Physicians Professional Liability:

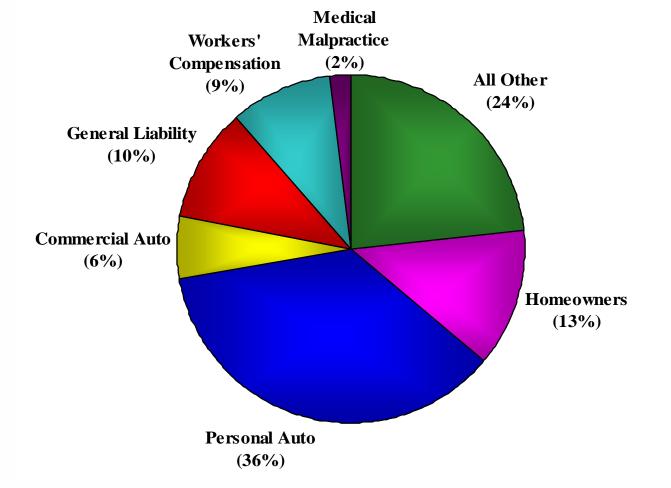
The Current State of the Market and Future Opportunities through Predictive Modeling

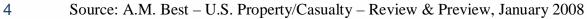
> Prepared For: Casualty Actuarial Society 2008 Ratemaking Seminar

Prepared By: Chad C. Karls, F.C.A.S., M.A.A.A.

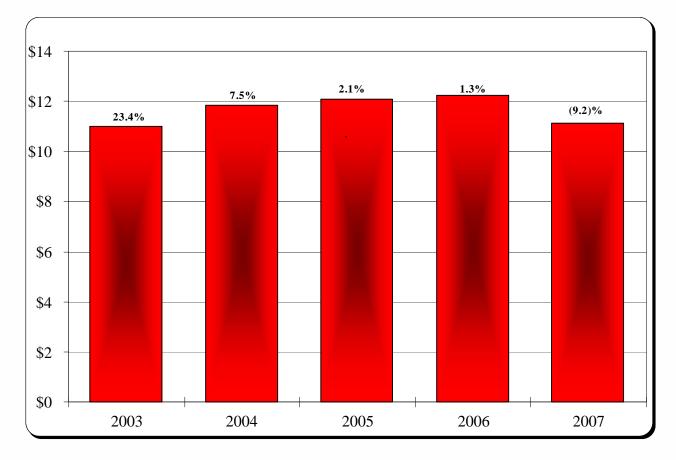
Paul D. Anderson, F.C.A.S., M.A.A.A. <u>chad.karls@milliman.com</u> <u>paul.anderson@milliman.com</u> (262) 784-2250

March 17-18, 2008

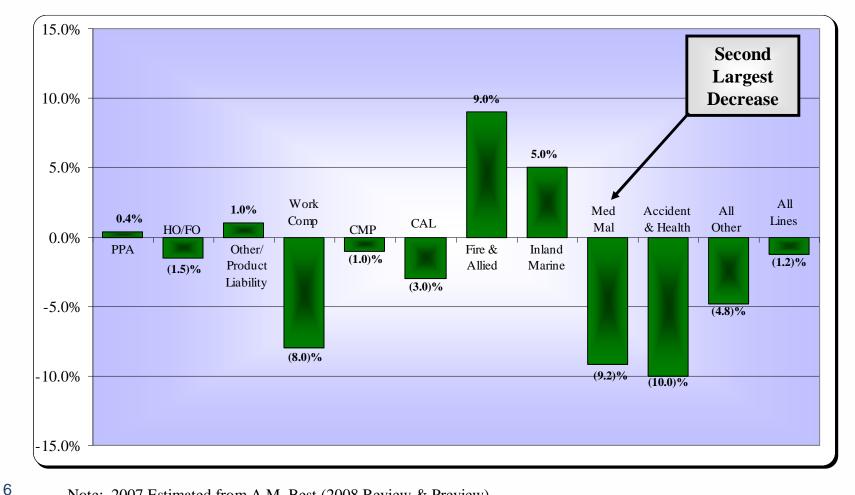

Overview of Presentation


ØOverview of the Market
ØCurrent Approach to Rating
ØPredictive Modeling Background Information
ØCase Study Discussion

