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Generalized linear model benefits

 Consider all factors simultaneously
 Allow for nature of random process
 Provide diagnostics
 Robust and transparent
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Agenda

 GLM formulae
 Model testing

– use only variables that are predictive
– make sure model is reasonable

 Aliasing
 Refinements
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 Linear model Yi = i + error

 i based on linear combination of measured factors 

 Which factors, and how they are best combined is to be 
derived

Linear models

i =  + .agei + .agei
2 + .heighti.agei

i =  + .agei + .(sexi=female) 

i = ( + .agei) * exp(.heighti.agei)
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Linear models - formularization

E[Yi] = i = Xijj

Var[Yi] = 2

Yi ~ N(i, 2)
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What is Xijj?

 X defines the explanatory variables to be included in 
the model

– could be continuous variables - "variates"
– could be categorical variables - "factors"

  contains the parameter estimates which relate to 
the factors / variates defined by the structure of X

– "the answer"
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 Write Xijj as X.

 Consider 3 rating factors

- age of driver ("age")

- sex of driver ("sex")

- age of vehicle ("car")

 Represent  by , , , , ...

What is X. ?
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What is X. ?  

 Suppose we wanted a model of the form:
 =  + .age + .age2 + .car27.age52½

 X. would need to be defined as: 

1   age1 age1
2 car1

27.age1
52½

................................

................................








1   age2  age2
2 car2

27.age2
52½

1   age3  age3
2 car3

27.age3
52½

1   age4  age4
2 car4

27.age4
52½

1   age5 age5
2  car5

27.age5
52½
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What is X. ?  

 Suppose we wanted a model of the form:

 = +  if age < 30

+  if age 30 - 40

+  if age > 40

+  if sex male

+  if sex female

2

3

1

2

1
 = +  if age < 30

+  if age 30 - 40

+  if age > 40

+  if sex male

+  if sex female

2

3

1

2

1
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1 0 1 0 1 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 0 1 1 0
1 0 1 0 0 1
..........................
..........................

Age Sex








1

2

1

3

2



<30  30-40  >40 M   F

1

2

3

4

5

What is X. ?  
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What is X. ?  

 Suppose we wanted a model of the form:

 = +  if age < 30

+  if age 30 - 40

+  if age > 40

+  if sex male

+  if sex female

2

3

1

2
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 = +  if age < 30

+  if age 30 - 40

+  if age > 40

+  if sex male

+  if sex female

2

3

1

2
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What is X. ?  

 Suppose we wanted a model of the form:

 = +  if age < 30

+  if age 30 - 40

+  if age > 40

+  if sex male

+  if sex female

2

3

1

2

1
 = +  if age < 30

+  if age 30 - 40

+  if age > 40

+  if sex male

+  if sex female

2

3

1

2

1

"Base levels"
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X. having adjusted for base levels

1 0 1 0 1 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 0 1 1 0
1 0 1 0 0 1
..........................
..........................

Age Sex


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


1

2

1

3

2
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<30  30-40  >40 M   F
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3

4

5
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Linear models - formularization

E[Yi] = i = Xijj

Var[Yi] = 2

Yi ~ N(i, 2)
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i = f(  + .agei + .agei
2 + .heighti.agei )

i = f(  + .agei + .(sexi=female) )

Generalized linear models
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i = g-1(  + .agei + .agei
2 + .heighti.agei )

i = g-1(  + .agei + .(sexi=female) )

Generalized linear models
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Generalized linear models

Linear Models

E[Yi] = i = Xijj

Var[Yi] = 2

Y from 
Normal distribution

Generalized Linear Models

E[Yi] = i = g-1(Xijj + i)

Var[Yi] = V(i)/i

Y from a distribution from the 
exponential family
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 Each observation i from distribution with mean i

Generalized linear models
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Var[Y] = V() / 

E[Y] =  = g  ( X +  )-1

Generalized linear models
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E[Y] =  = g  ( X )-1

Observed thing
(data)

Some function
(user defined)

Some matrix based on data
(user defined)

as per linear models

Parameters to be
estimated

(the answer!)

Generalized linear models
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age is in group i
sex is in group j
car is in group k

 =  =  = 0312

Y = g  (X.) + error-1

) + errork+  +  + i jY = g  (ijk
-1

What is g-1(X.) ?

