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Objectives
� Introduce predictive modeling and where 

modeling fits in actuarial practice
� Discuss connection to traditional analytical 

procedures
� Discuss applications of predictive modeling in 

Workers Compensation
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Timeline of Casualty Actuarial 
Evolution
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A Casualty Actuary’s Perspective 
on Data Modeling
� The Stone Age: 1914 – …

� Simple deterministic methods: Slice and dice data based on a few categories
� Compute means or relativities in each cell
� Ignore interactions and other multivariate relationships
� Often ad-hoc
� Based on empirical data – little use of parametric models

� The Pre – Industrial age: 1970 - …
� Fit probability distributions to severity data
� Focus is typically on underwriting, not claims

� The Industrial Age – 1985 …
� Research published on computer catastrophe models
� Use simulation to quantify variability

� The Computer Age 1990s…
� European actuaries begin to use GLMs
� At end of 20st century, large companies and consulting firms start to use data mining

� The Current era
� In personal lines, modeling the rule rather than the exception

� Often GLM based, though GLMs evolving to GAMs
� Commercial lines beginning to embrace modeling for ratemaking and underwriting
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Stone Age Example: WC Ratemaking: 
Wineman, 1990 Discussion Paper Program
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WC Ratemaking (Kallop – 1975)
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WC Ratemaking, cont.
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Pre-Industrial: Model for Increased 
Limits Factors: Finger, PCAS, 1976
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Predictive Modeling Overview
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A Premise about Advanced Modeling

� Advanced data mining and machine learning 
procedures are fancy versions of more basic 
procedures that many people already 
understand

� Predictive modeling software allows users to 
analyze large databases to solve business 
decision problems 
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Predictive Modeling Family

Classical 
Statistics

GLMs

Data 
Mining
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Major Categories of Modeling
� Supervised learning
� Most common 

situation
� A dependent 

variable
� Claim Frequency
� Loss Ratio
� Renew/non-renew
� Fraud/Legitimate

� Some methods
� Regression and GLMs
� Trees
� Some neural networks

� Unsupervised learning
� No dependent 

variable
� Group like records 

together
� Territory construction
� Some fraud prediction
� Text mining

� Some Methods
� K-means clustering
� Principal components
� Kohonen neural 

networks
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Kinds of Applications

�Classification
�Target variable is 

categorical
�Prediction
�Target variable is 

numeric
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POTENTIAL VALUE OF AN PM 
SCORING SYSTEM

� Screening to Select Accounts
� Providing Evidence to Support a non-renewal
� Auditing of Canceled Policies to Determine 

Reasons for Cancellation
� Pricing for Some Accounts (small accounts)
� Provide evidence to regulators to support use 

of credit information
� Reserving
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Underwriting Applications

� Develop model score for policyholders.  Use 
to augment underwriter judgment

� Use to rate accounts
� More likely to apply to small accounts

� Estimate full lifetime value of account
� Model liklihood of renewal
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WC Reserving
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TYPES OF FRAUD

� WORKERS’ COMPENSATION

� Employee Fraud
� -Working While Collecting
 -Staged Accidents
 -Prior or Non-Work Injuries
� Employer Fraud
� -Misclassification of Employees
� -Understating Payroll
� -Employee Leasing
� -Re-Incorporation to Avoid Mod
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Insurance Fraud- The Problem

� ISO/IRC 2001 Study: Auto and Workers 
Compensation Fraud a Big Problem by 27% 
of Insurers.

� Mass IFB: 1,500 referrals annually for Auto, 
WC, and (10%) Other P-L.

Slide provided by Richard Derrig
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� Experience and Judgment
� Artificial Intelligence Systems
� Regression & Tree Models
� Neural Networks
� Expert Systems
� Fuzzy Clusters
� Genetic Algorithms
� All of the Above

FRAUD  IDENTIFICATIONFRAUD  IDENTIFICATION

Slide provided by Richard Derrig
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REAL PROBLEM-CLAIM 
FRAUD
� Classify all claims
� Identify valid classes

� Pay the claim
� No hassle
� Visa Example

� Identify (possible) fraud
� Investigation needed

� Identify “gray” classes
� Minimize with “learning” algorithms

Slide provided by Richard Derrig
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DM
Databases

Scoring Functions

Graded Output

Non-Suspicious Claims
Routine Claims

Suspicious Claims
Complicated Claims

Slide provided by Richard Derrig
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Underwriting Red Flags
� Prior Claims History (Mod)
� High Mod versus Low Premium
� Increases/Decreases in Payroll
� Changes of Operation
� Loss Prevention Visits
� Preliminary Physical Audits 
� Check Websites

Slide provided by Richard Derrig
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Core Part of a Business Strategy
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Motivation for for Methods
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Many of the Methods are Intuitive
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The Software Used in This 
Presentation
� Microsoft Excel
� R
� Free statistical software 
� Get a book on using R

� John Fox, An R and S-PLUS Companion to 
Applied Regression

� Download from www.r-project .org
� Install tree and nnet packages for decision trees 

and neural networks
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Data Exploration in 
Predictive Modeling
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Exploratory Data Analysis

� Typically the first step in analyzing data
� Makes heavy use of graphical techniques
� Also makes use of simple descriptive 

statistics
� Purpose
� Find outliers (and errors)
� Explore structure of the data
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Log of Box plot in R
0

1
2

3
4

Log of average 
Procedures
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Is the Data Normal? Q-Q Plots
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In Excel: Use Pivot Tables to Examine Relationship 
between Suspicion Indicator and Volume of 
Procedures for Provider  (WC Data)

Average of Suspicion Score
Percentile of Procedure Volume Total

2 0.060
3 0.128
4 0.973

Grand Total 0.726
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Regression
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A Model of Relationship Between Suspicion Score 
and Avg Number of Procedures/Claimant for 
Provider (WC Data)

Linear Regression
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Classical Statistics: Regression

� Estimation of parameters: Fit line that minimizes deviation 
between actual and fitted values

Workers Comp Severity Trend
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Assumptions of Regression

• Errors independent of value of X
• Errors independent of value of Y
• Errors independent of prior errors
• Errors are from normal distribution
• Linearity
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Random Residuals

Random Residuals
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Discriminant Analysis
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What is Discriminant Analysis?
� It is a procedure for identifying relationships 

between qualitative criterion and quantitative 
predictors.

