1.56	Н	1.44

 $E(losses) = $207.10 \times 1.42 \times 0.92 \times 1.00 \times 1.15 = 311.14

$$E[Y] = \mu = g^{-1}(X.\beta + \xi)$$
"Offset"

Eg \underline{Y} = claim *numbers*

Smith: Male, 30, Ford, 1 years, 2 claims

Jones: Female, 40, VW, ½ year, 1 claim

What is ξ?

- g(x) = ln(x)
- $\xi_{ijk} = In(exposure_{ijk})$

•
$$E[Y_{ijk}] = e^{(\alpha + \beta_i + \gamma_j + \delta_k + \xi_{ijk})}$$

= $A.B_i.C_j.D_k.e^{(ln(exposure_{ijk}))}$
= $A.B_i.C_j.D_k.exposure_{ijk}$

Restricted models

$$E[Y] = \mu = g^{-1}(X.\beta + \xi)$$
Offset

- Constrain model (eg territory, ABS discount)
- Other factors adjusted to compensate

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(X \cdot \underline{\beta} + \underline{\xi})$$

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

Normal: $\phi = \sigma^2$, $V(x) = 1 \Rightarrow Var[\underline{Y}] = \sigma^2.\underline{1}$

Poisson: $\phi = 1$, $V(x) = x \Rightarrow Var[\underline{Y}] = \underline{\mu}$

Gamma: $\phi = k$, $V(x) = x^2 \Rightarrow Var[\underline{Y}] = k\underline{\mu}^2$

The scale parameter

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

Normal: $\phi = \sigma^2$, $V(x) = 1 \Rightarrow Var[\underline{Y}] = \sigma^2.\underline{1}$

Poisson: $\phi = 1$, $V(x) = x \Rightarrow Var[\underline{Y}] = \underline{\mu}$

Gamma: $\phi = k$, $V(x) = x^2 \Rightarrow Var[\underline{Y}] = k\underline{\mu}^2$

Example of effect of changing assumed error - 1

Example of effect of changing assumed error - 1

Example of effect of changing assumed error - 1

- Example portfolio with five rating factors, each with five levels A, B, C, D, E
- Typical correlations between those rating factors
- Assumed true effect of factors
- Claims randomly generated (with Gamma)
- Random experience analyzed by three models

Prior weights

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

- Exposure
- Other credibility

Eg \underline{Y} = claim *frequency*

Smith: Male, 30, Ford, 1 years, 2 claims, 100%

Jones: Female, 40, VW, ½ year, 1 claim, 100%

Typical model forms

<u>Y</u>	Claim frequency	Claim number	Average claim amount	Probability (eg lapses)
g(x)	ln(x)	ln(x)	ln(x)	In(x/(1-x))
Error	Poisson	Poisson	Gamma	Binomial
φ V(x)	1 x	1 X	estimate x ²	1 x(1-x)
<u> </u>	exposure	1	# claims	1
<u>ξ</u>	0	In(exposure)	0	0

Tweedie distributions

- Incurred losses have a point mass at zero and then a continuous distribution
- Poisson and gamma not suited to this
- Tweedie distribution has point mass and parameters which can alter the shape to be like Poisson and gamma above zero

$$f_{Y}(y;\theta,\lambda,\alpha) = \sum_{n=1}^{\infty} \frac{\left\{ (\lambda\omega)^{1-\alpha} \kappa_{\alpha} (-1/y) \right\}^{n}}{\Gamma(-n\alpha)n! y} \cdot \exp\left\{ \lambda\omega [\theta_{0}y - \kappa_{\alpha}(\theta_{0})] \right\} \quad \text{for } y > 0$$

$$p(Y=0) = \exp\{-\lambda\omega\kappa_{\alpha}(\theta_0)\}$$

Generalized linear models

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

Normal: $\phi = \sigma^2$, $V(x) = 1 \Rightarrow Var[\underline{Y}] = \sigma^2.\underline{1}$

Poisson: $\phi = 1$, $V(x) = x \Rightarrow Var[\underline{Y}] = \underline{\mu}$

Gamma: $\phi = k$, $V(x) = x^2 \Rightarrow Var[\underline{Y}] = k\underline{\mu}^2$

Tweedie: $\phi = k$, $V(x) = x^p \Rightarrow Var[\underline{Y}] = k\underline{\mu}^p$

Tweedie distributions

Tweedie:
$$\phi = k$$
, $V(x) = x^p \Rightarrow Var[\underline{Y}] = k\underline{\mu}^p$

- Defines a valid distribution for p<0, 1<p<2, p>2
- Can be considered as Poisson/gamma process for 1<p<2
- Typical values of p for insurance incurred claims around, or just under, 1.5

Tweedie conclusions

- Helpful when important to fit to pure premium
- Often similar results to traditional approach but differences may occur if numbers and amounts models have effects which are both large and insignificant
- No information about whether frequencies or amounts are driving result

Offset ξ

Link function g(x)

Linear Predictor Form

$$\mathbf{X} \cdot \underline{\beta} = \alpha_i + \beta_j + \gamma_k + \delta_l$$

Data

<u>Y</u>

Error Structure $V(\underline{\mu})$

Scale Parameter

Prior Weights

Numerical MLE

Parameter Estimates

Diagnostics

Maximum likelihood estimation

Newton-Raphson

• In one dimension: $x_{n+1} = x_n - f'(x_n) / f''(x_n)$

where $\underline{\beta}$ is the vector of the parameter estimates (with p elements), \underline{s} is the vector of the first derivatives of the log-likelihood and \mathbf{H} is the (p^*p) matrix containing the second derivatives of the log-likelihood

