watsonwyatt.com

PM-2 An Introduction to GLM Theory

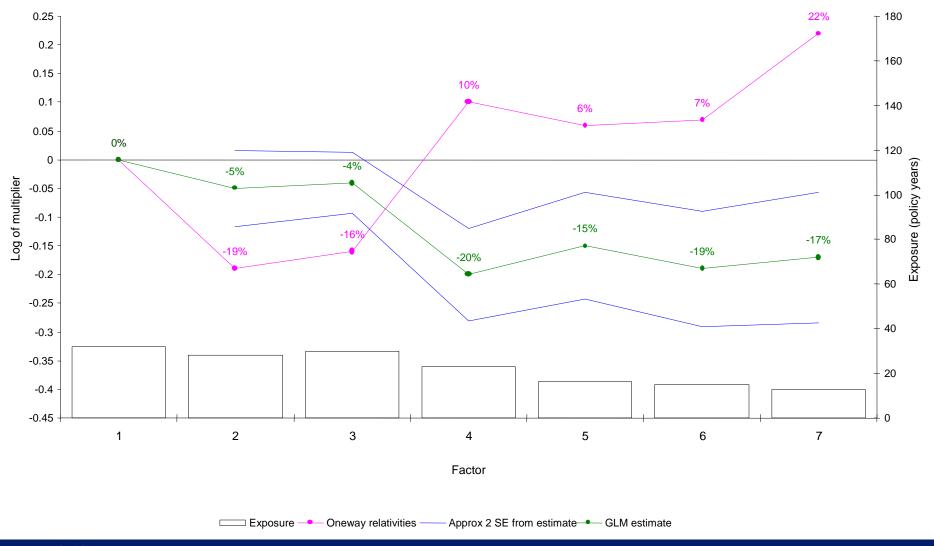
CAS Seminar on Ratemaking Boston, March 17, 2008

Claudine Modlin, FCAS, MAAA

Generalized linear model benefits

- Consider all factors simultaneously
- Allow for nature of random process
- Provide diagnostics
- Robust and transparent

Example of GLM output



Agenda

- GLM formulae
- Model testing
 - use only variables that are predictive
 - make sure model is reasonable
- Aliasing
- Refinements

Linear models

- Linear model $Y_i = \mu_i + error$
- μ_i based on linear combination of measured factors
- Which factors, and how they are best combined is to be derived

$$\mu_i = \alpha + \beta.age_i + \gamma.age_i^2 + \delta.height_i.age_i$$

$$\mu_i = \alpha + \beta.age_i + \gamma.(sex_i = female)$$

$$\mu_i = (\alpha + \beta.age_i) * exp(\delta.height_i.age_i)$$

Linear models - formularization

$$E[Y_i] = \mu_i = \Sigma X_{ij} \beta_j$$

$$Var[Y_i] = \sigma^2$$

$$Y_i \sim N(\mu_i, \sigma^2)$$

What is $\Sigma X_{ii}\beta_i$?

- X defines the explanatory variables to be included in the model
 - could be continuous variables "variates"
 - could be categorical variables "factors"
- $\underline{\beta}$ contains the parameter estimates which relate to the factors / variates defined by the structure of **X**
 - "the answer"

What is $X \cdot \underline{\beta}$?

- Write $\sum X_{ij}\beta_j$ as $\mathbf{X}.\underline{\beta}$
- Consider 3 rating factors
 - age of driver ("age")
 - sex of driver ("sex")
 - age of vehicle ("car")
- Represent $\underline{\beta}$ by α , β , γ , δ , ...

What is **X**.β?

Suppose we wanted a model of the form:

$$\mu = \alpha + \beta \cdot \underline{\text{age}} + \gamma \cdot \underline{\text{age}}^2 + \delta \cdot \underline{\text{car}}^{27} \cdot \underline{\text{age}}^{52\frac{1}{2}}$$

X. $\underline{\beta}$ would need to be defined as:

$$\begin{pmatrix} 1 & \text{age}_{1} & \text{age}_{1}^{2} & \text{car}_{1}^{27}.\text{age}_{1}^{521/2} \\ 1 & \text{age}_{2} & \text{age}_{2}^{2} & \text{car}_{2}^{27}.\text{age}_{2}^{521/2} \\ 1 & \text{age}_{3} & \text{age}_{3}^{2} & \text{car}_{3}^{27}.\text{age}_{3}^{521/2} \\ 1 & \text{age}_{4} & \text{age}_{4}^{2} & \text{car}_{4}^{27}.\text{age}_{4}^{521/2} \\ 1 & \text{age}_{5} & \text{age}_{5}^{2} & \text{car}_{5}^{27}.\text{age}_{5}^{521/2} \\ \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}$$

What is $X \cdot \underline{\beta}$?

Suppose we wanted a model of the form:

$$\mu = \alpha + \beta_1 \text{ if } \underline{\text{age}} < 30$$

$$+ \beta_2 \text{ if } \underline{\text{age}} 30 - 40$$

$$+ \beta_3 \text{ if } \underline{\text{age}} > 40$$

$$+ \gamma_1 \text{ if } \underline{\text{sex}} \text{ male}$$

+ γ_2 if sex female

What is **X**.<u>β</u>?



What is $X \cdot \underline{\beta}$?

Suppose we wanted a model of the form:

$$\mu = \alpha + \beta_1 \text{ if } \underline{\text{age}} < 30$$

$$+ \beta_2 \text{ if } \underline{\text{age}} 30 - 40$$

$$+ \beta_3 \text{ if } \underline{\text{age}} > 40$$

+
$$\gamma_1$$
 if sex male

+
$$\gamma_2$$
 if sex female

What is **X**.β?

Suppose we wanted a model of the form:

$$\mu = \alpha + \beta_1 \text{ if } \underline{\text{age}} < 30$$

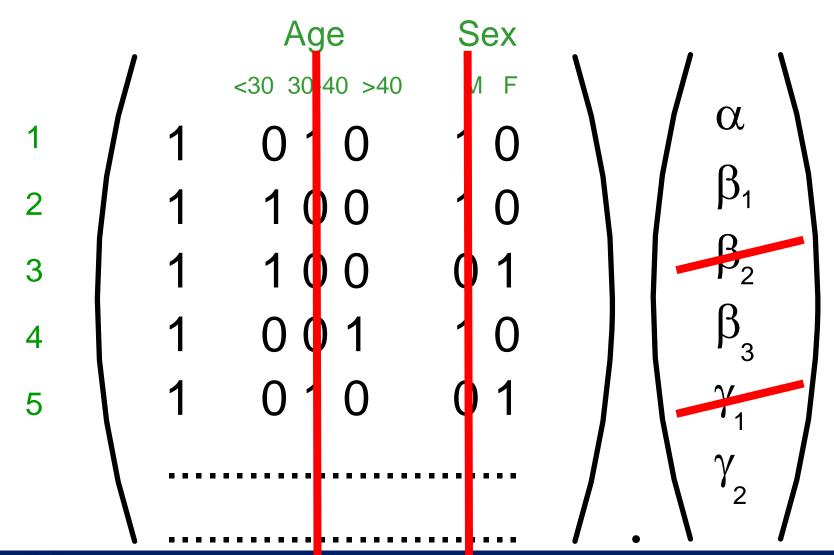
$$+ \beta_2 \text{ if } \underline{\text{age}} = 30 - 40$$

"Base levels" +
$$\beta_3$$
 if age > 40

+
$$\gamma$$
 if sex male

+
$$\gamma_2$$
 if sex female

$X.\underline{\beta}$ having adjusted for base levels



Linear models - formularization

$$E[Y_i] = \mu_i = \Sigma X_{ij} \beta_j$$

$$Var[Y_i] = \sigma^2$$

$$Y_i \sim N(\mu_i, \sigma^2)$$

$$\mu_i = f(\alpha + \beta.age_i + \gamma.age_i^2 + \delta.height_i.age_i)$$

$$\mu_i = f(\alpha + \beta.age_i + \gamma.(sex_i=female))$$

$$\mu_i = g^{-1}(\alpha + \beta.age_i + \gamma.age_i^2 + \delta.height_i.age_i)$$

$$\mu_i = g^{-1}(\alpha + \beta.age_i + \gamma.(sex_i=female))$$

Linear Models

$$\mathsf{E}[\mathsf{Y}_{\mathsf{i}}] = \mu_{\mathsf{i}} = \Sigma \mathsf{X}_{\mathsf{i}\mathsf{j}} \beta_{\mathsf{j}}$$

$$Var[Y_i] = \sigma^2$$

Y from Normal distribution

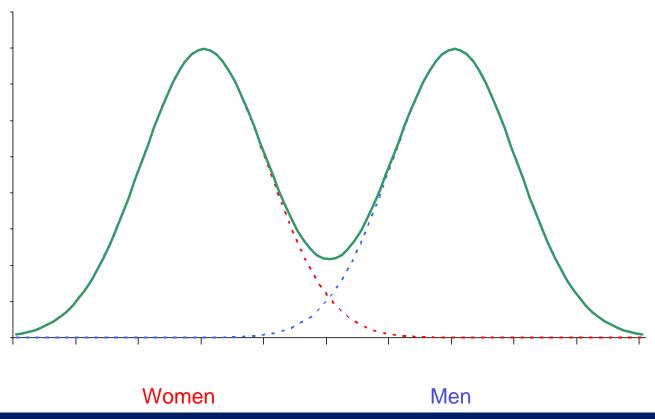
Generalized Linear Models

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}\beta_j + \xi_i)$$

$$Var[Y_i] = \phi V(\mu_i)/\omega_i$$

Y from a distribution from the exponential family

• Each observation i from distribution with mean μ_i



$$E[\underline{Y}] = \underline{\mu} = g^{-1}(X \cdot \underline{\beta} + \underline{\xi})$$

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(X.\underline{\beta})$$

Some function (user defined)

Parameters to be estimated (the answer!)

