

watsonwyatt.com

CAS Ratemaking Seminar

Use of GLMs in Rate Filing

Gaétan Veilleux, FCAS March 17-18, 2008

Statement of Principals...

"A rate is reasonable and not excessive, inadequate, or unfairly discriminatory if it is an actuarially sound estimate of the expected value of all future costs associated with an individual risk transfer."

- CAS Statement of Principals Regarding Property & Casualty Insurance Ratemaking

- ASOP 9

Agenda

Defining your actuarial support

- Method
- Data
- Assumptions
- Model and variable structure
- Output
- Refinements
- Selections and impacts
- Sample exhibits
- Know the regulations

Method used

If you can't explain it, don't expect others to understand it.

- A generalized linear model (GLM) is ...
 - Layman's explanation
 - Statistician's explanation

$$\mathsf{E}[\mathsf{Y}_{\mathsf{i}}] = \mu_{\mathsf{i}} = \mathsf{g}^{-1}(\Sigma \mathsf{X}_{\mathsf{ij}}\beta_{\mathsf{j}} + \boldsymbol{\xi}_{\mathsf{i}})$$

 $Var[Y_i] = \phi V(\mu_i)/\omega_i$

- CAS syllabus "A Practitioner's Guide to Generalized Linear Models"
- Generalized Linear Models" by P. McCullagh and J. A. Nelder

4

Data used

Actuaries should be accustomed to explaining this

- -How much (e.g. exposure, claim counts)
- States, products, years
- Nature of explanatory variables
- Any data adjustments
- Data splits (e.g. hold-out samples for model validation)

Assumptions

Model assumptions

- Link function
 - log = multiplicative
 - Identity = additive
- Distribution assumptions
 - Tweedie for fitting models directly to loss costs
 - Frequency (Poisson)
 - Severity (gamma) models
 - Combining Freq and Sev results

Clearly define which variables are in your models and the structure of the model.

Equation format:

E[Loss Cost] = g^{-1} (α + β .Symbol + γ .Deductible + ...)

Table format:

<u>Variable</u>	<u>Frequency</u>	<u>Severity</u>	<u>Loss Cost</u>
Symbol	Yes	Yes	Yes
Variable 2	Yes	No	Yes
Variable 3			

Explain how specific variables are defined in your models.

- Continuous
- Categorical
- Interactions
- Offsets or restrictions

Output

- Explain clearly how to interpret output and any diagnostics used – (and in context of how you described method)
- Graphs work well
- Tables are more traditional
- Validation techniques (e.g. lift curves)

Commercial refinements

- Constrained parameter estimates for particular variable
- Grouping categorical levels (for credibility)
- Smoothed anomalous effects

Selections and impact

- Again not new! Just new framework and better tools
- How were selections made in consideration of:
 - Model results
 - Competitive analysis
 - Dislocation management
 - Other corporate objectives

Agenda

Defining your actuarial support

- Method
- Data
- Assumptions
- Model and variable structure
- Output
- Refinements
- Selections and impacts
- Sample exhibits
- Know the regulations

"Traditional" Regression

"Traditional" Regression

"Traditional" Regression

---- Onew ay relativities ----- Approx 95% confidence interval ----- Parameter estimate

16

Indicated Relativities

Vehicle	Relativity	Policy	Relativity
Group		Tenure	
1	0.5036	0	1.0000
2	0.5563	1	0.8835
3	0.6209	2	0.9115
4	0.6565	3	0.9150
5	0.6456	4	0.8493
6	0.7221	5	0.8137
7	0.8561	6	0.8185
8	0.9031	7	0.8275
9	0.9322	8	0.7685
10	1.0000	9	0.7675
11	1.0960	10	0.7338
12	1.1722	11	0.6775
13	1.2403	12	0.7313
14	1.3564	13	0.7401
15	1.4191	14	0.6252
16	1.5192	>= 15	0.6381
17	1.6640		
18	1.8287		
19	1.9933		
20	1.9517		