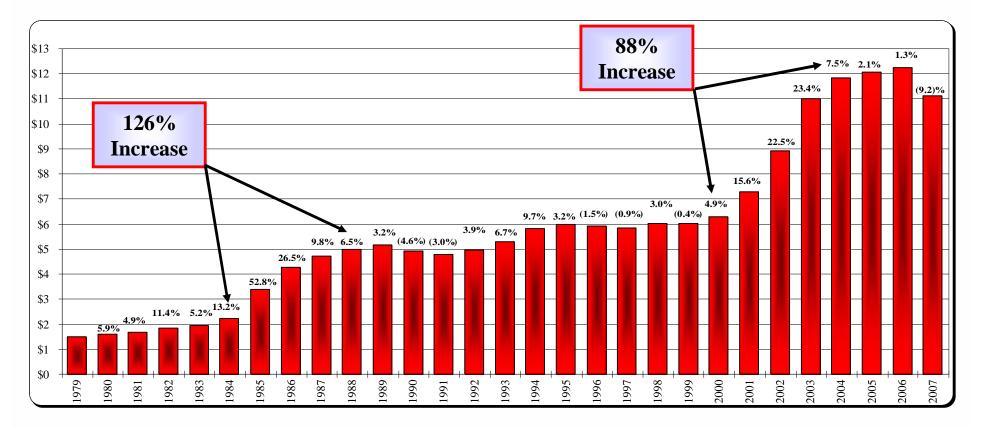
Overview of the Market


National Market

2007 Direct Written Premium by Line of Business


National Market Growth in Direct Written Premium (\$Billions)

Note: 2007 Estimated from A.M. Best (2008 Review & Preview) Source: National Underwriter Insurance Data Services from Highline Data

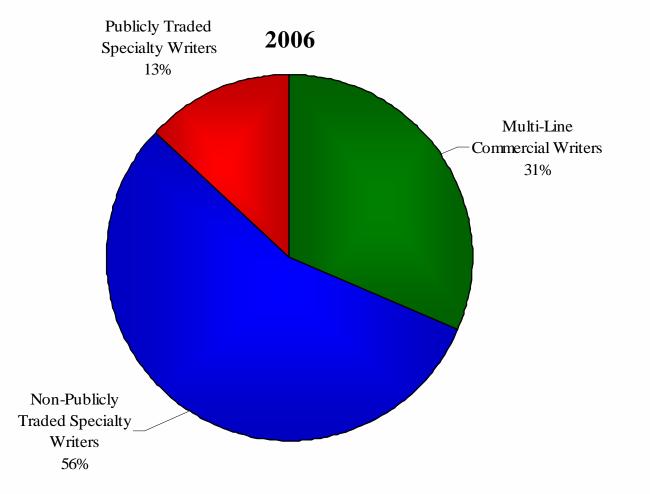

National Market

A.M. Best Estimated Change in 2007 Net Written Premium by Product Line

Note: 2007 Estimated from A.M. Best (2008 Review & Preview) Source: National Underwriter Insurance Data Services from Highline Data

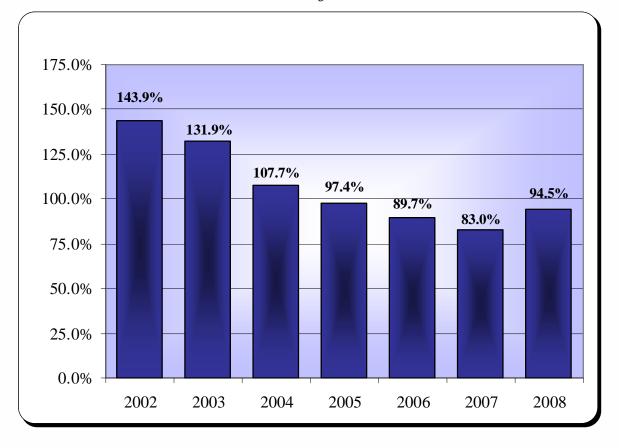
National Market Growth in Direct Written Premium (\$Billions)

Note: 2007 Estimated from A.M. Best using change in net written premium (2008 Review & Preview) Source: National Underwriter Insurance Data Services from Highline Data

