

Agenda	Munich Re America Munich Re Groep
Preliminary Definitions	3
Exposure Rating Excess and Subscription Policies	5
Creating Collective Risk Models	10

A Proverb on Exposure Rating

In order to exposure rate a per-risk treaty,

you have to know what risks expose the treaty.

This means we need details on what is being covered

- Ideally splitting out by types of businesses (e.g., by occupancy)
- Challenges:
 - Large risks (excess and subscription policies)
 - Inland marine
 - Builders risk (construction projects)

Collective Risk Model -Hypothesis Testing

Munich Re America Munich Re Group

13

Hypothesis testing asks the question: "What is the probability that the results of the experience rating came from the curves in the exposure rating?"

- H₀: Experience came from this distribution
- H_A: Experience came from some other distribution

In classical statistics, this is represented by the tails of a Normal distribution.

Collective Risk Model – Credibility of Experience Rating		Munich Re A Munich Re G	nnenika irongo
Annual Claim Counts:	0.5	Poisson	
# Years in Experience:	10	1 0133011	
Experience Period Counts:	5	=0.5*10	
Laver Limit	5,000,000		
excess of	excess of		
Layer Attachment Point	5,000,000		
Pareto Shape Parameter:	1.4		
Conditional Severity	3,026,771	Pareto or	
Severity Standard Deviation	1,883,433	exposure rate	
Expected Loss in Experience Period	15,133,857	μ	
Standard Deviation	7,971,407	σ	
Coefficient of Variation	52.7%	σ/μ	
All numbers are for illustration only, and not for use in pricing.			1

Collective Risk Moo Credibility o	lel – f Experience Rating	Mensich Re America Mensich Re Orroup
To follow this example:		
Assume we have indicate	ations from experience and exposure r	atings.
Experience Rate	= 6.0% based on ten years of expen	rience
Exposure Rate	= 4.0%	
Could the 6.0% experie distributions in the e	ence rate have been produced random xposure rating were truly correct?	ly if the
If the CV=.527, then th deviation is (1.9%, 6 more reconciliation r	e exposure rate range plus or minus or .1%). We would "fail to reject" this null nay still be a good idea.	ne standard hypothesis, but

All numbers are for illustration only, and not for use in pricing.

Collective Risk Model – Credibility of Experience Rating

17

Having decomposed the loss cost into frequency and severity, we can review other statistics:

- Compare expected counts and average severity
- Compare "Survival Ratio" = % of losses completely exhausting the layer
- Probablility of having no losses in a given year