Agenda

- Formularization of GLMs
 - linear predictor, link function, offset
 - error term, scale parameter, prior weights
 - typical model forms
- Model testing
 - use only variables which are predictive
 - make sure model is reasonable
- Aliasing

- Use only those variables which are predictive
 - standard errors of parameter estimates
 - F tests / χ^2 tests on deviances
- Make sure the model is reasonable
 - histogram of deviance residuals
 - residual vs fitted value
 - Box Cox link function investigation

Standard errors

Roughly speaking, for a parameter p: $SE = -1 / (\partial^2 / \partial p^2)$ Likelihood)

GLM output (significant factor)

GLM output (insignificant factor)

Awkward cases

- Single figure measure of goodness of fit
- Try model with & without a factor
- Statistical tests show the theoretical significance given the extra parameters

Deviances

Deviances

If \$\phi\$ known, scaled deviance S output

$$S = \sum_{u=1}^{n} 2 \omega_{u} / \phi \int_{\mu_{u}}^{Y_{u}} (Y_{u} - \zeta) / V(\zeta) d\zeta$$

$$S_1 - S_2 \sim \chi^2_{d_1 - d_2}$$

• If ϕ unknown, unscaled deviance D = ϕ .S output

$$\frac{(D_1 - D_2)}{(d_1 - d_2) D_3 / d_3} \sim F_{d_1 - d_2, d_3}$$

- Use only those variables which are predictive
 - standard errors of parameter estimates
 - F tests / χ^2 tests on deviances
- Make sure the model is reasonable
 - histogram of deviance residuals
 - residual vs fitted value
 - Box Cox link function investigation

Several forms, eg

– standardized deviance sign (Y_u-
$$\mu_u$$
) / (ϕ (1-h_u)) ½ $\left(2 \omega_u \int_{\mu_u}^{Y_u} (Y_u - \zeta) / V(\zeta) d\zeta\right)$

standardized Pearson

$$\frac{Y_u - \mu_u}{(\phi.V(\mu_u).(1-h_u) / \omega_u)^{\frac{1}{2}}}$$

- Standardized deviance Normal (0,1)
- Numbers/frequency residuals problematical

Histogram of Deviance Residuals Run 12 (Final models with analysis) Model 8 (AD amounts)

Size of deviance residuals

Gamma data, Gamma error

Plot of deviance residual against fitted value Run 12 (All claim types, final models, N&A) Model 6 (Own damage, Amounts)

Deviance Residual

Gamma data, Normal error

Plot of deviance residual against fitted value Run 12 (All claim types, final models, N&A) Model 7 (Own damage, Amounts)

Agenda

- Formularization of GLMs
 - linear predictor, link function, offset
 - error term, scale parameter, prior weights
 - typical model forms
- Model testing
 - use only variables which are predictive
 - make sure model is reasonable
- Aliasing

Aliasing and "near aliasing"

- Aliasing
 - the removal of unwanted redundant parameters
- Intrinsic aliasing
 - occurs by the design of the model
- Extrinsic aliasing
 - occurs "accidentally" as a result of the data

Intrinsic aliasing

$$\mathbf{X}.\underline{\beta} = \alpha + \beta_1$$
 if age 20 - 29

+
$$\beta_2$$
 if age 30 - 39

+
$$\beta_3$$
 if age 40 +

"Base levels"

+
$$\gamma$$
 if sex male

+
$$\gamma_2$$
 if sex female

Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers

Extrinsic aliasing

 If a perfect correlation exists, one factor can alias levels of another

Salacted hase

Eg if doors declared first:

Exposure: # Doo Color ↓	rs→ 2	3	Selected basis		nknown
Selected base Red	13,234	12,343	13,432	13,432	0
Green	4,543	4,543	13,243	2,345	0
Blue	6,544	5,443	15,654	4,565	0
Black	4,643	1,235	14,565	4,545	0
Further aliasing Unknown	0	0	0	0	3,242

 This is the only reason the order of declaration can matter (fitted values are unaffected)

Extrinsic aliasing

Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers

"Near aliasing"

If two factors are almost perfectly, but not quite aliased, convergence problems can result as a result of low exposures (even though one-ways look fine), and/or results can become hard to interpret

			Selected bas	se	
Exposure: # Doo Color ↓	ors→ 2	3	4	5 U	nknown
Selected base Red	13,234	12,343	13,432	13,432	0
Green	4,543	4,543	13,243	2,345	0
Blue	6,544	5,443	15,654	4,565	0
Black	4,643	1,235	14,565	4,545	2
Unknown	0	0	0	0	3,242

 Eg if the 2 black, unknown doors policies had no claims, GLM would try to estimate a very large negative number for unknown doors, and a very large positive number for unknown color

"A Practitioner's Guide to Generalized Linear Models"

A Practitioner's Guide to Generalized Linear Models A foundation for theory, interpretation and application

May 2004

Paper authored by: Duncan Anderson, FIA Sholom Feldblum, FCAS Claudine Modlin, FCAS Doris Schrimacher, FCAS Ernesto Schirmacher, ASA

- CAS 2004 Discussion Paper Program
- Copies available at www.watsonwyatt.com/glm