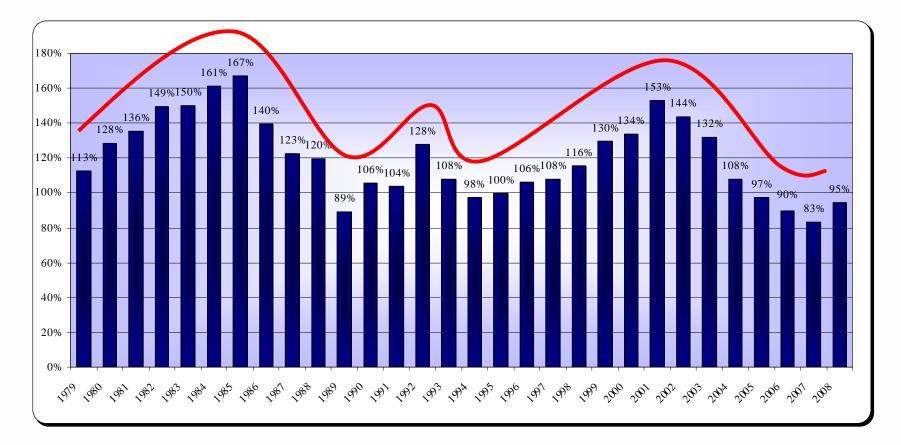

National Market Top 20 Writers

Ranking		2006 Direct Written Premium			2006	
2006	2005	Company	(\$000's)	% Growth	Type of Company	Market Share
1	1	MLMIC Group	\$945,445	8.5%	Specialty - Mutual	7.7%
2	2	American International Group	819,221	-4.4%	Multi-Line - Public	6.7%
3	3	Berkshire Hathaway	724,940	2.1%	Multi-Line - Public	5.9%
4	4	ProAssurance Corporation Group	616,160	0.6%	Specialty - Public	5.0%
5	5	CNA Insurance Group	578,206	10.5%	Multi-Line - Public	4.7%
6	6	Doctors' Company Group	531,823	7.6%	Specialty - Reciprocal	4.3%
7	7	ISMIE Group	385,714	-4.9%	Specialty - Mutual	3.1%
8	8	MAG Mutual Insurance Group	345,182	-3.0%	Specialty - Mutual	2.8%
9	9	Promutual Companies	334,992	-2.8%	Specialty - Mutual	2.7%
10	12	Physicians Reciprocal Insurers	331,691	14.1%	Specialty - Reciprocal	2.7%
11	10	Health Care Indemnity	311,243	-6.1%	Specialty - Captive	2.5%
12	11	Medical Group Holdings and Affiliates	300,750	1.0%	Specialty - Mutual	2.5%
13	14	State Volunteer Mutual Insurance Company	266,548	2.9%	Specialty - Mutual	2.2%
14	15	MCIC Vermont Incorporated, RRG	256,855	3.8%	Specialty - Captive	2.1%
15	13	FPIC Insurance Group	245,916	-12.0%	Specialty - Public	2.0%
16	17	Medical Insurance Group of Maryland	189,566	1.8%	Specialty - Mutual	1.5%
17	16	Zurich Group	181,728	-11.9%	Multi-Line - Public	1.5%
18	20	Mutual Insurance Company of Arizona	171,575	1.8%	Specialty - Mutual	1.4%
19	19	AP Capital Group	156,862	-10.3%	Specialty - Public	1.3%
20	18	Markel Corporation Group	153,158	-14.8%	Multi-Line - Public	1.3%
		Total Top 20	\$7,847,575	0.4%		64.1%
		Total US	\$12,251,014	1.3%		100.0%

8 Source: National Underwriter Insurance Data Services from Highline Data


National Market

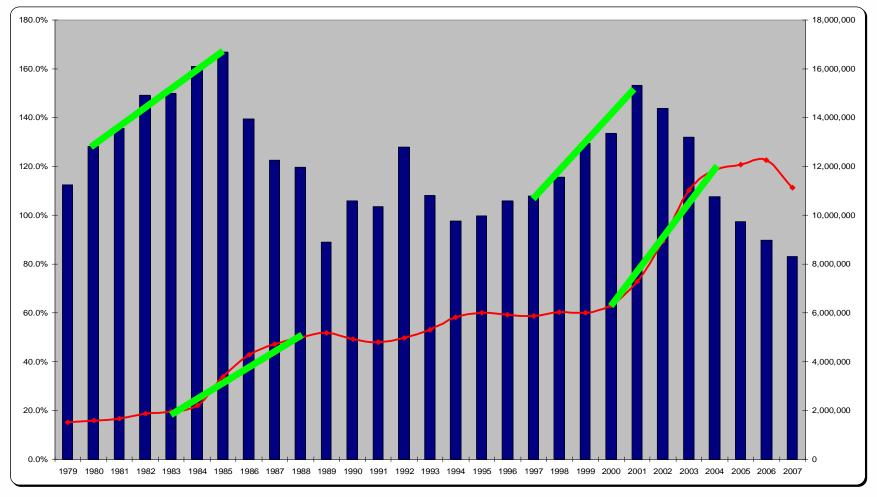
Market Share: Commercial Carriers vs. Specialty Writers


9 Source: National Underwriter Insurance Data Services from Highline Data

National Market Historical Underwriting Results Combined Ratio After Dividends

Note: 2008 Projected from A.M. Best (2008 Review & Preview) Note: 2007 Estimated from A.M. Best (2008 Review & Preview) Source: National Underwriter Insurance Data Services from Highline Data