Gender	Relativity
Female	0.6997
Male	1.0000

Indications and Confidence Estimates

Vehicle	Lower	Indicated	Upper	Selected
Group	95% CI	Relativity	95% CI	Relativity
1	0.4373	0.5036	0.5800	
2	0.4913	0.5563	0.6298	
3	0.5559	0.6209	0.6936	
4	0.5926	0.6565	0.7272	
5	0.5856	0.6456	0.7118	
6	0.6609	0.7221	0.7890	
7	0.7898	0.8561	0.9280	
8	0.8362	0.9031	0.9754	
9	0.8657	0.9322	1.0037	
10	1.0000	1.0000	1.0000	
11	1.0223	1.0960	1.1750	
12	1.0936	1.1722	1.2565	
13	1.1571	1.2403	1.3295	
14	1.2648	1.3564	1.4546	
15	1.3214	1.4191	1.5240	
16	1.4114	1.5192	1.6353	
17	1.5428	1.6640	1.7948	
18	1.6903	1.8287	1.9783	
19	1.8347	1.9933	2.1655	
20	1.7767	1.9517	2.1441	

Policy	Lower	Indicated	Upper	Selected
Tenure	95% CI	Relativity	95% CI	Relativity
0	1.0000	1.0000	1.0000	
1	0.8401	0.8835	0.9291	
2	0.8646	0.9115	0.9609	
3	0.8652	0.9150	0.9677	
4	0.7995	0.8493	0.9022	
5	0.7622	0.8137	0.8687	
6	0.7651	0.8185	0.8756	
7	0.7716	0.8275	0.8874	
8	0.7142	0.7685	0.8270	
9	0.7135	0.7675	0.8256	
10	0.6793	0.7338	0.7927	
11	0.6244	0.6775	0.7350	
12	0.6752	0.7313	0.7920	
13	0.6800	0.7401	0.8054	
14	0.5721	0.6252	0.6831	
>= 15	0.5846	0.6381	0.6964	

Example job

Run 5 Model 3 - Small interaction - Third party material damage, Numbers

Indications and CI for an Interaction

Male				
Age	Lower 95% Cl	Relativity	Upper 95% CI	
17-21	2.2950	2.5500	2.8050	
22-24	2.1420	2.3800	2.6180	
25-29	1.4670	1.6300	1.7930	
30-34	1.1520	1.2800	1.4080	
35-39	1.1210	1.2400	1.3640	
40-49	1.0000	1.0000	1.0000	
50-59	0.8280	0.9200	1.0120	
60-69	0.8210	0.9400	1.0450	
70+	0.7650	0.8900	1.0310	

Female				
Age	Lower 95% Cl	Relativity	Upper 95% CI	
17-21	1.4670	1.6300	1.7930	
22-24	1.3140	1.4600	1.6060	
25-29	1.3050	1.4500	1.5950	
30-34	1.0710	1.1900	1.3090	
35-39	1.0800	1.2000	1.3200	
40-49	0.8820	0.9800	1.0780	
50-59	0.7380	0.8200	0.9020	
60-69	0.9400	1.0600	1.2420	
70+	0.9810	1.1300	1.3670	

Model validation

Lift curves

Comparing to current rate relativities

Demonstration job

Run 10 Model 2 - Third party material, standard risk premium run - Unsmoothed standard risk premium model

— Approx 2 SEs from unsmoothed estimate —— Unsmoothed unrestricted estimate 🛶 Unsmoothed restricted estimate 🛶 Current rating structure

Impact analysis

Example job

Agenda

Defining your actuarial support

- Method
- Data
- Assumptions
- Model and variable structure
- Output
- Refinements
- Selections and impacts
- Sample exhibits
- Know the regulations

Know the regulations!

- Are any variables banned?
- Confidentiality (What is required? Can you get it?)
- Minimum information
- Difference between rating & underwriting

Know the regulations!

- New vs renewal business implications
- DOI staff
- Process (Should we initiate a conversation before everything is finalized? Who on our team should be involved?)
- Strike a balance

Credit or Insurance Score

- Can I use it? How?
- Are there any restrictions as to how I can model it?
- New vs renewal business
- How is "multivariate model" defined? Does my comply?

- "Please provide a description of how GLM works."
- "Please clarify which rating elements were included in your multivariate analysis."
- "As stated before, such variables appear to be in violation of RCW 48.19.035(2)(a) and (d)."
- "Was the insurance score variable randomly assigned to the individual risks for the multivariate analysis? If so, we do not see why we should accept the results of the multivariate analysis. If not, we do not see why these rating elements were assigned randomly in determining your base rates."

Statement of Principals...

"A rate is reasonable and not excessive, inadequate, or unfairly discriminatory if it is an actuarially sound estimate of the expected value of all future costs associated with an individual risk transfer."

- CAS Statement of Principals Regarding Property & Casualty Insurance Ratemaking

- ASOP 9

watsonwyatt.com

CAS Ratemaking Seminar

Use of GLM in Rate Filing

Gaétan Veilleux, FCAS March 17-18, 2008