Assuming a model with three categorical factors, 
each observation can be expressed as:
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 g(x) = x        Yijk =  + i + j + k + error

 g(x) = ln(x)   Yijk = e( + i + j + k) + error

= A.Bi.Cj.Dk + error
where Bi = ei etc

 Multiplicative form common for frequency and amounts

What is g-1(X.) ?
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Age Factor
17 2.52
18 2.05
19 1.97
20 1.85

21-23 1.75
24-26 1.54
27-30 1.42
31-35 1.20
36-40 1.00
41-45 0.93
46-50 0.84
50-60 0.76

60+ 0.78

$ 207.10 x 

Group Factor
1 0.54
2 0.65
3 0.73
4 0.85
5 0.92
6 0.96
7 1.00
8 1.08
9 1.19

10 1.26
11 1.36
12 1.43
13 1.56

Sex Factor
Male 1.00

Female 1.25

Area Factor
A 0.95
B 1.00
C 1.09
D 1.15
E 1.18
F 1.27
G 1.36
H 1.44

E(losses) = $ 207.10 x 1.42 x 0.92 x 1.00 x 1.15 = $ 311.14

Multiplicative model
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E[Y] =  = g  ( X +  )-1

"Offset"

Eg Y = claim numbers

Smith: Male, 30, Ford, 1 years, 2 claims

Jones: Female, 40, VW, ½ year, 1 claim

Generalized linear models
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 g(x) = ln(x)

 ijk = ln(exposureijk)

 E[Yijk] = e( + i + j + k + ijk)

= A.Bi.Cj.Dk. e(ln(exposureijk))

= A.Bi.Cj.Dk. exposureijk

What is  ?
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E[Y] =  = g  ( X +  )-1

 Constrain model (eg increased limits, territory, 
amount of insurance, discounts)

 Other factors adjusted to compensate

Offset

Restricted models
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Var[Y] = V() / 

E[Y] =  = g  ( X +  )-1

Generalized linear models
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Var[Y] = V() / 

Normal:  = 2, V(x) = 1  Var[Y] = 2.1

Poisson:  = 1, V(x) = x  Var[Y] = 

Gamma:  = k, V(x) = x2  Var[Y] = k2

Generalized linear models
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 Example portfolio with five rating factors, each with 
five levels A, B, C, D, E

 Typical correlations between those rating factors
 Assumed true effect of factors
 Claims randomly generated (with Gamma)
 Random experience analyzed by three models

Example of effect of 
changing assumed error - 2
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Var[Y] = V() / 

 Exposure

 Other credibility

Eg Y = claim frequency

Smith: Male, 30, Ford, 1 years, 2 claims, 100%

Jones: Female, 40, VW, ½ year, 1 claim, 100%

Prior weights
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Tweedie distributions

 Incurred losses have a 
point mass at zero and 
then a continuous 
distribution

 Poisson and gamma 
not suited to this

 Tweedie distribution has point mass and parameters 
which can alter the shape to be like Poisson and 
gamma above zero
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Var[Y] = V() / 
Normal:  = 2, V(x) = 1  Var[Y] = 2.1

Poisson = 1, V(x) = x  Var[Y] = 

Gamma = k, V(x) = x2  Var[Y] = k2

Generalized linear models

Tweedie = k, V(x) = xp  Var[Y] = kp
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Tweedie distributions

 Defines a valid distribution for p<0, 1<p<2, p>2
 Can be considered as Poisson/gamma process for 

1<p<2
 Typical values of p for insurance incurred claims 

around, or just under, 1.5

Tweedie = k, V(x) = xp  Var[Y] = kp
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Tweedie distributions

 Helpful when important to fit to pure premium
 Often similar results to traditional approach but 

differences may occur if numbers and amounts 
models have effects which are both large and 
insignificant

 No information about whether frequencies or 
amounts are driving result



Numerical MLE

Parameter Estimates Diagnostics

Data

Linear Predictor Form

Link function g(x) Error Structure V()