National Market Historical Underwriting Results Combined Ratio After Dividends

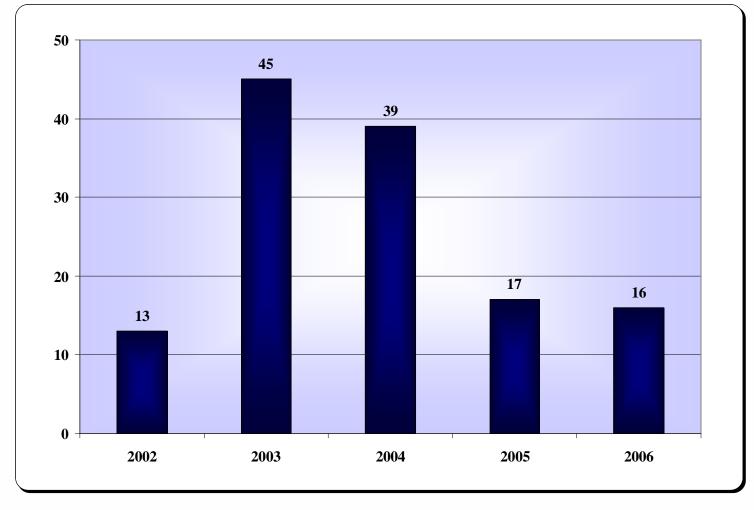


Note: 2008 Projected from A.M. Best (2008 Review & Preview) Note: 2007 Estimated from A.M. Best (2008 Review & Preview) Source: National Underwriter Insurance Data Services from Highline Data

National Market

Direct Written Premium versus Combined Ratio

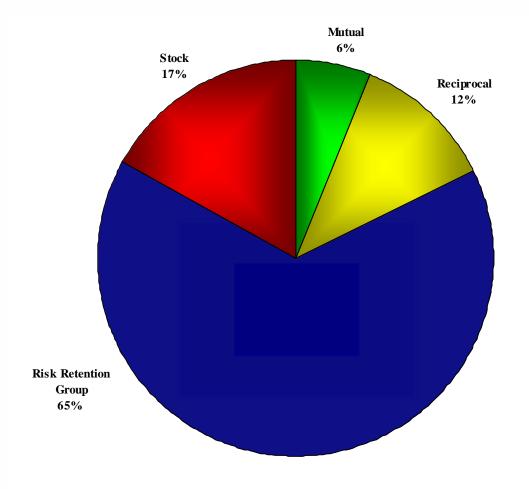
A Three Year Lag?

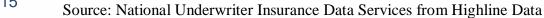

12 Note: 2007 Estimated from A.M. Best (2008 Review & Preview) Source: National Underwriter Insurance Data Services from Highline Data

Med Mal Start-Up Programs Characteristics of Universe

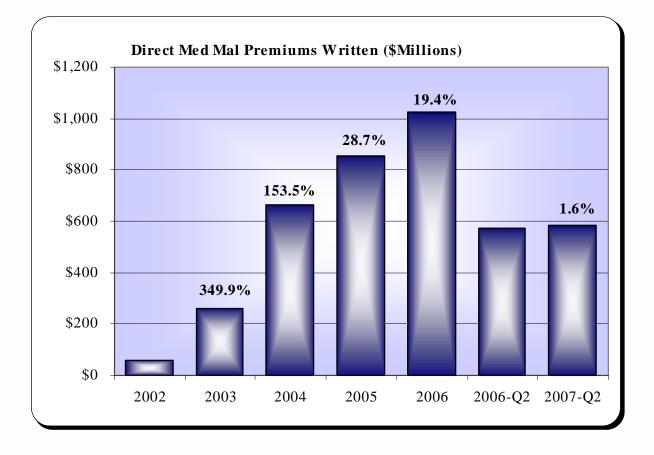
Item	Value
Number of Companies	130
Statutory Admitted Assets as of 12/31/06	\$2,357,592,000
Statutory Surplus as of 12/31/06	\$786,284,000
2006 Direct Written Med Mal Premium	\$1,022,127,000
2006 Med Mal Market Share	8.3%

13 Source: National Underwriter Insurance Data Services from Highline Data


Med Mal Start-Up Programs Profile by Year of Commencement



Source: National Underwriter Insurance Data Services from Highline Data


Med Mal Start-Up Programs Profile by Business Type

Based on 2006 Direct Written Med Mal Premium

Med Mal Start-Up Programs Growth in Direct Written Med Mal Premium

Note: Second quarter values represent total direct written premiums

^b Source: National Underwriter Insurance Data Services from Highline Data

Med Mal Start-Up Programs Profile of Market Penetration by State

		2006 Med Mal Direct W		
		Start-Up	Med Mal	Market
Rank	State	Programs	Industry	Penetration
1	West Virginia	\$61,940	\$110,870	55.9%
2	Pennsylvania	279,199	741,717	37.6%
3	Nevada	39,958	108,721	36.8%
4	Missouri	74,252	238,513	31.1%
5	Montana	12,389	44,541	27.8%
6	Indiana	26,173	135,301	19.3%
7	Mississippi	10,408	56,212	18.5%
8	Kentucky	25,058	172,664	14.5%
9	Texas	49,803	487,663	10.2%
10	Florida	85,494	847,216	10.1%
	Total Top 10	\$664,674	\$2,943,419	22.6%
	Grand Total	\$1,022,128	\$12,251,013	8.3%