Observed thing (data)

Some matrix based on data (user defined)

What is $g^{-1}(\mathbf{X}.\underline{\beta})$?

$$\underline{Y} = g^{-1}(\mathbf{X}.\underline{\beta}) + \text{error}$$

Assuming a model with three categorical factors, each observation can be expressed as:

$$Y_{ijk} = g^{-1}(\alpha + \beta_i + \gamma_j + \delta_k) + error$$

$$\beta_2 = \gamma_1 = \delta_3 = 0$$

age is in group i sex is in group j car is in group k

What is $g^{-1}(\mathbf{X}.\underline{\beta})$?

•
$$g(x) = x$$
 $\Rightarrow Y_{ijk} = \alpha + \beta_i + \gamma_j + \delta_k + error$

•
$$g(x) = ln(x) \Rightarrow Y_{ijk} = e^{(\alpha + \beta_i + \gamma_j + \delta_k)} + error$$

= $A.B_i.C_j.D_k + error$
where $B_i = e^{\beta_i}$ etc

Multiplicative form common for frequency and amounts

Multiplicative model

	Age	Factor	Group	Factor	Sex	Factor
\$207.10 x	17	2.52	1	0.54	Male	1.00
	18	2.05	2	0.65	Female	1.25
	19	1.97	3	0.73		
	20	1.85	4	0.85		
	21-23	1.75	5	0.92	Area	Factor
	24-26	1.54	6	0.96	Α	0.95
	27-30	1.42	7	1.00	В	1.00
	31-35	1.20	8	1.08	С	1.09
	36-40	1.00	9	1.19	D	1.15
	41-45	0.93	10	1.26	E	1.18
	46-50	0.84	11	1.36	F	1.27
	50-60	0.76	12	1.43	G	1.36
	60+	0.78	13	1.56	Н	1.44

 $E(losses) = $207.10 \times 1.42 \times 0.92 \times 1.00 \times 1.15 = 311.14

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(X \cdot \underline{\beta} + \underline{\xi})$$

"Offset"

Eg \underline{Y} = claim *numbers*

Smith: Male, 30, Ford, 1 years, 2 claims

Jones: Female, 40, VW, ½ year, 1 claim

What is ξ?

- g(x) = ln(x)
- $\xi_{ijk} = In(exposure_{ijk})$

•
$$E[Y_{ijk}] = e^{(\alpha + \beta_i + \gamma_j + \delta_k + \xi_{ijk})}$$

= $A.B_i.C_j.D_k.e^{(ln(exposure_{ijk}))}$
= $A.B_i.C_j.D_k.exposure_{ijk}$

Restricted models

$$E[Y] = \mu = g^{-1}(X.\beta + \xi)$$
Offset

- Constrain model (eg increased limits, territory, amount of insurance, discounts)
- Other factors adjusted to compensate

$$E[\underline{Y}] = \underline{\mu} = g^{-1}(X \cdot \underline{\beta} + \underline{\xi})$$

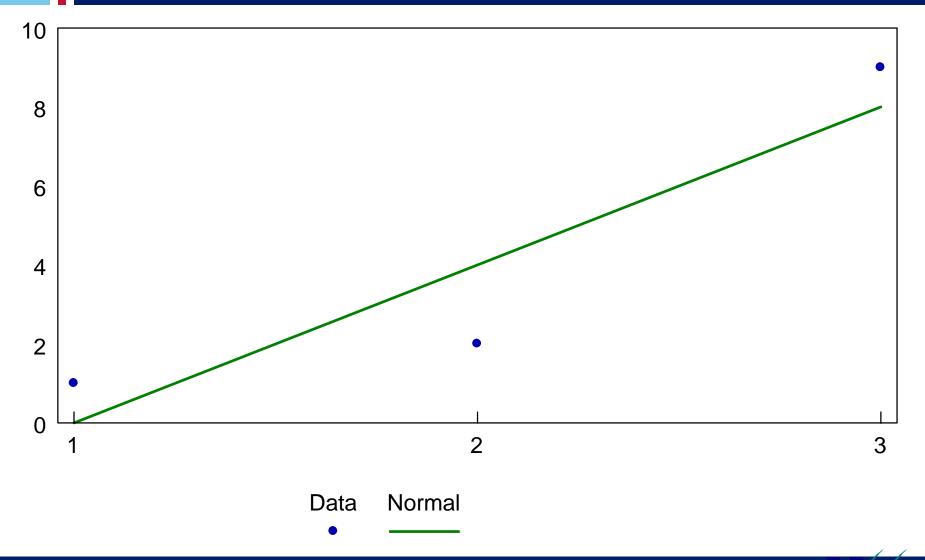
$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

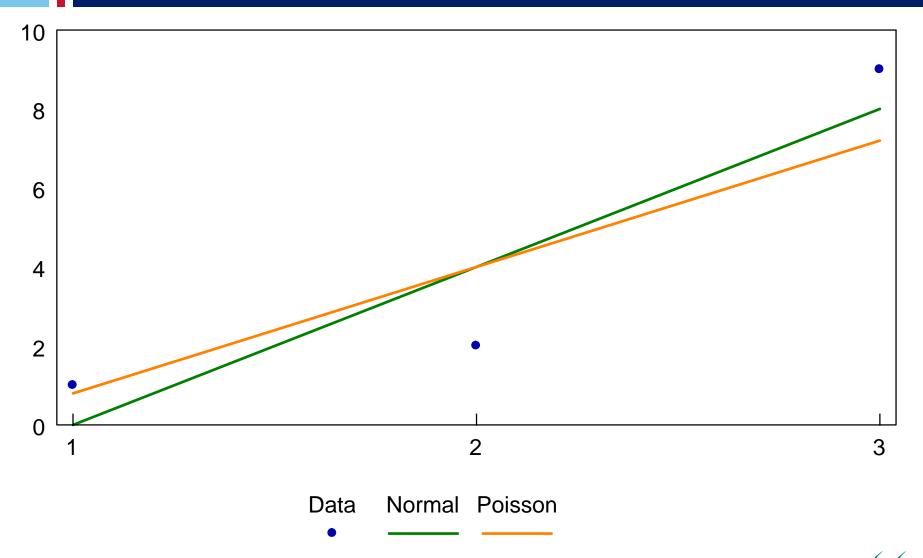
$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

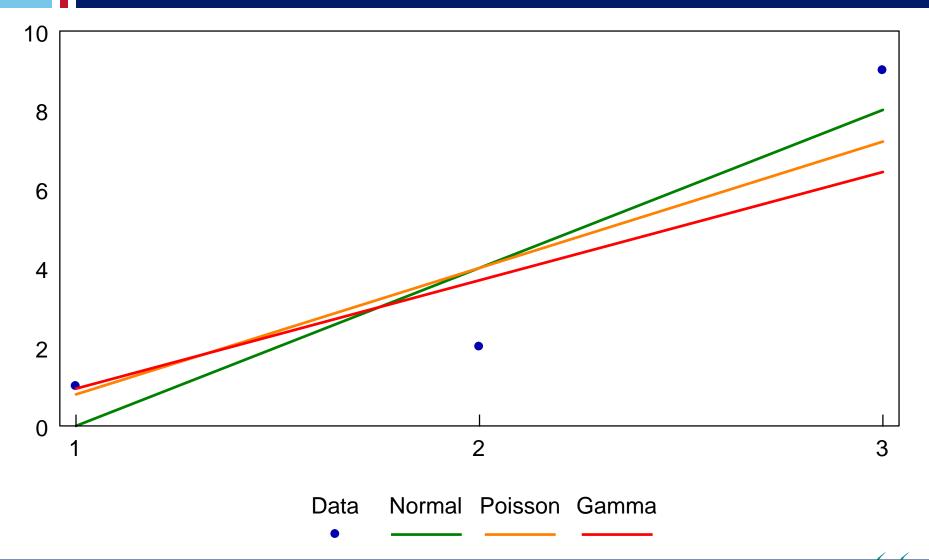
Normal:
$$\phi = \sigma^2$$
, $V(x) = 1 \Rightarrow Var[\underline{Y}] = \sigma^2.\underline{1}$

Poisson:
$$\phi = 1$$
, $V(x) = x \Rightarrow Var[\underline{Y}] = \underline{\mu}$

