The New NCCI Hazard Groups

Greg Engl, PhD, FCAS, MAAA National Council on Compensation Insurance

CAS Reinsurance Seminar June, 2006 Workers Compensation Session

Agenda

History of previous work

Impact of remapping

Methodology employed

Current Hazard Groups

HG	Number of Classes	Standard Premium	% of Total Premium
I	38	1,262,958,374	0.86%
II	428	67,150,463,296	45.58%
ш	318	75,288,994,325	51.10%
IV	86	3,623,213,832	2.46%
Total	870	147,325,629,827	100.00%

Assigning Classes to HGs

Prior NCCI Method

California Approach

ELF Based Method

Prior NCCI Method

Hazardousness

"Excess loss potential"

Hazardousness Variables

For each state, the following seven quantities were measured by class and expressed as ratios to the corresponding statewide value:

- Claim Frequency
- Indemnity Pure Premium
- Indemnity Severity
- Medical Pure Premium
- Medical Severity
- Total Pure Premium
- Serious Severity (including Medical)

California Methodology

Group classes with similar loss distributions together

Need to precisely define 'similar'

Crossover

Excess Loss Factors

Loss	Hazard Group		
<u>Limit</u>	<u>O</u>	<u>P</u>	
25,000	0.643	0.660	
600,000	0.098	0.082	

[©] Copyright 2006 National Council on Compensation Insurance, Inc. All rights reserved.

⁹

[©] Copyright 2006 National Council on Compensation Insurance, Inc. All rights reserved.

HG Remapping Rationale

What are HGs used for?

Determining ELFs

Kentucky 9/1/04 Filing

Excess Loss Pure Premium Factors

(Applicable to New and Renewal Policies)

Per Accident		Hazard Groups			
Limitation	<u> </u>	II	III	IV	
\$25,000	0.701	0.727	0.813	0.865	
\$30,000	0.675	0.703	0.794	0.850*	
\$35,000	0.651	0.682	0.777	0.837	
\$40,000	0.630	0.662	0.761	0.824*	
\$50,000	0.593	0.628	0.732	0.802*	
\$75,000	0.521	0.561	0.674	0.754	
\$100,000	0.466	0.509	0.628	0.714*	
\$125,000	0.422	0.466	0.589	0.680	
\$150,000	0.386	0.430	0.555	0.650	
\$175,000	0.355	0.399	0.525	0.623	
\$200,000	0.328	0.373	0.498	0.598	
\$250,000	0.285	0.329	0.452	0.555	
\$300,000	0.251	0.294	0.413	0.517	
\$500,000	0.167	0.205	0.308	0.406	
\$1,000,000	0.088	0.117	0.188	0.262	
\$2,000,000	0.045	0.064	0.108	0.155	
\$5,000,000	0.020	0.032	0.053	0.075	

* Also applicable to Underground Coal Mine classifications.

© Copyright 2006 National Council on Compensation Insurance, Inc. All rights reserved.

HG Remapping Approach

- Makes sense to sort classes by ELF vectors
- Class ELF vectors approximated by HG ELF vectors
- ELF curves characterize loss distribution

Excess Ratio Calculations

$$R(A) = \sum w_i R_i (A/\mu_i)$$

 R_i = excess ratio function for injury type *i*

$$w_i = L_i / \sum L_i$$

 $L_i = \text{injury type } i \text{ losses}$ $\mu_i = \text{mean injury type } i \text{ loss}$

HG Remapping Basic Data

For each class code, c, we have a vector of ELFs:

$$x_c = (x_{25K}^c, x_{30K}^c, \dots, x_{5M}^c)$$

 Credibility weight with current HG ELF vector

Current Hazard Groups

Current Hazard Groups

New 4 Hazard Groups Preliminary Mapping

New 4 Hazard Groups Preliminary Mapping

4 Hazard Group Comparison Number of Classes per Hazard Group

* Preliminary

New Mapping*

Current Mapping

Hierarchical Collapsing of New Mapping

Number of Classes per HG

Percent of Premium per HG

New Hazard Groups

Preliminary Mapping

New Hazard Groups

Preliminary Mapping

Percent of Premium Moved Current Mapping to New 4 Hazard Groups (Based on Preliminary New Mapping)

* Number above bar represents the number of classes in each category.

Movement of Classes Based on Preliminary New Mapping

Current Mapping

Hazard Group	I	П	Ш	IV	Total
Number of Classes	38	428	318	86	870
% Premium	0.9%	45.6%	51.1%	2.5%	100%
Hazard Group					
1	38	255	3	0	296
	0.9%	25.4%	0.5%	0.0%	26.7%
2	0	164	41	0	205
	0.0%	19.6%	11.8%	0.0%	31.4%
3	0	9	268	4	281
	0.0%	0.6%	36.3%	0.2%	37.1%
4	0	0	6	82	88
	0.0%	0.0%	2.6%	2.2%	4 8%

© Copyright 2006 National Council on Compensation Insurance, Inc. All rights reserved.