17 Source: National Underwriter Insurance Data Services from Highline Data

Current Approach to Rating

Current Approach to Rating

Ø Primary Rating Factors

Ø Specialty

 $\boldsymbol{\varnothing}$ Territory – in some cases

Ø Additional Rating Factors may include

- Ø Claims-free credits/surcharges
- Ø Group discounts
- Ø Risk management credits
- Ø Other workload type adjustments
 - Ø Part-time, New to Practice, Teaching, etc.
- Ø Other schedule rating adjustments
 - Ø Risk peculiarities, CME, Billing practices, EMR

Current Approach to Rating Comparison to Other Lines

- Ø Medical professional liability with an average premium of \$15,000 to \$20,000, and upwards of \$200,000, relies primarily on specialty and maybe territory
- Ø Lawyers professional liability with an average premium of \$2,000 to \$4,000 relies on
 - Ø Size of Firm
 - Ø % of revenue coming from 20+ different Areas of Practice
 - Ø Territory
- Ø Personal Auto with an average premium of \$1,000 to \$5,000 relies on
 - Ø Age
 - Ø Gender
 - Ø Credit Score
 - Ø Zip Code
 - Ø Type of Automobile
 - Ø DMV Records

Alternative (Advanced?) Approach to Rating

- Ø The concepts and approaches used to refine the personal lines rating plans can be applied to medical professional liability
 - Ø Additional challenges exist due to the more volatile nature of this line
 - Ø Significant opportunities also exist without having to completely overhaul the rating plan

Ø Slowly being embraced by some companies in the marketplace, though the traditional specialty/territory approach still dominates the market

Predictive Modeling Background Information

Definition of Predictive Modeling

Predictive Modeling is a Process ...

- Ø While the model building relies heavily on statistics, there is also judgment involved in interpreting the effects of the data on the model itself
- Ø Develops understanding of data, rating variables, & subject line

... That Results in a Model

Ø The goal is to build a model to predict future outcomes

Ø All models are a simplification of reality

Uses of Predictive Modeling

Probability of ...

Ø Disease

Ø Baseball Wins

Ø Auto Accidents

Ø Malpractice Claim

is a function of ...

family history, age, race on-base %, ERA, slugging % age, sex, driving record specialty, location, other factors?

• Predictive modeling attempts to convert these tendencies into a mathematical formula

$$\emptyset$$
 y = b_o + b₁*v₁ + + b_n*v_n + error

$$\emptyset$$
 y = e^(b_o + b₁*v₁ + + b_n*v_n + error)

Benefits of Predictive Modeling

- Better understand exposures and the interaction of various risk characteristics
- Assess pricing and/or underwriting factors more accurately and more scientifically
- Identify types of risks to more easily walk away from
- More precise rating plan reduces potential for adverse selection

Building a Predictive Model

• Data

Ø Gather Data

- Ø Prepare Data
- Ø Segment Data

• Model

- Ø Create Model
- Ø Validate Model

• Implementation

- Ø Rating Variables / Rating Factors
- Ø Underwriting Decisions

Building a Predictive Model Data Gathering

• Internal

- Ø Underwriting / Policy Database
 - age, gender, territory, coverage, limits, etc.
- Ø Claims Database
 - occurrence date, claim type, loss/ALAE amounts, etc.
- Ø Application Data

• External

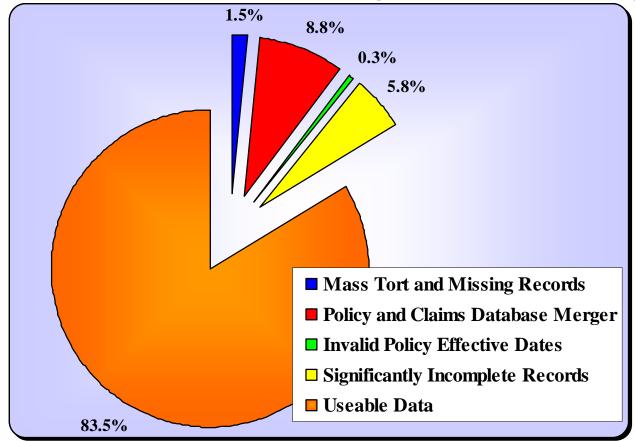
- Ø Behavioral (DMV, third party scorecards, etc.)
- Ø Demographic (AMA, state medical societies, etc.)
- Ø Environmental (lawyers per capita, etc.)
- Ø Financial (credit score, business practices, etc.)

