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Generalized linear model
benefits

e Consider all factors simultaneously
e Allow for nature of random process
e Provide diagnostics

e Robust and transparent



Example of GLM O“tp“t (real UK data)
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+ 140

+ 120

+ 100

Factor

C—1 Exposure —®— Oneway relativities Approx 2 SE from estimate—®— GLM estimate

Exposure (policy years)



Agenda

e Formularization of GLMs
— linear predictor, link function, offset
— error term, scale parameter, prior weights

— typical model forms

e Model testing
— use only variables which are predictive
- make sure model is reasonable

e Aliasing




Agenda

e Formularization of GLMs
— linear predictor, link function, offset
— error term, scale parameter, prior weights
— typical model forms




Linear models

e Linear model Y; = pu; + error
e L, based on linear combination of measured factors

e \Which factors, and how they are best combined is to be
derived

W = o + [3.age; + y.agei2 + 0.height.age, \/
W = o + .age; + y.(sexi=female) ‘/

w = (o + B.age;) * exp(é.height.age)) ><
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Linear models - formularization

E[Y]=p = 2K
Var[Y] = o?

Y ~ N(u, G°)




What is 2X;;3,?

e X defines the explanatory variables to be
iIncluded in the model

- could be continuous variables - "variates"
- could be categorical variables - "factors"

e (3 contains the parameter estimates which relate
to the factors / variates defined by the structure
of X

— "the answer"
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What is X.} ?

o Write 2X;B; as X.8

e Consider 3 rating factors
- age of driver ("age")
- sex of driver ("sex")

- age of vehicle ("car")

e Represent by a, B, v, 0, ...



What is X. ?

Suppose we wanted a model of the form:
u=oa + p.age + y.age’ + 4.car’’.age>>"

e X. would need to be defined as:

1 age, age,®> car,?’.age,>?”
1 age, age,” car,?’.age,>?”
1 age, age;® carg?’.ageg>?”

age, age,? car,’’.age,>%"

0= ™ Q

1
1

\ ages ageg’ car:?’.age;>?” / \ /




What is X. ?

Suppose we wanted a model of the form:
u=oa+f If age <30

+ Bz If age 30 - 40
+ B, Ifage > 40
+ vy, It sex male

+ v, 1f sex female




What is X.} ?

Age Sex
1 010 10
1 100 10
1 100 O0O1
1 001 10
1 010 O0O1

Q

-

w
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What is X. ?

Suppose we wanted a model of the form:
u=oa+f If age <30

+ Bz If age 30 - 40
+ B, Ifage > 40
+ vy, It sex male

+ v, 1f sex female




What is X. ?

Suppose we wanted a model of the form:

u=oa+f If age <30

'Base levels” + [, If age > 40

_*y if sewrmate

+ v, 1f sex female




X. having adjusted for base levels

Age Sex
1 010 1o O‘
1 100 10 B,
1 100 1 —
1 001 0 P,
1 010 1 o
........................ Y




Linear models - formularization

E[Y]=p = 2K
Var[Y] = o?

Y ~ N(u, G°)




Generalized linear models

u; = f( o + B.age; + y.age? + 8.height.age. )

w =f( o + p.age, + y.(sex=female) )



Generalized linear models

w =g (o + B.age; + y.age:* + 5.height.age; )

w =0 (o + B.age, + y.(sex=female) )



Generalized linear models

Linear Models Generalized Linear Models

E[Y]=w = ZXiij E[Yi] = = 9'1(injﬁj + &)

Var[Y] = ¢? Var[Y] = oV (u)/o,
Y from Y from a distribution from the
Normal distribution exponential family
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Generalized linear models

Each observation i from distribution with mean p;

Women Men




Generalized linear models

. E[Yi] = w = g EXB; + &)

varlYi| = ¢.V(w)/o,




Generalized linear models

E[Y]=u=9"(Xp+¢)

varlY] = ¢.V(y) / o




Generalized linear models

E[Y]=pu=0"(XB )

N

Some function Parameters to be

(user defined) estimated
(the answer!)

bserved thing
(data) Some matrix based on data

(user defined)

as per linear models W



What is g '(X.p) ?

Y =g (X.B) + error

Assuming a model with three categorical factors,
each observation can be expressed as:

Y= g (ot B, + y,+8,) + error

age isin group |
B =y =0 =0 sex is in group j
car is in group k




What is g '(X.p) ?

