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Bayesian estimation of 
parameters: Advantages and 
Practical Examples
CAS Ratemaking Seminar
Session SPE-2
March 13, 2006
Stuart Klugman, Drake University

Agenda
• A brief history of Bayes’ Theorem
• Why
• How – Theory
• How – Practice
• COTOR challenge example
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Who first proved Bayes’ Theorem?
• From “Who Discovered Bayes’s

Theorem? By Stephen Stigler (American 
Statistician, November 1983)

• The posterior odds favor Nicholas 
Saunderson 3:1 over Thomas Bayes.

Who published Bayes’ Theorem?
• After his death, Bayes willed some 

money and his papers to Richard Price, 
who arranged to have the Theorem 
published by the Royal Society in 1764.

• Richard Price later become a consultant 
to the Equitable Life Insurance Society 
and published “Observations on 
Reversionary Payments.”  His nephew, 
William Morgan was the first actuary in 
both name and title (From Actuarius to 
Actuary, Robert Mitchell, SOA, 1974).
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Why Bayes? – The problem
• Today’s problem

– A random sample from some probability 
distribution.

– The name of the distribution is known, but 
not its parameters.

– Three goals are:
– Estimate the parameters and then a 

quantity of interest, such as a layer cost.
– Place a confidence interval on the estimate.
– Determine a prediction interval for the next 

observation.

Confidence interval vs. prediction interval
• A confidence interval places bounds on 

the expected value.  It gives the 
accuracy of a pure premium calculation, 
reflecting estimation error.

• A prediction interval places bounds on 
the payment from the next policy sold.  
The mean is the same as the confidence 
interval, but process error is 
incorporated.
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Why Bayes? – The frequentist solution
• Use an optimization technique to 

estimate the parameters.
• Use asymptotic theory to understand 

the variances.
• Assume a normal distribution.
• The approximations in the last two 

items may be too crude.  They also are 
not always easy to obtain.

Simple example
• Twenty simulated observations from a 

lognormal(7,1.5) distribution.
• Goal is to estimate the two parameters 

and the mean and then obtain 
confidence and prediction intervals.

• The lognormal distribution is among the 
easiest to work with because the 
information matrix is easy to obtain.

• The frequentist formulas are in Loss 
Models, 2nd ed., 353-358.
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Frequentist numbers
• The parameter estimates are μ = 7.301 

and σ = 1.624.
• The estimate of the mean is 5,537.
• A 90% normal based confidence interval 

is 1,085 to 9,989.
• A 90% normal based prediction interval 

is -27,562 to 38,636.
• [For this problem we would know that 

many of the shortcomings could be 
solved by working with ln(x)].

Why Bayes?
• Does not deal with what might have 

been, only looks at what was.
• Always stays within the confines of the 

problem (the intervals will always stay 
positive).

• Requires no special maneuvers, all 
problems are solved the same way.
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So why not Bayes?
• Many people are uncomfortable with a 

prior distribution.
• The mathematics of the exact solution 

can be challenging.  For example, a 
direct solution of a problem with three 
parameters requires triple integrals of 
an unpleasant function.

Solution
• Use a prior distribution that implies as 

little prior knowledge as possible.
• Either solve the computational problem 

by making it discrete rather than 
continuous, so sums become integrals, 
or use special software.

• I will illustrate both approaches.
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Bayesian estimation
•Let θ be the vector of unknown 
parameters.
•Let           be the known distribution.
•Let              be n independent 
observations from that distribution.
•Let        be the prior distribution on the 
parameters.

( | )f x θ

1, , nx x…

( )π θ

Posterior distribution

where the integral is replaced by a sum if the 
parameters have a discrete distribution.
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Estimating a function of the parameters
•Suppose our goal is to estimate      , a function 
of the parameters.
•We need the posterior distribution of that 
function.  But just attach the posterior 
probabilities to each value.  The Bayes estimate 
is:

•The pth percentile solves (using the posterior 
distribution).

( )g θ

n
1( ) ( ) ( | , , )ng g x x dθ θ π θ θ= ∫ …

1Pr[ ( ) | , , ]np g x x xθ= ≤ …

Predictive distribution

• The mean is the best guess at the next 
observation while percentiles provide 
the prediction interval.

1 1( | , , ) ( | ) ( | , , )n nf y x x f y x x dθ π θ θ= ∫… …
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Lognormal example-discrete approximation
• The prior is a simple discrete uniform 

distribution.  For μ it goes from 5.5 to 
11.1 by 0.2 and for σ it goes from 1.2 to 
2.7 by 0.05.  There are 899 points in this 
prior distribution.

• The spreadsheet has the calculations.
• The table on the next slide compares the 

values of the two methods so far.

Lognormal values

72 to 30,423-27,562 to 
38,636

Prediction 
Interval

2,922 to 
26,937

1,085 to 9,989Confidence 
Interval

9,9325,537Mean

1.7771.624

7.3017.301

Discrete BayesFrequentist

μ̂

σ̂
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Continuous priors
• With continuous priors the sums 

become integrals.
• For a long time there was no easy way 

to do the calculations.
• Now there is Markov Chain Monte Carlo.
• The essence is on the next slide.