Scale Parameter

Prior Weights



Offset 

Y

, , , 

X. = i + j + k + l
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Maximum likelihood estimation

 Seek 
parameters 
which give 
highest 
likelihood 
function given 
data

Parameter 1 Parameter 2

Likelihood
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Newton-Raphson

 In one dimension: xn+1 = xn – f '(xn) / f ''(xn)

 In n dimensions: n+1= n – H-1.s
where  is the vector of the parameter estimates (with p elements), s is the vector of the 
first derivatives of the log-likelihood and H is the (p*p) matrix containing the second 
derivatives of the log-likelihood
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Agenda

 GLM formulae
 Model testing

– use only variables that are predictive
– make sure model is reasonable

 Aliasing
 Model refinements
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Standard errors
 Roughly speaking, for a parameter p:  SE = -1 / (2/ p2 Likelihood)

Parameter 1 Parameter 2

Likelihood
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GLM output (significant factor)
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GLM output (insignificant factor)
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Awkward cases
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Deviances

 Single figure measure of goodness of fit
 Try model with & without a factor
 Statistical tests show the theoretical significance 

given the extra parameters
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Fitted
value
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Age
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Model A
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value

Mileage

Vehicle

Age
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Model B

Deviance = 9585
df = 109954

Deviance = 9604
df = 109965

?

Deviances
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Consistency over time
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Consistency over time
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 Several forms, eg
– standardized deviance

– standardized Pearson

 Standardized deviance - Normal (0,1)
 Numbers/frequency residuals problematical

Residuals

( .V( ).(1-h  ) /  )

Y  - u u

u u u

½

sign (Yu-u) / ( (1-hu) ) ½       2 u     ( Yu- ) / V(d


u

Yu
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Histogram of Deviance Residuals
Run 12 (Final models with analysis) Model 8 (AD amounts)
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Residuals
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Gamma data, Gamma error
Plot of deviance residual against fitted value

Run 12 (All claim types, final models, N&A) Model 6 (Own damage, Amounts)

Pretium 08/01/2004 12:32
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Gamma data, Normal error
Plot of deviance residual against fitted value

Run 12 (All claim types, final models, N&A) Model 7 (Own damage, Amounts)

Pretium 08/01/2004 12:32
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Agenda

 GLM formulae
 Model testing

– use only variables that are predictive
– make sure model is reasonable

 Aliasing
 Model refinements



Copyright © Watson Wyatt Worldwide. All rights reserved

65

Aliasing and "near aliasing"

 Aliasing
– the removal of unwanted redundant parameters

 Intrinsic aliasing
– occurs by the design of the model

 Extrinsic aliasing
– occurs "accidentally" as a result of the data
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Intrinsic aliasing

 "Base levels"

X. = +  if age 20 - 29

+  if age 30 - 39

+  if age 40 +

+  if sex male

+  if sex female

2

3

1

2

1
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Intrinsic aliasing
Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers

-11%
-6%

-19%

0%

24%28%

63%

138%
155%

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Age of driver

Lo
g 

of
 m

ul
tip

lie
r

0

50000

100000

150000

200000

250000

17-21 22-24 25-29 30-34 35-39 40-49 50-59 60-69 70+

E
xp

os
ur

e 
(y

ea
rs

)

Onew ay relativities Approx 95% confidence interval Unsmoothed estimate Smoothed estimate



Copyright © Watson Wyatt Worldwide. All rights reserved

68

Extrinsic aliasing

 If a perfect correlation exists, one factor can alias levels of another
 Eg if doors declared first:

 This is the only reason the order of declaration can matter (fitted 
values are unaffected)

Exposure:    # Doors 
Color

2 3 4 5 Unknown

Red 13,234 12,343 13,432 13,432 0

Green 4,543 4,543 13,243 2,345 0

Blue 6,544 5,443 15,654 4,565 0

Black 4,643 1,235 14,565 4,545 0

Unknown 0 0 0 0 3,242

Selected base

Selected base

Further aliasing
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Extrinsic aliasing

Example job
Run 16 Model 3 - Small interaction - Third party material damage, Numbers
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"Near aliasing"

 If two factors are almost perfectly aliased, convergence problems can 
result as a result of low exposures and/or results can become hard to 
interpret

 Eg if the 2 black, unknown doors policies had no claims, GLM would try to 
estimate a very large negative number for unknown doors, and a very 
large positive number for unknown color