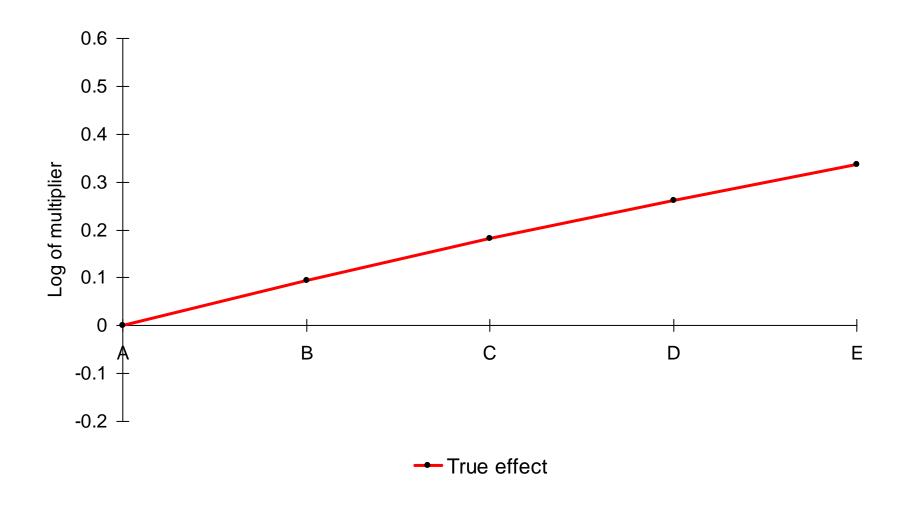
Gamma:
$$\phi = k$$
, $V(x) = x^2 \Rightarrow Var[\underline{Y}] = k\underline{\mu}^2$

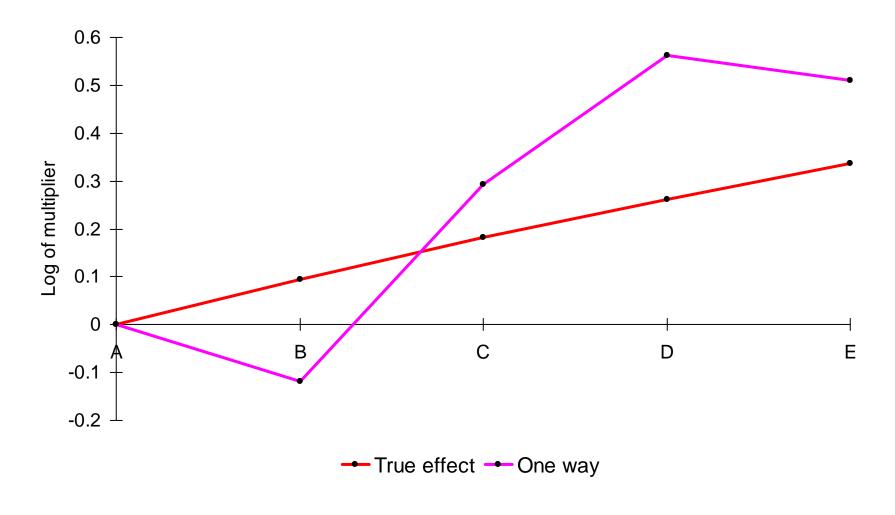




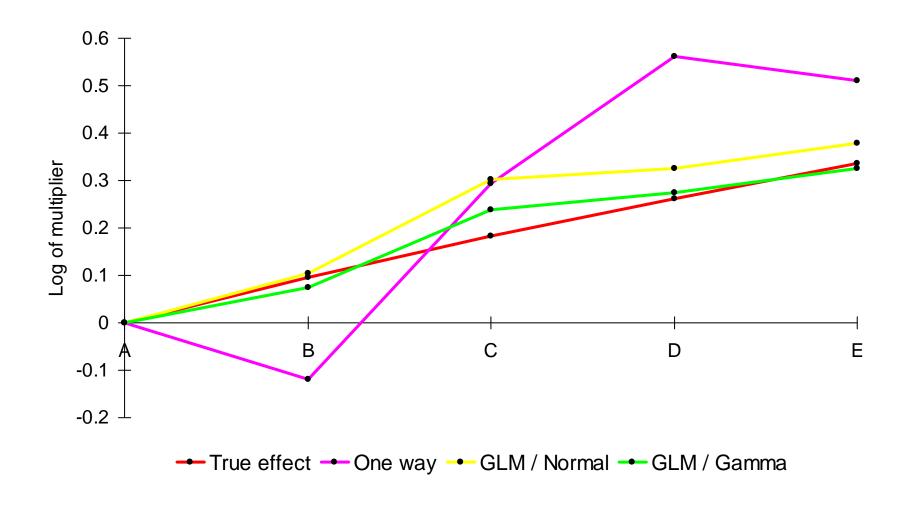


- Example portfolio with five rating factors, each with five levels A, B, C, D, E
- Typical correlations between those rating factors
- Assumed true effect of factors
- Claims randomly generated (with Gamma)
- Random experience analyzed by three models

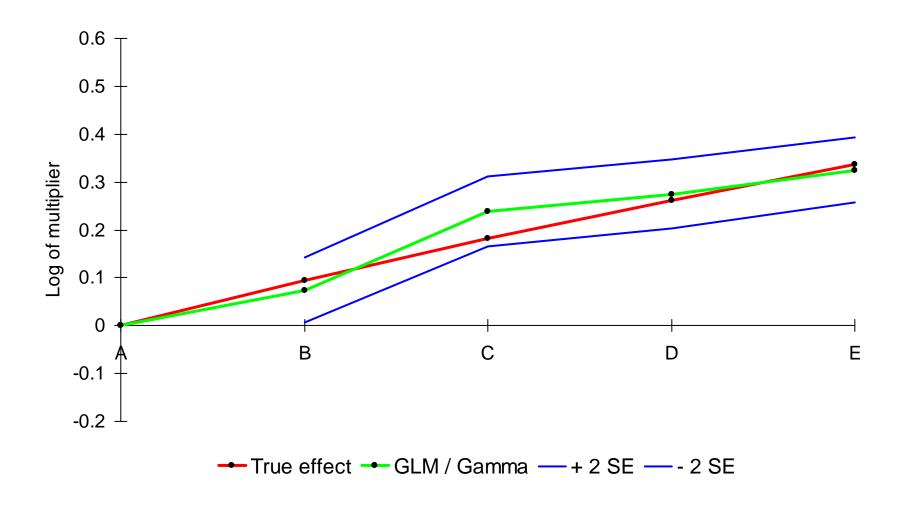




Example of effect of changing assumed error - 2



Example of effect of changing assumed error - 2



Prior weights

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

- Exposure
- Other credibility

Eg \underline{Y} = claim *frequency*

Smith: Male, 30, Ford, 1 years, 2 claims, 100%

Jones: Female, 40, VW, ½ year, 1 claim, 100%

Typical model forms

<u>Y</u>	Claim frequency	Claim number	Average claim amount	Probability (eg lapses)
g(x)	In(x)	ln(x)	In(x)	In(x/(1-x))
Error	Poisson	Poisson	Gamma	Binomial
φ V(x)	1 x	1 X	estimate x ²	1 x(1-x)
<u>w</u>	exposure	1	# claims	1
<u>\$</u>	0	In(exposure)	0	0

Tweedie distributions

- Incurred losses have a point mass at zero and then a continuous distribution
- Poisson and gamma not suited to this
- Tweedie distribution has point mass and parameters which can alter the shape to be like Poisson and gamma above zero

$$f_{Y}(y;\theta,\lambda,\alpha) = \sum_{n=1}^{\infty} \frac{\left\{ (\lambda\omega)^{1-\alpha} \kappa_{\alpha} (-1/y) \right\}^{n}}{\Gamma(-n\alpha)n! y} \cdot \exp\left\{ \lambda\omega [\theta_{0}y - \kappa_{\alpha}(\theta_{0})] \right\} \quad \text{for } y > 0$$

$$p(Y=0) = \exp\left\{ -\lambda\omega\kappa_{\alpha}(\theta_{0}) \right\}$$

Generalized linear models

$$Var[\underline{Y}] = \phi.V(\underline{\mu}) / \underline{\omega}$$

Normal: $\phi = \sigma^2$, $V(x) = 1 \Rightarrow Var[\underline{Y}] = \sigma^2.\underline{1}$

Poisson: $\phi = 1$, $V(x) = x \Rightarrow Var[\underline{Y}] = \underline{\mu}$

Gamma: $\phi = k$, $V(x) = x^2 \Rightarrow Var[\underline{Y}] = k\underline{\mu}^2$

Tweedie: $\phi = k$, $V(x) = x^p \Rightarrow Var[\underline{Y}] = k\underline{\mu}^p$