MCMC
• The goal is to simulate observations 

from the posterior distribution.
• These simulated values become the 

posterior distribution.
• The simulation is accomplished by using 

a sequence of conditional distributions.  
That is, simulate a value of one 
unknown parameter by conditioning not 
only on the data but also on the other 
parameters.
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WinBUGS
• This is a free program that performs MCMC 

analysis.
• You can write code or have code generated 

from a graphic representation of the 
model.

• For the lognormal model I have selected 
priors with huge variances.  They are 
normal(0, 1,0002) for μ and gamma(0.001, 
1,000) for 1/σ2.

• WinBUGS can also generate the predictive 
distribution and the posterior distribution 
of functions of the parameters.

WinBUGS code
model;
{ mu ~ dnorm( 0.0,1.0E-6) <sets prior on mu>

sigma ~ dgamma(0.001,0.001) <sets prior on the 
reciprocal of the variance>
for( i in 1 : 20 ) {x[i] ~ dnorm(mu,sigma)}
for( i in 1 : 20 ) {x[i] <- log(y[i])} <The 
observations are from the lognormal distribution>

s <- 1/sqrt(sigma) <defines s as the std dev>
m <- exp(mu+s*s/2) <defines the mean>
p ~ dnorm(mu,sigma) <these two set the predictive 

value>
ep <- exp(p)}
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WinBUGS results

72 to 
30,423

2,922 to 
26,937

9,932

1.777

7.301

Discrete 
Bayes

77 to 28,230

2,806 to 
24,330

10,330

1.735

7.301

WinBUGS

-27,562 to 
38,636

Prediction 
Interval

1,085 to 
9,989

Confidence 
Interval

5,537Mean

1.624

7.301

Frequentist

μ̂

σ̂

COTOR Challenge
• Round 3 offered the following problem.
• Data from a heavy-tailed distribution 

has been collected over 7 years; 70 
observations each year.

• The distribution type does not change 
over time, nor do non-scale parameters.

• The scale parameter changes according 
to inflation.

• Determine point estimates and CI and 
PIs for 500x500 in year 8.
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Disclaimer
• I picked the model, a 70-30 mixture of 

Pareto and Exponential along with a 
random process to generate inflation 
rates.

• The 490 observations were simulated 
from that model.

• My analysis relies somewhat on this 
inside knowledge.

A strategy
• Use traditional frequentist techniques to 

pick the winning model.  This tends to 
flow better than Bayesian approaches.  
My choice is the Schwarz Bayesian 
Criterion.

• Use a Bayesian analysis to get the 
requested estimates.

• This approach in one form or another 
was adopted by many of the COTOR 
participants.
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Model selection
rankSBCParamslnLName

3-5541.485-5525.99Pareto-exp-geom
6-5544.66-5526.02Pareto-exp-quad
5-5542.535-5527.05logn-exp-geom
1-5537.133-5527.84Pareto-geom
2-5540.14-5527.71Pareto-quad
4-5542.353-5533.06logn-geom

Geom = geometric trend for inflation

Quad = quadratic trend for inflation

Winning model
• A single Pareto distribution.
• The parameters are 1.071 and 6,232.
• The inflation rate is 0.1697 and thus the 

scale parameter in year i is 
6232exp(.1679*i).

• A 20x20x20 discrete Bayes analysis 
produced 1.071, 6,427, and 0.1652.

• A WinBugs analysis with vague priors 
produced 1.069, 6,228, and 0.1722.
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Layer costs
•For a Pareto distribution, the layer 
cost is

•The (discrete) posterior mean is 12,970 
and the 5th and 95th percentiles are 8,234 
and 18,846.  This forms the confidence 
interval for the expected cost of the 
layer.
•The true answer is 12,735.

1 1

1 500,000 1,000,000

α αθ θ θ
α θ θ

− −⎡ ⎤⎛ ⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟ ⎜ ⎟− + +⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

Further results
• The predictive distribution has 

cumulative probability 0.9624 at 
500,000, so the prediction interval is 0 
to 0.  The 97.5th percentile is at 248,100.

• From WinBUGS the expected layer cost 
is 13,380 with a confidence interval of 
8,510 to 19,260.  The prediction interval 
is also 0 to 0 with a97.5th percentile at 
272,800.
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References
• WinBUGS (free) is available at 

http://www.mrc-bsu.cam.ac.uk/bugs/
• A good introduction to MCMC and WinBUGS is 

Actuarial Modeling with MCMC and BUGS, D. 
Scollnik, 2001, NAAJ, 96-125.

• http://www.math.ucalgary.ca/~scollnik/abcd/
has additional worked examples with BUGS 
code that follow up the ideas in his paper.

• The WinBUGS files and EXCEL sheets for my 
examples are available by request to me at 
stuart.klugman@drake.edu.