® g(X) =X = Yj =a+p+y+9, +error

o g(x) =In(X) = Y, =e“ PN +error

=A.B.C.D, +error

where B; = ei etc

® Multiplicative form common for frequency and amounts
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Multiplicative model

~ Age Factor
17 252
18 205
19 197
20 185
$207.10 X 1 2a26 152
2730 1.42
3135 1.20
~ 36-40  1.00
. 41-45 093
46550  0.84
~ 50-60  0.76
60+  0.78

E(losses) = $ 207.10 x 1.42 x 0.92 x 1.00 x 1.15 = $ 311.14




Generalized linear models

E[Y]=p=g"(XB+E)
/

"Offset”
Eg Y = claim numbers
Smith: Male, 30, Ford, 1 years, 2 claims
Jones: Female, 40, VW, Y2 year, 1 claim
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Whatis ¢ ?

e g(X) = In(x)
e & = In(exposurey,)
o E[Yijk] = o By 8 gy
= A.B,.C,.D,. ""ePoyl)

= A.B,.C,.D,. exposure;,




Restricted models

E[Y]=p=g"(XB+E)
_—

Offset

e Constrain model (eg territory, ABS discount)

e Other factors adjusted to compensate
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Generalized linear models

E[Y]=u=9"(Xp+¢)

varlY] = ¢.V(y) / o




Generalized linear models

p Var[Y] = ¢.V(w) / ®

Normal: ¢ = o, V(X) = 1 = Var[Y] = c°1

Poisson: ¢ =1, V(X) =x = Var[Y]=u

Gamma: ¢ = k, V(X) = x* = Var[Y] = ku?
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The scale parameter

p Var[Y] = ¢.V(uw) / ®

Normal: ¢ = o, V(X) =1 = Var[Y] = c°1

Poisson: ¢ =1, V(X) =x = Var[Y]=u

Gamma: ¢ = k, V(X) = x* = Var[Y] = ku?
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Example of effect of
changing assumed error - 1

Data Normal




Example of effect of
changing assumed error - 1

2

Data Normal Poisson
o




Example of effect of
changing assumed error - 1

2

Data Normal Poisson Gamma
o




Example of effect of
changing assumed error - 2

e Example portfolio with five rating factors, each
with five levels A, B, C, D, E

e Typical correlations between those rating factors

e Assumed true effect of factors
e Claims randomly generated (with Gamma)

e Random experience analyzed by three models
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Example of effect of
changing assumed error - 2

Log of multiplier

—— True effect




Example of effect of
changing assumed error - 2

Log of multiplier

—— True effect —=—One way



Example of effect of
changing assumed error - 2

Log of multiplier

-0.2 -
—— True effect —=—One way GLM / Normal



Example of effect of
changing assumed error - 2

Log of multiplier

-0.2 —
——True effect ===One way ¢ GLM/ Normal === GLM/ Gamma

\\'4



Example of effect of
changing assumed error - 2

Log of multiplier

——True effect - GLM / Gamma —+ 2 SE — -2 SE
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Prior weights

varlY] = ¢.V(yw) / ©
/

e Other credibility

e EXxposure

Eg Y = claim frequency
Smith: Male, 30, Ford, 1 years, 2 claims, 100%
Jones: Female, 40, VW, %2 year, 1 claim, 100%
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Typical model forms

Average

Claim Claim . Probability
frequency | number claim (eg lapses)
amount
In(X) In(X) In(X) INn(x/(1-X))
Poisson Poisson Gamma Binomial
1 1 estimate 1
X X X? X(1-X)
exposure 1 # claims 1
0 In(exposure) 0 0
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Tweedie distributions

e |ncurred losses have a
point mass at zero and
then a continuous
distribution

e Poisson and gamma
not suited to this

e Tweedie distribution has point mass and parameters
which can alter the shape to be like Poisson and gamma
above zero

w0y S N

p(Y = 0) = exp{- Aok, (6,) ) W

-eXp{la’[goy_Ka (90)]} fory>0




p Generalized linear models
- VarlY[=¢.V(w) /o

Normal: ¢ = 6%, V(X) =1 = Var[Y] = c°1

Poisson: ¢ =1, V(X) = x = Var[Y] = u

Gamma: ¢ = k, V(X) = x* = Var[Y] = ku?

Tweedie: ¢ = k, V(X) = x* = Var[Y] = kuP
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Tweedie distributions

Tweedie: ¢ = k, V(X) = x* = Var[Y] = ku?

e Defines a valid distribution for p<0, 1<p<2, p>2

e Can be considered as Poisson/gamma process
for 1<p<2

e Typical values of p for insurance incurred claims
around, or just under, 1.5
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Tweedie conclusions

e Helpful when important to fit to pure premium

e Often similar results to traditional approach but
differences may occur if numbers and amounts
models have effects which are both large and
Insignificant

e No information about whether frequencies or
amounts are driving result
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Offset &
Link function g(x) Error Structure V(u)

Linear Predictor Form Scale Parameter

-

Prior Weights

4/00
N

Diagnostics

e w




Maximum likelihood estimation
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Newton-Raphson

e In one dimension: X, = X, —f'(x,) / f"(X,)

e In ndimensions: B_,,=B, —H?ts

where f is the vector of the parameter estimates (with p elements), s is the
vector of the first derivatives of the log-likelihood and H is the (p*p) matrix

containing the second derivatives of the log-likelihood




Agenda

e Model testing
— use only variables which are predictive
- make sure model is reasonable




Model testing

e Use only those variables which are
predictive
- standard errors of parameter estimates

- F tests / y2tests on deviances




Standard errors

Roughly speaking, for a parameter p: SE = -1/ (0% dp? Likelihood)
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Log of multiplier

GLM output (significant factor)