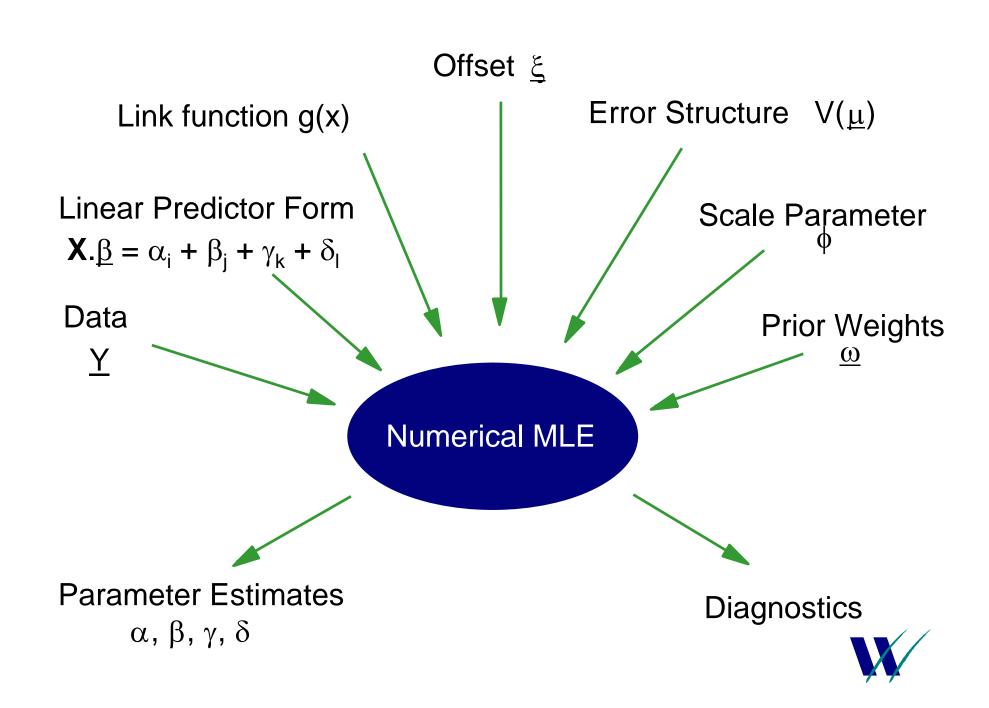
Tweedie distributions

Tweedie:
$$\phi = k$$
, $V(x) = x^p \Rightarrow Var[\underline{Y}] = k\underline{\mu}^p$

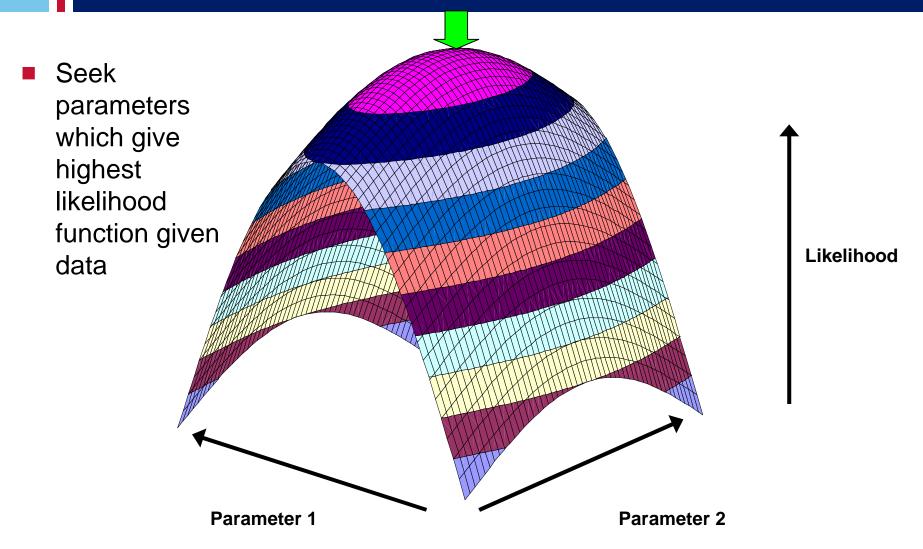
- Defines a valid distribution for p<0, 1<p<2, p>2
- Can be considered as Poisson/gamma process for 1<p<2</p>
- Typical values of p for insurance incurred claims around, or just under, 1.5

Tweedie distributions

- Helpful when important to fit to pure premium
- Often similar results to traditional approach but differences may occur if numbers and amounts models have effects which are both large and insignificant
- No information about whether frequencies or amounts are driving result

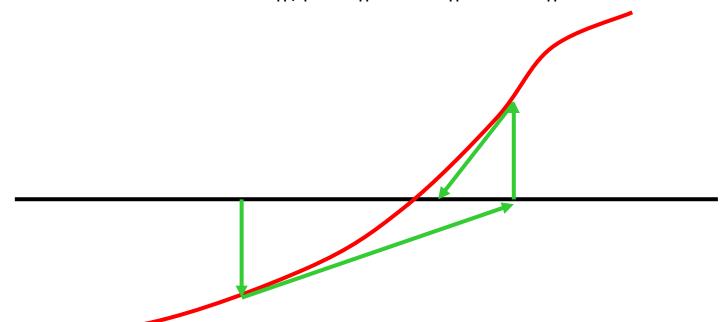


Maximum likelihood estimation



Newton-Raphson

In one dimension: $x_{n+1} = x_n - f'(x_n) / f''(x_n)$



■ In n dimensions: $\underline{\beta}_{n+1} = \underline{\beta}_n - \mathbf{H}^{-1} \cdot \underline{\mathbf{s}}$

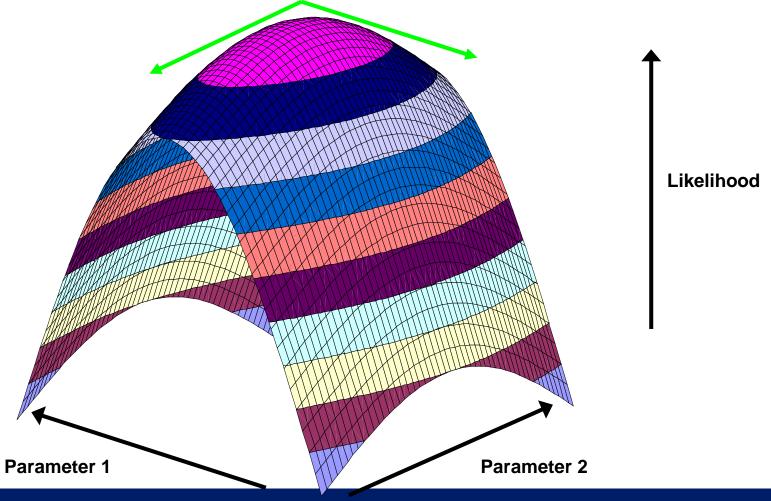
where $\underline{\beta}$ is the vector of the parameter estimates (with p elements), \underline{s} is the vector of the first derivatives of the log-likelihood and \mathbf{H} is the (p^*p) matrix containing the second derivatives of the log-likelihood

Agenda

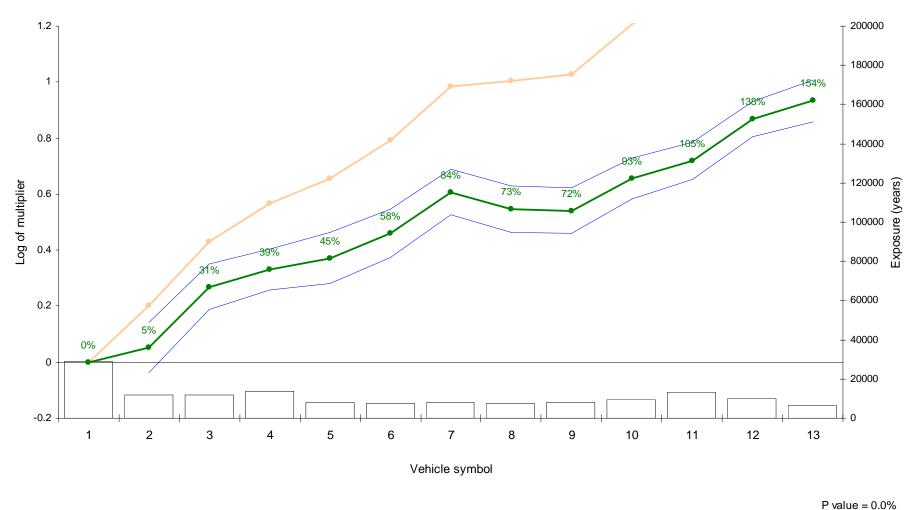
- GLM formulae
- Model testing
 - use only variables that are predictive
 - make sure model is reasonable
- Aliasing
- Model refinements

Standard errors

■ Roughly speaking, for a parameter p: $SE = -1 / (\partial^2 / \partial p^2)$ Likelihood)