Building a Predictive Model Data Gathering

Personal Lines vs. Commercial Lines:

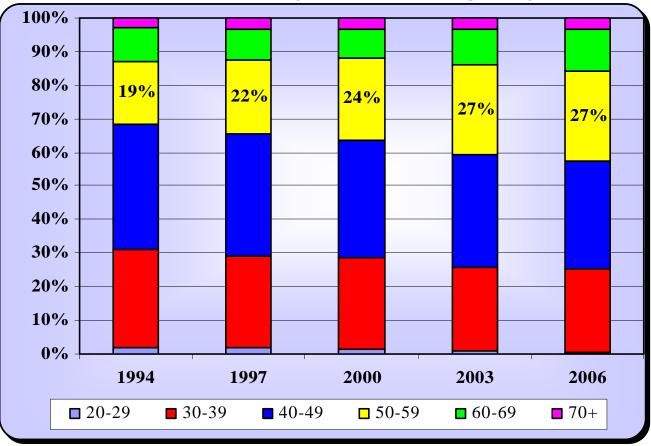
	Personal Lines	Commercial Lines
# of States	50	1
# of Years	4 (2003-2006)	13 (1994-2006)
# of Records	30,000,000	150,000
Variables per Record	400-500	80-90
Datasets Merged	Claim, Coverage, Credit, Insured, Policy, & Vehicle	Claim & Policy

• Both situations pose unique challenges ...

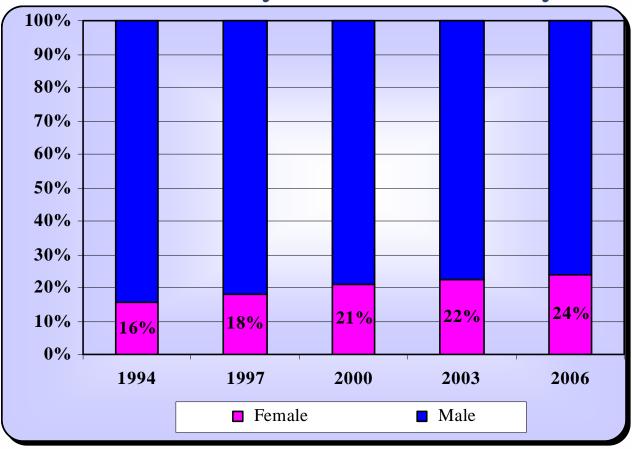

Case Study Discussion

Case Study Discussion Background Information

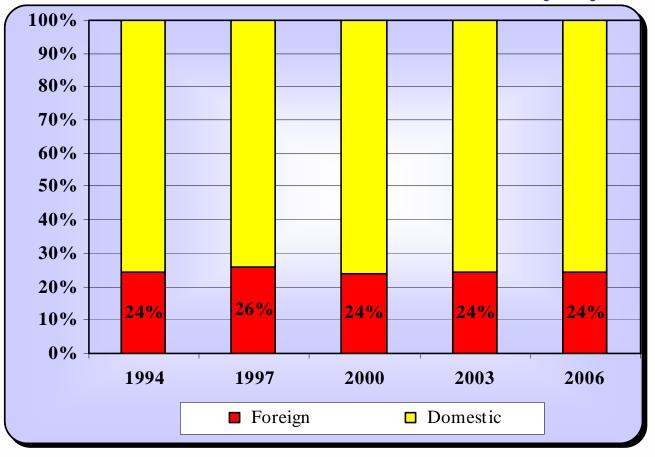
- Company is the largest writer in a top 10 state
 - Ø 13 years of policy data; 145,000 policy records
 - Ø 28 years of claim data; 40,000 claims
 - Ø Over \$1.5 billion of loss and ALAE payments
 - Ø Built model using 60% of the data; 40% used for validation
- Relied exclusively on the Company's internal policy and claims databases
 - Ø Final model based on relatively limited number of variables
 - Ø Examples include: Age, Gender, Coverage Type, Historical Claims Experience, Limit, Specialty, & Territory
 - Ø Claims data included claim status, loss/ALAE payments, & loss/ALAE case reserves


Case Study Discussion Data Preparation

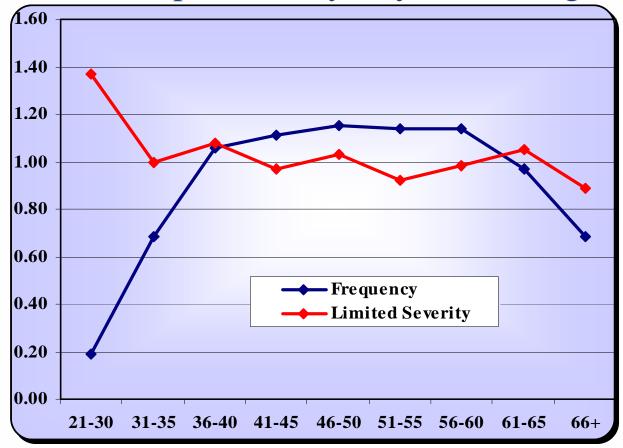
Losses Eliminated Through Data Cleansing