- 200000

-+ 180000

+ 160000

+ 140000

-+ 120000

-+ 100000

Exposure (years)

-+ 80000

-+ 60000

-+ 40000

-+ 20000

Vehicle symbol

P value =0.0%
Approx 95% confidence interval —e— Parameter estimate

Onew ay relativities



GLM output (insignificant factor)

T 200000

-+ 180000

-+ 160000

-+ 140000

+ 120000
., /\
-1% _19 19
Y 1 — 100000

-5%

Log of multiplier

-5% + 80000
-0.05 -

-+ 60000
-0.1
-+ 40000

-0.15 A
T 20000

Vehicle symbol

Pvalue =52.5%

Onew ay relativities Approx 95% confidence interval —e— Parameter estimate

Exposure (years)



Awkward cases

g
=3
=
IS
©
(o)
3 16% 11%
-50,

-22%




Deviances

e Single figure measure of goodness of fit
e Try model with & without a factor

e Statistical tests show the theoretical significance
given the extra parameters



Deviances

Age
Sex s\

Vehicle —
Zone —

-
ieage /

Claims

Age

Vehicle —— o .
—_—

Mlleage

Clalms

Fitted
value

Fitted
value

Deviance = 9585
df = 109954

f)

Deviance = 9604
df = 109965
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Deviances

If § known, scaled deviance S output

S=Y 20,6 [ (Y -0)/V(Q) dg

2

S1-9~ X d1-ds

e If $ unknown, unscaled deviance D = ¢.S output
(D,- D) _
(d;-dy) D3/ dg G-z, 43
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Model testing

e Make sure the model is reasonable
— histogram of deviance residuals
— residual vs fitted value
- Box Cox link function investigation




Residuals

Residuals Fitted values Data
o




Residuals

Several forms, eg
— standardized deviance

Y,

u

sign (Yy-uy) / (¢ (1-hy)) = | 2 wuf (Yy-C)/V(0)dC
— standardized Pearson u

Yu - Hu
(¢.V(1).(1-h) 1 @,)"

e Standardized deviance - Normal (0,1)

e Numbers/frequency residuals problematical
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Residuals

Histogram of Deviance Residuals
Run 12 (Final models with analysis) Model 8 (AD amounts)
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Size of deviance residuals
Pretium 08/01/2004 12:24




Residuals
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Residuals




Gamma data, Gamma error

Plot of deviance residual against fitted value
Run 12 (All claim types, final models, N&A) Model 6 (Own damage, Amounts)
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Gamma data, Normal error

Plot of deviance residual against fitted value
Run 12 (All claim types, final models, N&A) Model 7 (Own damage, Amounts)
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Agenda

e Aliasing




Aliasing and "near aliasing"”

e Aliasing
- the removal of unwanted redundant parameters

e Intrinsic aliasing
— occurs by the design of the model

e EXxtrinsic aliasing
- occurs "accidentally” as a result of the data
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Intrinsic aliasing

X.B=a+p ifage 20 - 29

+ [ -

' m "Base levels"
+ B, 1T age 40 +
+ v | e

+ v, If sex female




Intrinsic aliasing

Log of multiplier

Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers

Onew ay relativities

Approx 95% confidence interval

Unsmoothed estimate —e— Smoothed estimate

+ 250000
+ 200000
+ 150000
+ 100000
6%
-11%
19%—] + 50000
/ \
f f 0
17-21 22-24 25-29 30-34 35-39 40-49 50-59 60-69 70+
Age of driver

Exposure (years)



Extrinsic aliasing

If a perfect correlation exists, one factor can alias levels
of another

e Eg if doors declared first:

Selected base

Exposure: # Doors— 2 3 A 5 Unknown
Color 4

Selected base% 13,234 12,343 13,432 13,432 0

Green 4,543 4 543 13,243 2,345 0

Blue 6,544 5,443 15,654 4 565 0

Black 4,643 1,235 14,565 4 545 0

Further aliasing UHW] 0 0 0 0 3,242

e This is the only reason the order of declaration can
matter (fitted values are unaffected) W




Log of multiplier

Extrinsic aliasing

Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers

r 600000

r 500000

r 400000

r 300000

50

55-59

60-64 65-69

Onew ay relativities

70-74 75-79

80-84

No claim discount

Approx 95% confidence interval

85-89 90-94

95-99

Uns moothed estimate —e— Smoothed estimate

Exposure (years)



“"Near aliasing”™

If two factors are almost perfectly, but not quite aliased,
convergence problems can result as a result of low exposures
(even though one-ways look fine), and/or results can become hard
to interpret

Selected base

Exposure: # Doors— 2 3 / 5 Unknown
Color |

Selected base Réd' 13,234 12,343 13,432 13,432 o)

Green 4,543 4,543 13,243 2,345 0)

Blue 6,544 5,443 15,654 4,565 0

Black 4,643 1,235 14,565 4,545 2

Unknown 0 0 0 0 3,242

e Eg if the 2 black, unknown doors policies had no claims, GLM would
try to estimate a very large negative number for unknown doors
and a very large positive number for unknown color W
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