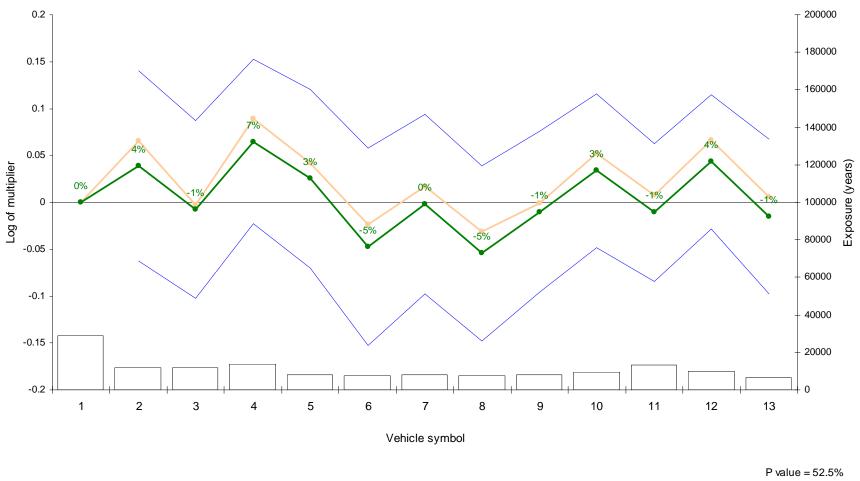


GLM output (significant factor)



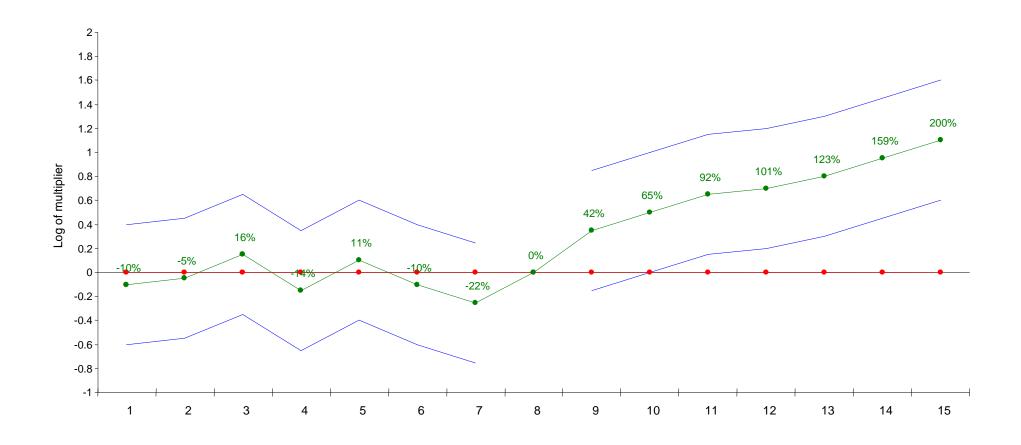
Approx 95% confidence interval — Parameter estimate

GLM output (insignificant factor)



Approx 95% confidence interval —— Parameter estimate

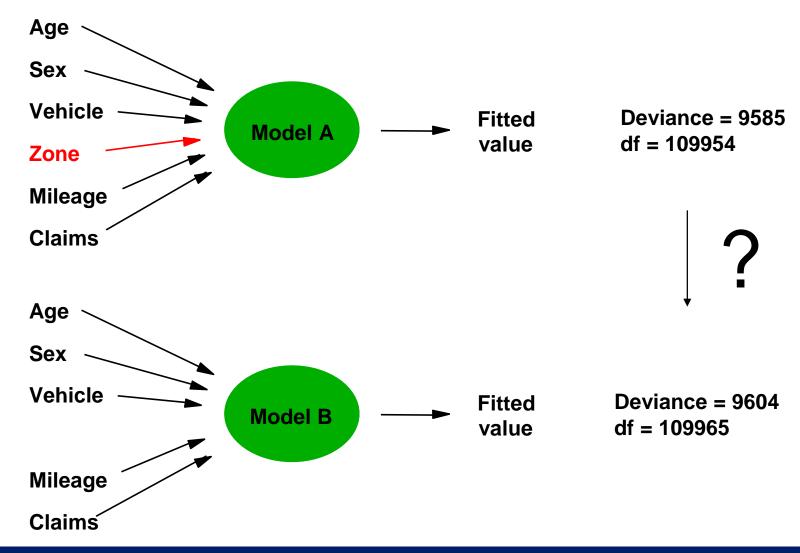
Awkward cases



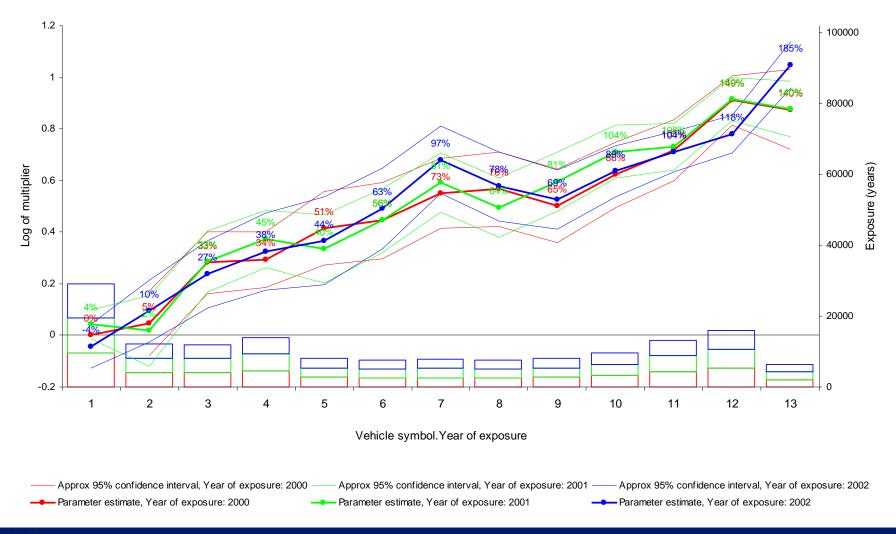
Deviances

- Single figure measure of goodness of fit
- Try model with & without a factor
- Statistical tests show the theoretical significance given the extra parameters

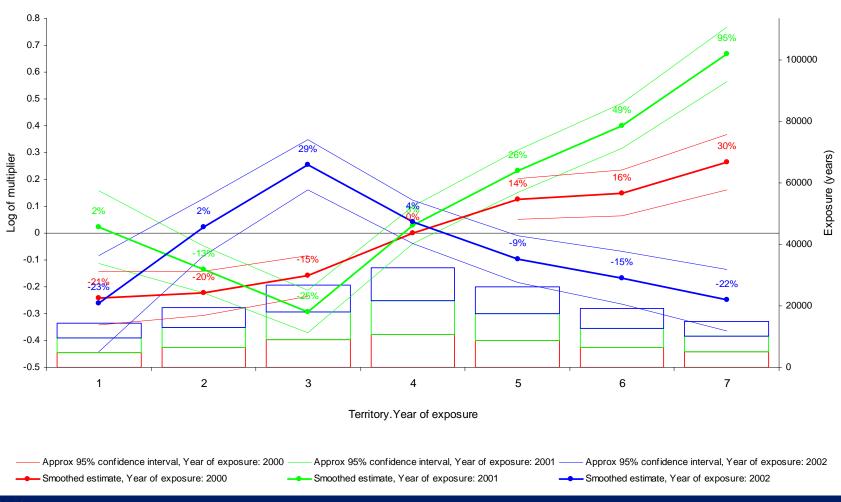
Deviances

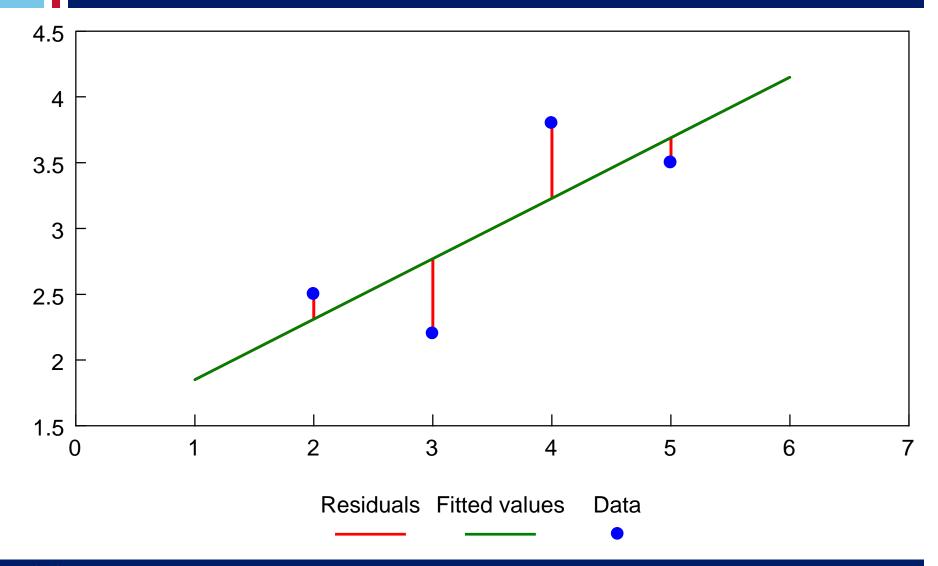


Consistency over time



Consistency over time





- Several forms, eg
 - standardized deviance

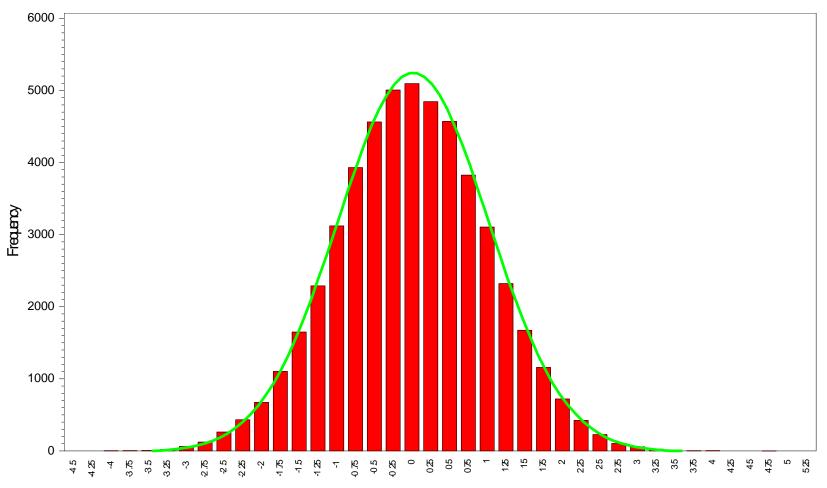
sign
$$(Y_u - \mu_u) / (\phi (1 - h_u))^{\frac{1}{2}} \int_{\mu_u}^{Y_u} (Y_u - \zeta) / V(\zeta) d\zeta$$