Case Study Discussion Assessing Distribution Shifts Over Time

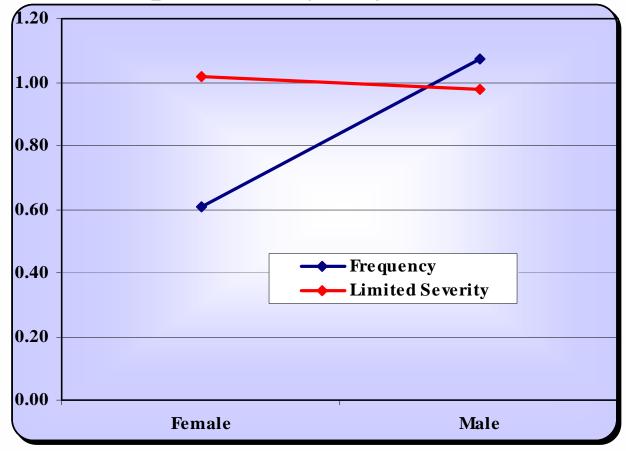
Distribution of Physician's Age by Year

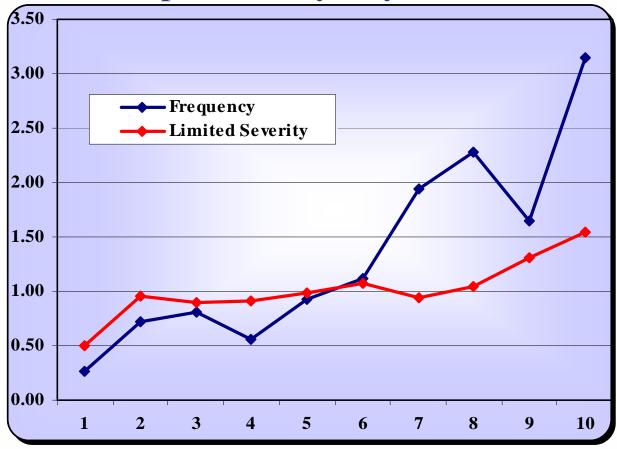

Case Study Discussion Assessing Distribution Shifts Over Time

Distribution of Physician's Gender by Year



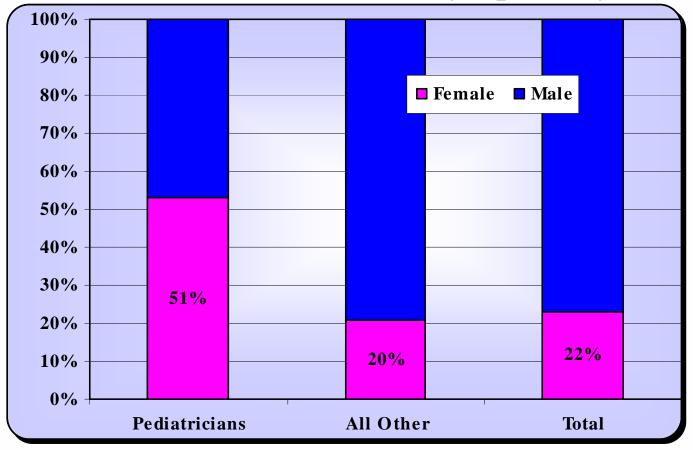
Case Study Discussion Assessing Distribution Shifts Over Time


Distribution of Medical School Country by Year


Claim Experience by Physician's Age

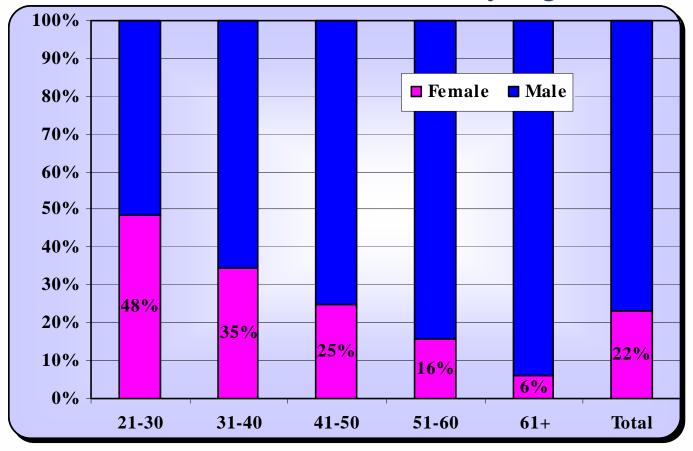
Claim Experience by Physician's Gender

Claim Experience by Physician's Class


• Using one-way analyses, the indicated rate for a 28-year old, Female Pediatrician would be ...