� It identifies the boundaries between groups of 
objects

� The method has been used for classification 
problems for a very long time

� More recently it has been supplanted by 
logistic regression
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Discriminant Analysis Predicts Class By Finding 
Variables that Separate Two Groups
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The Discriminant Function and Its Use

� The function uses a weighted combination of 
predictor values to distribute objects to one of the 
criterion groups

� The various x values represent the predictor 
variables.  The b values represent the weights that 
are associated with each of the variables.

1 1 2 2 k kL b x b x b x= + + +K
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Function and Use (cont.)
� To decide which values fall under which 

groups categories, a cutoff score is used.
� If the value of the discriminant function is 

higher than the cutoff score then it falls into 
one category and into the other if it is lower 
than the cutoff score.
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Discriminant Analysis in Excel
� In some cases Discriminant Analysis can be 

done in Excel using the Regression function 
that is a part of the Data Analysis Tools Pack

� This can only be done if the dependent 
variable is binary
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Example of Discriminant Analysis in Excel
� The dependent variable is the original 

suspicion score which is classified as either a 
1 or a 0 
� It receives a 1 if the original score is greater 

than 0 and a 0 otherwise
� The two independent variables are the 

average number of procedures per claimant 
for one provider and the average cost of the 
procedures
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Dummy Variables
� Dummy Variables are used for coding information 

about categorical variables
� In our example:

� Procedure Dummy 1 equals 1 if Procedure equals 1 it 
equals 0 otherwise

� Procedure Dummy 2 equals 1 if Procedure equals 2 it 
equals 0 otherwise

� Procedure Dummy 3 equals 1 if Procedure equals 1 , it 
equals 0 otherwise

� Etc.
� Usually there is 1 fewer dummy variables than the 

number of categories.
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Design Matrix with Dummy Variables
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Discriminant Analysis Example
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Classification Errors
� However, with this function also comes the 

possibility that although the calculation is 
correct the category into which the results is 
placed is not the right one.

� The smaller the difference between the two 
groups of the predictor variable, the larger the 
overlap and misclassification
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Errors of Classification
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How Good is the Prediction?
� Very sophisticated methods can be ineffective 

when applied to real-life situations
� We usually hold out a portion of the data to 

use for testing.  This data is not used at all in 
model fitting.

� The Question: How accurate is the model on 
the test data?
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Testing the Validity of the Prediction

� This can be done by using a confusion 
matrix.  This matrix will show the errors and 
the accurate predictions

Predicted
Renew Non-Renew

Renew 490 10

Non-Renew 10 90

Predicted
Renew Non-Renew

Renew 98% 2%

Non-Renew 10% 90%

A
ct

ua
l

A
ct

ua
l
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What is the Confusion Matrix telling Us?
� Sensitivity- The percent 

of true-positives that are 
accurately predicted

� Specificity- percent of 
true-negatives that are 
accurately predicted

Renew Non-Renew
Actual Renew 98.00% 2.00%

Non-Renew 51.00% 49.00%

Predicted

Renew Non-Renew
Actual Renew 42.00% 58.00%

Non-Renew 1.40% 98.60%

Examples of Bad 
Prediction
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Trees
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What are Trees?
� They are simple explanations of the data and 

the relationships within it
� They can be used for classification, prediction 

or estimation
� Trees divide data into subsets whose data is 

increasingly more similar.  
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How do they Work?
� The tree function tests all the possible splits on all of 

the possible independent variables
� Then it decides which gives the largest gains in 

goodness of fit and chooses this split
� To keep the tree from having useless branches, a full 

tree is diagrammed but then the branches that 
increase the error are removed from the tree

� When using categorical data the data is separated 
according to the answer to the question

� When using continuous data, it is split according to 
an average value as far away as possible from the 
other averages.
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A Decision Tree
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Independent Variable Importance
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ROC Curve
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Confusion Matrix
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Trees in Excel

� Trees can also be made in Excel with the 
help of a program on the following site:
http://www.geocities.com/adotsaha/CTree/Ctr
eeinExcel.html
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Library for Getting Started
� Dahr, V, Seven Methods for Transforming Corporate into Business 

Intelligence, Prentice Hall, 1997
� Berry, Michael J. A., and Linoff, Gordon, Data Mining Techniques, 

John Wiley and Sons, 1997, 2003
� Find a comprehensive book for doing analysis in Excel such as: John 

Walkebach, Excel 2003 Formulas or Jospeh Schmuller, Statistical 
Analysis With Excel for Dummies

� If you use R, get a book like: Fox, John, An R and S-PLUS 
Companion to Applied Regression, Sage Publications, 2002

� Francis, L.A., Neural Networks Demystified, Casualty Actuarial Society 
Forum, Winter, pp. 254-319, 2001. Found at www.casact.org

� Francis, L.A., “Taming Text: An Introduction to Text Mining”, CAS 
Winter Forum, March 2006, www.casact.org

� Francis, L.A., Martian Chronicles:  Is MARS better than Neural 
Networks? Casualty Actuarial Society Forum, Winter, pp. 253-320, 
2003.