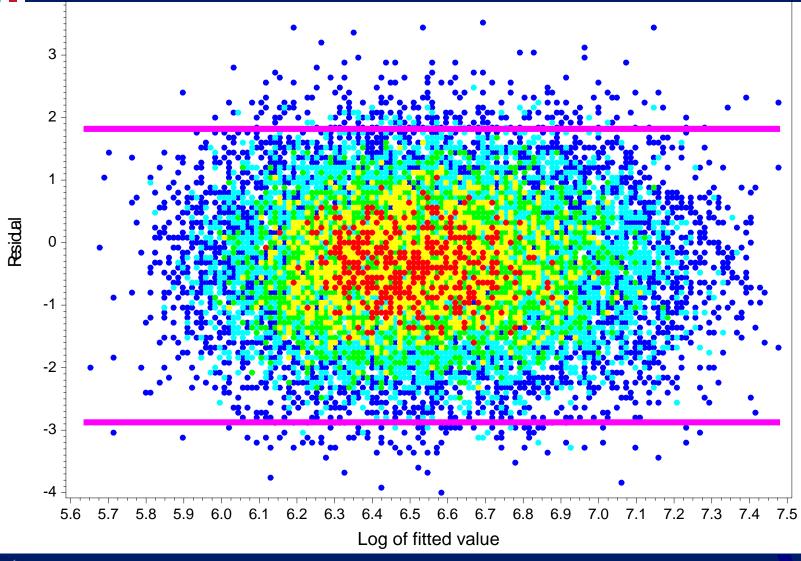
standardized Pearson

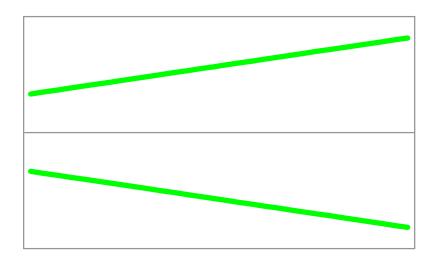
$$\frac{Y_u - \mu_u}{(\phi.V(\mu_u).(1-h_u) / \omega_u)^{\frac{1}{2}}}$$

- Standardized deviance Normal (0,1)
- Numbers/frequency residuals problematical

Histogram of Deviance Residuals Run 12 (Final models with analysis) Model 8 (AD amounts)

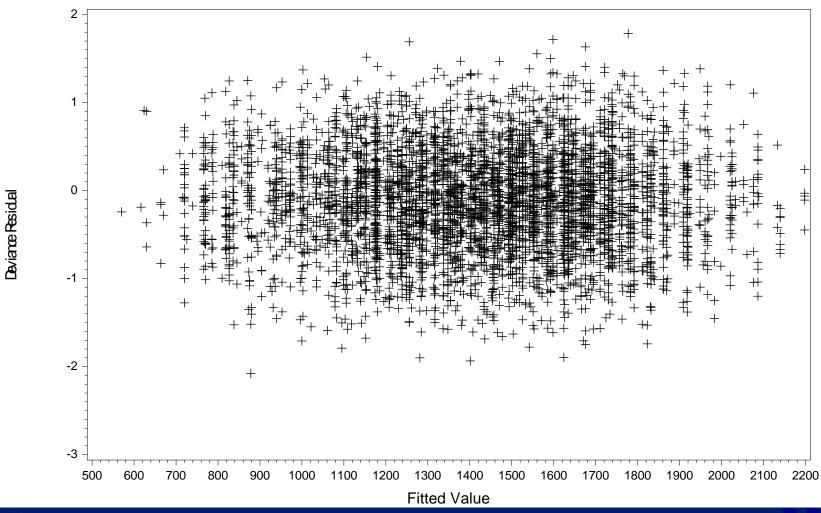






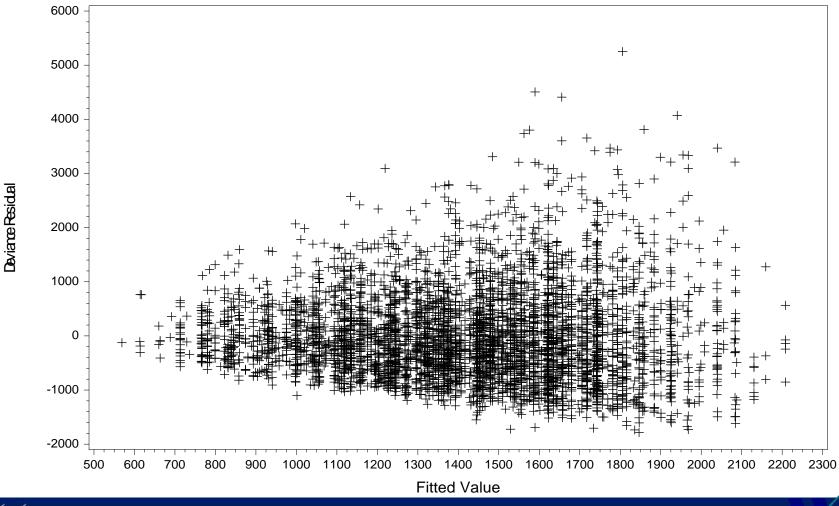
Gamma data, Gamma error

Plot of deviance residual against fitted value Run 12 (All claim types, final models, N&A) Model 6 (Own damage, Amounts)



Gamma data, Normal error

Plot of deviance residual against fitted value Run 12 (All claim types, final models, N&A) Model 7 (Own damage, Amounts)



Agenda

- GLM formulae
- Model testing
 - use only variables that are predictive
 - make sure model is reasonable
- Aliasing
- Model refinements

Aliasing and "near aliasing"

- Aliasing
 - the removal of unwanted redundant parameters
- Intrinsic aliasing
 - occurs by the design of the model
- Extrinsic aliasing
 - occurs "accidentally" as a result of the data

Intrinsic aliasing

$$\mathbf{X}.\underline{\beta} = \alpha + \beta_1$$
 if age 20 - 29

+
$$\beta_3$$
 if age 40 +

"Base levels"