Exposure:    # Doors
Color

2 3 4 5 Unknown

Red 13,234 12,343 13,432 13,432 0

Green 4,543 4,543 13,243 2,345 0

Blue 6,544 5,443 15,654 4,565 0

Black 4,643 1,235 14,565 4,545 2

Unknown 0 0 0 0 3,242

Selected base

Selected base
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Agenda

 GLM formulae
 Model testing

– use only variables that are predictive
– make sure model is reasonable

 Aliasing
 Model refinements

– Interactions
– Splines
– Restrictions
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Interactions

Sample job
Run 23 Model 3 - Small interaction - Blah blah
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Interactions

Sample job
Run 23 Model 3 - No interaction
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Interactions

Sample job
Run 19 Model 3 - Small interaction - Blah blah
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Marginal interaction:
Age effect

Sample job
Run 19 Model 3 - Small interaction
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Marginal interaction:
Age.Sex (ie additional female multipliers)

Sample job
Run 19 Model 3 - Small interaction
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No additional loadings 
required for males - already 
made via simple age factor

Additional multipliers for females
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Group > 1 2 3 4 5 6 7 8 9 10 11 12 13
Age v

17 1.36 1.64 1.79 2.09 2.27 2.42 2.56 2.65 3.27 3.71 4.08 4.36 4.84
18 1.12 1.31 1.47 1.76 1.84 2.00 2.11 2.19 2.43 2.97 3.29 3.55 3.90
19 1.08 1.30 1.46 1.63 1.82 1.91 2.02 2.11 2.53 2.88 3.30 3.35 3.63
20 0.98 1.18 1.36 1.54 1.68 1.79 1.83 1.97 2.19 2.66 3.02 3.20 3.38

21-23 0.96 1.13 1.24 1.51 1.65 1.64 1.80 1.85 2.04 2.26 2.55 2.53 2.89
24-26 0.82 0.99 1.10 1.31 1.43 1.52 1.51 1.64 1.81 1.93 2.13 2.22 2.47
27-30 0.78 0.90 1.07 1.19 1.32 1.39 1.41 1.51 1.65 1.77 1.91 2.01 2.24
31-35 0.63 0.78 0.86 0.99 1.09 1.17 1.22 1.32 1.42 1.54 1.66 1.71 1.88
36-40 0.55 0.64 0.71 0.85 0.91 0.93 0.99 1.07 1.18 1.29 1.40 1.41 1.53
41-45 0.51 0.61 0.66 0.79 0.88 0.88 0.94 0.99 1.09 1.15 1.29 1.31 1.42
46-50 0.46 0.55 0.61 0.70 0.76 0.81 0.84 0.92 1.02 1.07 1.12 1.18 1.31
51-60 0.40 0.49 0.56 0.64 0.68 0.71 0.78 0.82 0.90 0.99 1.02 1.12 1.20

60+ 0.43 0.52 0.55 0.67 0.72 0.73 0.78 0.83 0.93 0.98 1.04 1.11 1.25

Interactions
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Age Factor
17 2.52
18 2.05
19 1.97
20 1.85

21-23 1.75
24-26 1.54
27-30 1.42
31-35 1.20
36-40 1.00
41-45 0.93
46-50 0.84
51-60 0.76

60+ 0.78

Group 1 2 3 4 5 6 7 8 9 10 11 12 13
Factor 0.54 0.65 0.73 0.85 0.92 0.96 1.00 1.08 1.19 1.26 1.36 1.43 1.56

1.00

1.00

1.17

1.00

Interactions
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Spline definition

A series of 
polynomial 
functions, with 
each function 
defined over 
a short interval

 Intervals are defined by k+2 knots
– two exterior knots at extremes of data
– variable number (k) of interior knots

At each interior knot the two functions must join "smoothly“
Regression splines are a form of generalized additive models
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Example retention 
elasticity curve

Example retention analysis
Run 2 Model 1 - Final model - Retention model
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Restricted models

Restriction
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"A Practitioner's Guide to Generalized Linear 
Models"

 CAS 2004 Discussion Paper 
Program

 CAS Exam 9 syllabus as of 2006
 Copies available at

www.watsonwyatt.com/glm
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