New Mapping

Number of Hazard Groups Calinski and Harabasz

Number of Hazard Groups Cubic Clustering Criterion

Number of Hazard Groups

Calinski and Harabasz

Number of HGs	All Classes	50% Credibility Classes	Full Credibility Classes
4	2317	793	433
5	3310	759	393
6	3213	705	450
7	3442	1025	638
8	3297	958	620
9	3102	915	584

Cubic Clustering Criterion

Number of HGs	All Classes	50% Credibility Classes	Full Credibility Classes
4	89	51	37
5	110	50	34
6	108	48	36
7	112	59	42
8	111	57	41
9	125	56	40

Three Key Ideas

- Map based on ELFs
- Compute ELFs by class
- Cluster Analysis

HG Remapping Objective

Break C = set of all class codes, into Hazard Groups:

 $C = \bigcup_i HG_i$

HG Remapping Basic Data

For each class code, *c*, we have a vector of ELFs:

$$x_c = (x_{25K}^c, x_{30K}^c, \dots, x_{5M}^c)$$

Using Hazard Groups

•
$$\overline{x}_i = \frac{1}{|HG_i|} \sum_{c \in HG_i} x_c$$
 (HG mean)

- approx x_c by \overline{x}_i for $c \in HG_i$
- Want x_c as close as possible to \overline{x}_i

HG Remapping Method k-means

Splits classes into HGs to minimize

$$\sum_{i=1}^{k} \sum_{c \in HG_i} \left\| x_c - \overline{x}_i \right\|^2$$

• % of total variance explained

Analogous to an R-squared

• k-means maximizes this

R-squared

- Want well separated, homogeneous HGs
- Minimize within variance
- Maximize between variance

Between variance vs. within variance

- Have one variance for each variable (ELFs at different attachment points)
- Need to consider variance-covariance matrices

Dispersion matrix of whole data set is given by

$$T = \sum_{c} (x_{c} - \overline{x})^{T} (x_{c} - \overline{x})$$

Dispersion Matrix

$$T = (n-1) \begin{bmatrix} \hat{\sigma}_{11} & \hat{\sigma}_{12} & \hat{\sigma}_{13} & \hat{\sigma}_{14} & \hat{\sigma}_{15} \\ \hat{\sigma}_{21} & \hat{\sigma}_{22} & \hat{\sigma}_{23} & \hat{\sigma}_{24} & \hat{\sigma}_{25} \\ \hat{\sigma}_{31} & \hat{\sigma}_{32} & \hat{\sigma}_{33} & \hat{\sigma}_{34} & \hat{\sigma}_{35} \\ \hat{\sigma}_{41} & \hat{\sigma}_{42} & \hat{\sigma}_{43} & \hat{\sigma}_{44} & \hat{\sigma}_{45} \\ \hat{\sigma}_{51} & \hat{\sigma}_{52} & \hat{\sigma}_{53} & \hat{\sigma}_{54} & \hat{\sigma}_{55} \end{bmatrix}$$

Dispersion matrix of HG_i is given by

$$W_i = \sum_{c \in HG_i} (x_c - \overline{x}_i)^T (x_c - \overline{x}_i)$$

• If we let
$$B_i = |HG_i|(\overline{x}_i - \overline{x})^T(\overline{x}_i - \overline{x})$$

Then

$$\sum_{c \in HG_i} (x_c - \overline{x})^T (x_c - \overline{x}) = B_i + W_i$$

- Pooled within group dispersion matrix $W = \sum_{i=1}^{k} W_i$
- Weighted between group dispersion matrix

$$B = \sum_{i=1}^{k} B_i$$

Between variance vs. within variance

• T = B + W

k-means minimizes trace W

Credibility

Compute class ELFs

Assign a credibility to each class

Use current HG as complement

History

- Hazard Groups were last remapped in 1993
- Prior to that, Hazard Groups were remapped in 1981
- Same credibility method used both times

Pseudo-Bühlmann

$$z = \min\left(\frac{n}{n+k} \times 1.5, 1\right)$$

where

n = number of claims

$$k = \overline{n}$$

Pseudo-Bühlmann

- A class with the average number of claims gets 75% credibility.
- Classes with twice the average number of claims get full credibility.
- Based on n/n+k

Pseudo-Bühlmann Credibility

Pseudo-Bühlmann Credibility

Credibility Size Range	Claims per Year	Number of Classes	% Premium
$0\% \le Z < 10\%$	0-237	355	1.2%
$10\% \le Z < 20\%$	238-511	89	1.3%
$20\% \leq Z < 30\%$	512-831	61	1.6%
$30\% \le Z < 40\%$	832-1209	56	2.7%
$40\% \le Z < 50\%$	1210-1662	46	2.5%
$50\% \leq Z < 60\%$	1663-2216	34	2.5%
$60\% \le Z < 70\%$	2217-2909	46	4.8%
$70\% \le Z < 80\%$	2910-3800	35	4.3%
$80\% \le Z < 90\%$	3801-4987	29	4.0%
$90\% \le Z < 100\%$	4988-6650	18	3.2%
Z = 100%	≥ 6651	101	71.8%
Total		870	100.0%

Number of Classes by Claim Count

Number of Classes by Claim Count

Number of Classes by Claim Count