Rating	Sample	Indicated
Variable	Insured	Rate Factor
Age	28	0.19
Gender	Female	0.61
Specialty	Pediatrician	0.26
Indicated Over	0.03	

- What if she ...
 - **ü** works in a rural part of the state?
 - ü graduated from a domestic medical school?
 - ü has been claims-free?
 - ü requests first year claims-made coverage?

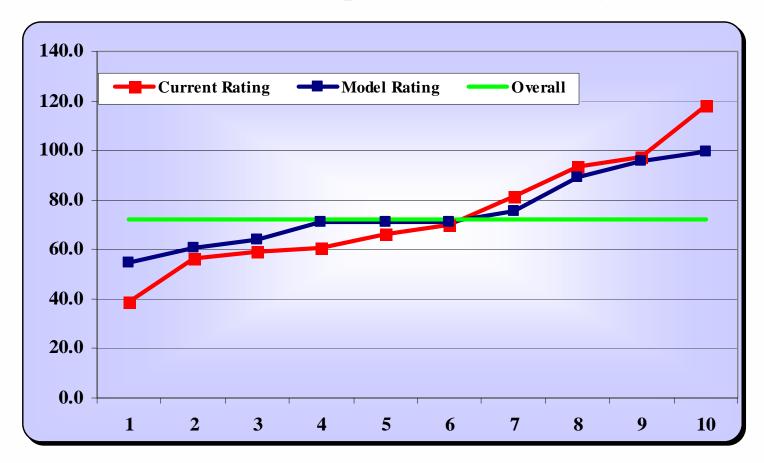

Case Study Discussion Assessing Distributional Skewness

Distribution of Gender by Specialty

Case Study Discussion Assessing Distributional Skewness

Distribution of Gender by Age

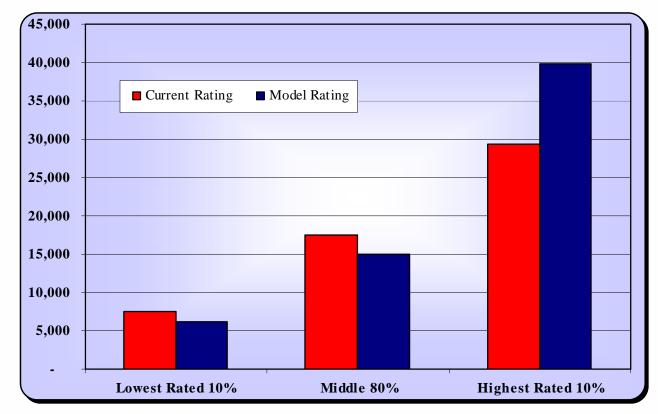
Case Study Discussion Multivariate Analysis


• Multivariate approach evaluates the relationships between many variables simultaneously

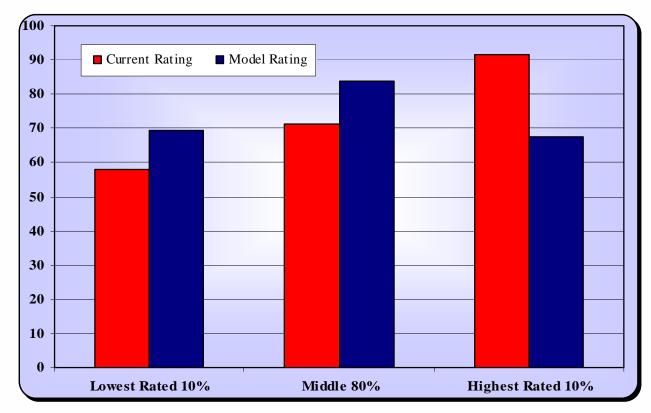
Ø Controls for shifts in distributions over time

Ø Controls for skewness in distributions

- Ø Eliminates the requirement that all input variables be totally independent and uncorrelated
- Results in a formula that best predicts the probability and size of claims


Case Study Discussion Model Validation: Expected Loss Ratio by Decile

• Results based on a preliminary Frequency-only model


Case Study Discussion

Model Validation: Average Premium by Class Group

- Ranked all Surgical Classes by their proposed premiums
- Model significantly increases rate spread

Case Study Discussion Model Validation: Loss Ratios by Class Group

- Same groupings within the Surgical Classes
- Model reduces loss ratio variance by 40%

Case Study Discussion Summary of Results

- Data preparation phase improved our overall understanding of the data and the subject line:
 Ø Clarified the interaction between different variables
 Ø Quantified the latest trends and/or distribution shifts
- Identified 3-5 new rating variables that were significant

Ø These could be added to the premium calculation process or could be used to improve Underwriting decisions

Questions?