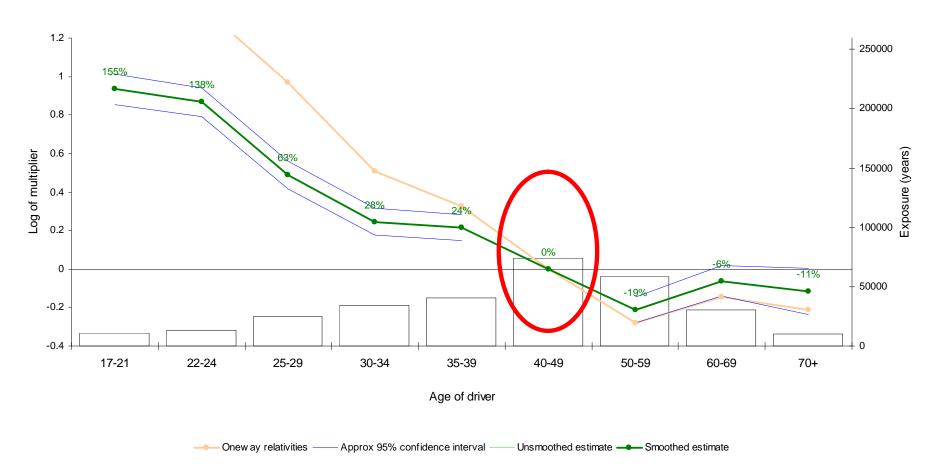
+
$$\gamma$$
 if sex male

+
$$\gamma_2$$
 if sex female

Intrinsic aliasing

Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers



Extrinsic aliasing

If a perfect correlation exists, one factor can alias levels of another

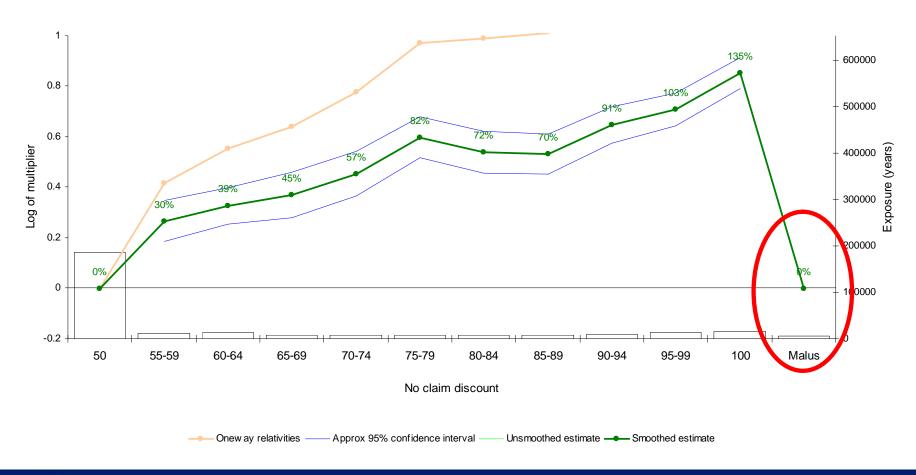
Eg if doors declared first:				Selected ba	se	
•	e: #Doo olor↓	ors \rightarrow 2	3	4	5 U	nknown
Selected base	Red	13,234	12,343	13,432	13,432	0
	Green	4,543	4,543	13,243	2,345	0
	Blue	6,544	5,443	15,654	4,565	0
	Black	4,643	1,235	14,565	4,545	0
Further aliasing Ur	nknown	0	0	0	0	3,242

 This is the only reason the order of declaration can matter (fitted values are unaffected)

Extrinsic aliasing

Example job

Run 16 Model 3 - Small interaction - Third party material damage, Numbers



"Near aliasing"

If two factors are almost perfectly aliased, convergence problems can result as a result of low exposures and/or results can become hard to interpret

•			Selected bas	se	
Exposure: # Doo Color ↓	ors→ 2	3	4	5 U	nknown
Selected base Red	13,234	12,343	13,432	13,432	0
Green	4,543	4,543	13,243	2,345	0
Blue	6,544	5,443	15,654	4,565	0
Black	4,643	1,235	14,565	4,545	2
Unknown	0	0	0	0	3,242

Eg if the 2 black, unknown doors policies had no claims, GLM would try to estimate a very large negative number for unknown doors, and a very large positive number for unknown color

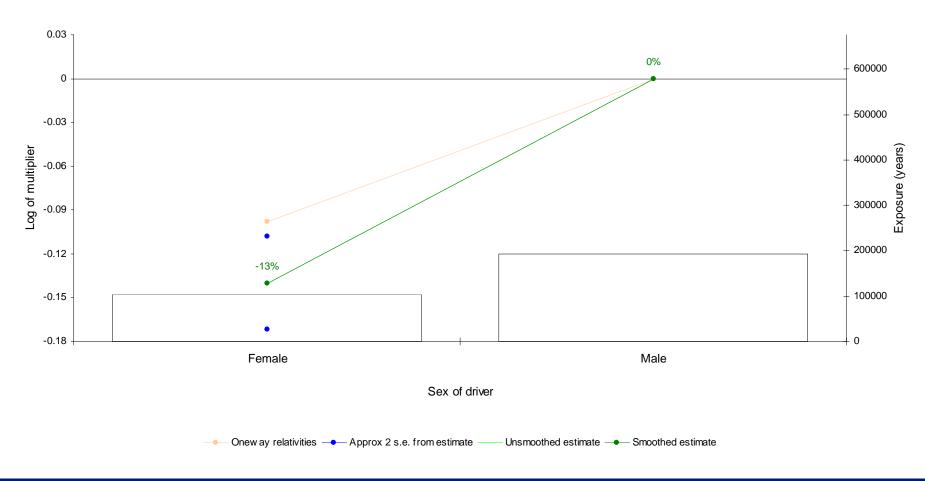
Agenda

- GLM formulae
- Model testing
 - use only variables that are predictive
 - make sure model is reasonable
- Aliasing
- Model refinements
 - Interactions
 - Splines
 - Restrictions

Interactions

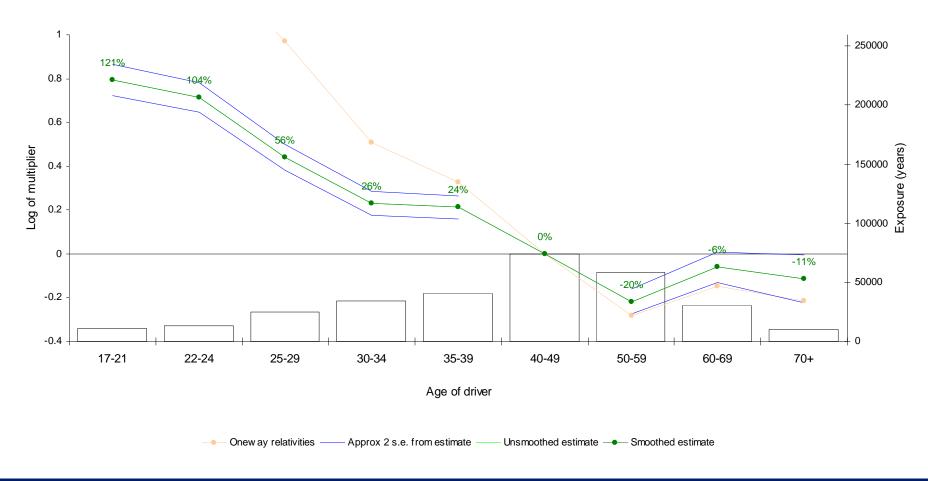
Sample job

Run 23 Model 3 - Small interaction - Blah blah



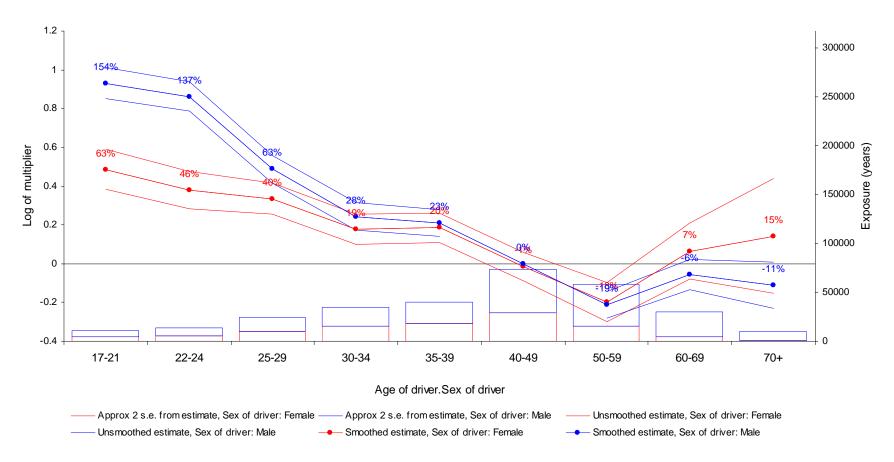
Sample job

Run 23 Model 3 - No interaction



Sample job

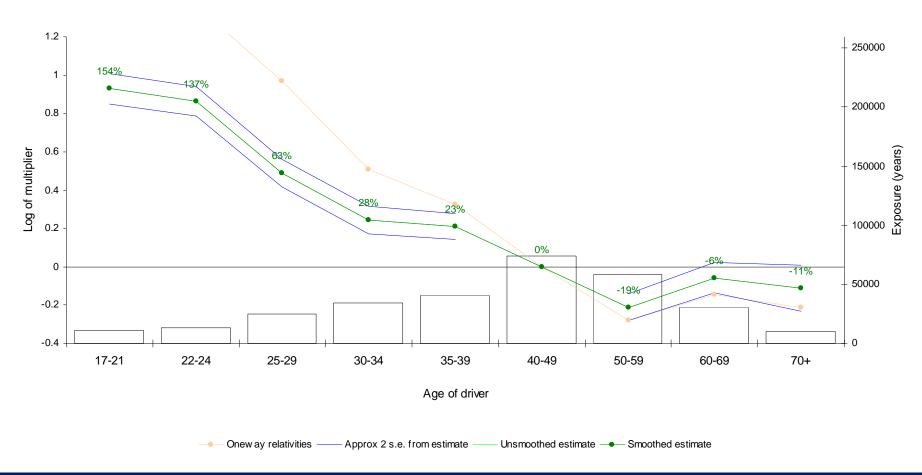
Run 19 Model 3 - Small interaction - Blah blah



Marginal interaction: Age effect

Sample job

Run 19 Model 3 - Small interaction



Marginal interaction:

Age.Sex (ie additional female multipliers)

No additional loadings required for males - already Run 19 Model 3 - Small interaction made via simple age factor 0.3 29% 300000 0.2 13% 250000 0.1 0% 0% 0% 0% -9% -3% 200000 (xears) Log of multiplier -14% 150000 Additional multipliers for females -0.3 100000 -0.4 50000 -0.5 -0.6 17-21 22-24 25-29 30-34 70+ 35-39 40-49 50-59 60-69 Age of driver. Sex of driver - Unsmoothed estimate, Sex of driver: Male Approx 2 s.e. from estimate, Sex of driver: Female Unsmoothed estimate, Sex of driver: Female - Smoothed estimate, Sex of driver: Female Smoothed estimate, Sex of driver: Male

Group >	1	2	3	4	5	6	7	8	9	10	11	12	13
Age v													
17	1.36	1.64	1.79	2.09	2.27	2.42	2.56	2.65	3.27	3.71	4.08	4.36	4.84
18	1.12	1.31	1.47	1.76	1.84	2.00	2.11	2.19	2.43	2.97	3.29	3.55	3.90
19	1.08	1.30	1.46	1.63	1.82	1.91	2.02	2.11	2.53	2.88	3.30	3.35	3.63
20	0.98	1.18	1.36	1.54	1.68	1.79	1.83	1.97	2.19	2.66	3.02	3.20	3.38
21-23	0.96	1.13	1.24	1.51	1.65	1.64	1.80	1.85	2.04	2.26	2.55	2.53	2.89
24-26	0.82	0.99	1.10	1.31	1.43	1.52	1.51	1.64	1.81	1.93	2.13	2.22	2.47
27-30	0.78	0.90	1.07	1.19	1.32	1.39	1.41	1.51	1.65	1.77	1.91	2.01	2.24
31-35	0.63	0.78	0.86	0.99	1.09	1.17	1.22	1.32	1.42	1.54	1.66	1.71	1.88
36-40	0.55	0.64	0.71	0.85	0.91	0.93	0.99	1.07	1.18	1.29	1.40	1.41	1.53
41-45	0.51	0.61	0.66	0.79	0.88	0.88	0.94	0.99	1.09	1.15	1.29	1.31	1.42
46-50	0.46	0.55	0.61	0.70	0.76	0.81	0.84	0.92	1.02	1.07	1.12	1.18	1.31
51-60	0.40	0.49	0.56	0.64	0.68	0.71	0.78	0.82	0.90	0.99	1.02	1.12	1.20
60+	0.43	0.52	0.55	0.67	0.72	0.73	0.78	0.83	0.93	0.98	1.04	1.11	1.25

Group	1	2	3	4	5	6	7	8	9	10	11	12	13
Factor	0.54	0.65	0.73	0.85	0.92	0.96	1.00	1.08	1.19	1.26	1.36	1.43	1.56

Age	Factor
17	2.52
18	2.05
19	1.97
20	1.85
21-23	1.75
24-26	1.54
27-30	1.42
31-35	1.20
36-40	1.00
41-45	0.93
46-50	0.84
51-60	0.76
60+	0.78

1.00

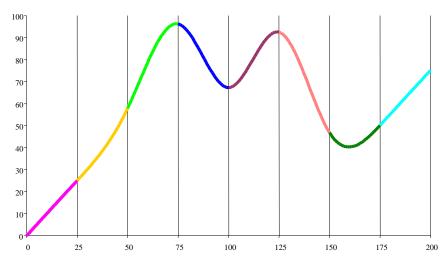
1.00

1.17

1.00

Spline definition

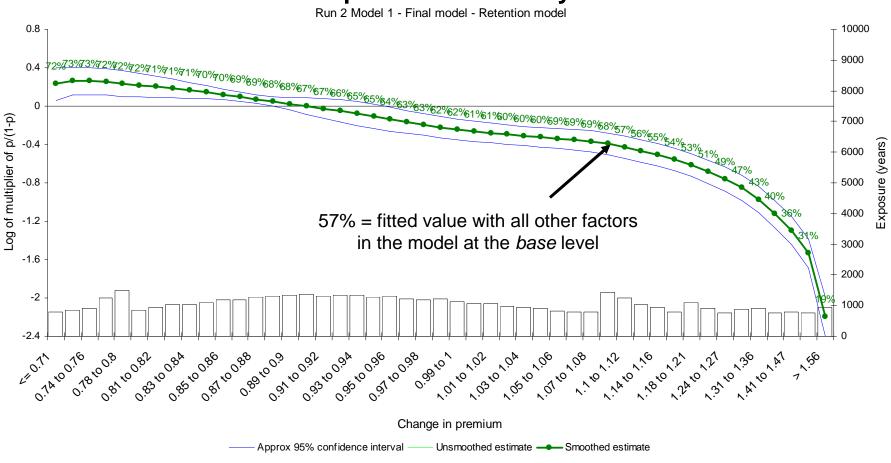
A series of polynomial functions, with each function defined over a short interval



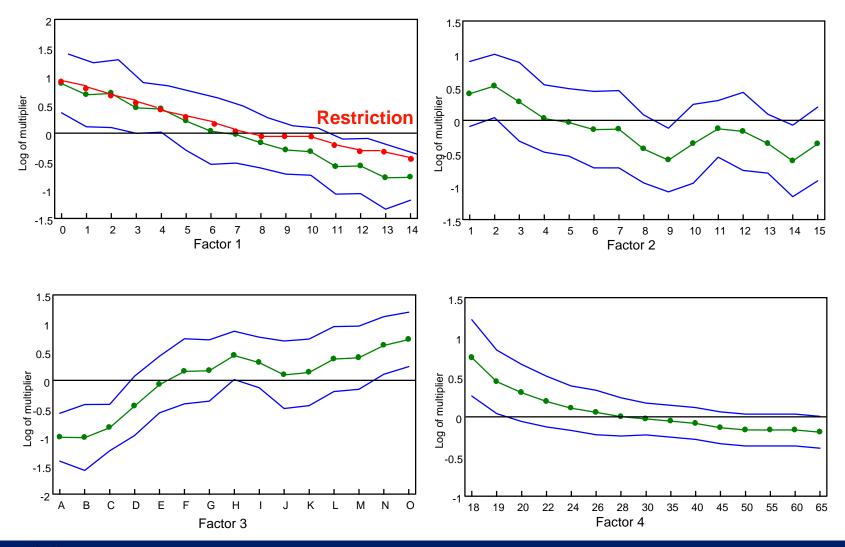
- Intervals are defined by k+2 knots
 - two exterior knots at extremes of data
 - variable number (k) of interior knots
- At each interior knot the two functions must join "smoothly"
- Regression splines are a form of generalized additive models

Example retention elasticity curve

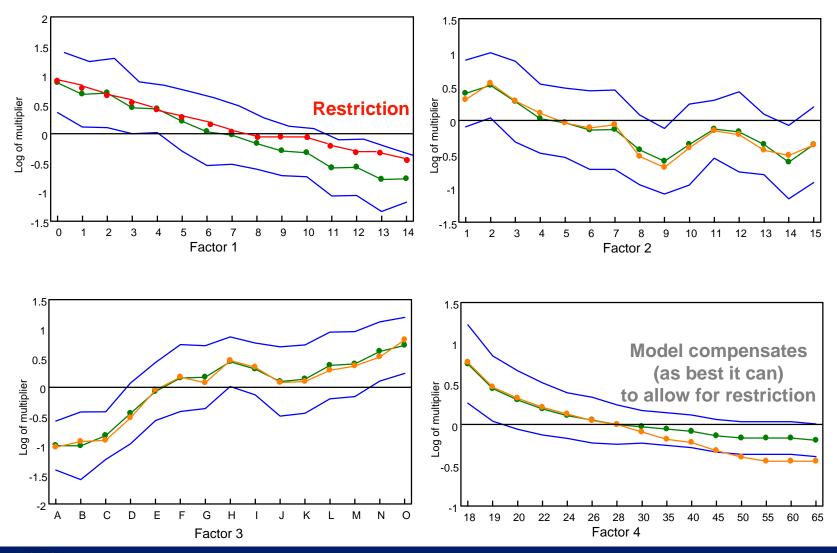
Example retention analysis



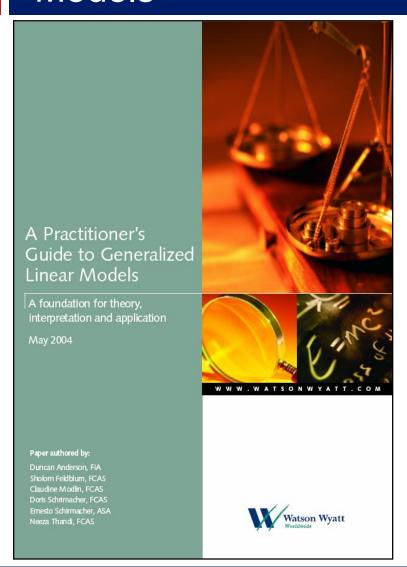
Restricted models



Restricted models



"A Practitioner's Guide to Generalized Linear Models"



- CAS 2004 Discussion Paper Program
- CAS Exam 9 syllabus as of 2006
- Copies available at www.watsonwyatt.com/glm

watsonwyatt.com

PM-2 An Introduction to GLM Theory

CAS Seminar on Ratemaking Boston, March 17, 2008

Claudine Modlin, FCAS, MAAA

