Data and Disaster: The Role of Data in the Financial Crisis Louise Francis, FCAS, MAAA Francis Analytics and Actuarial Data Mining, Inc Seminar on Reinsurance May 2010 NY, NY

Motivation

- Explore role of data in the financial crisis
- Illustrate that data was available
 - Much of analysis is exploratory
 - Some data mining will be illustrated
- Could have detected problems
 - Due diligence could have uncovered fraud
 - Provide warning of deterioration on mortgage quality

Two Case Studies of Use of Data to Detect Problems

- Madoff Ponzi Scheme
- Mortgage Crisis

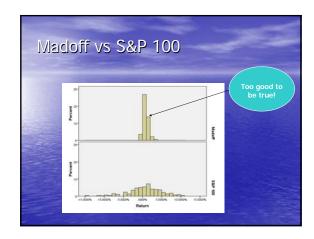
Madoff Ponzi Scheme Could his fraud have been detected? Should his data have been analyzed to verify that his returns were legitimate?

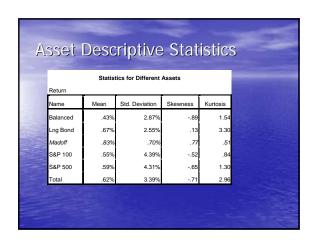
The data

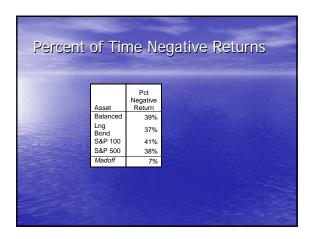
- 1991 through 2008 returns on a Madoff feeder fund
- Downloaded from internet Jan, 2009
- This analysis motivated by Markopolis testimony to congress

Two similar assets: S&P 500 and S&P 100

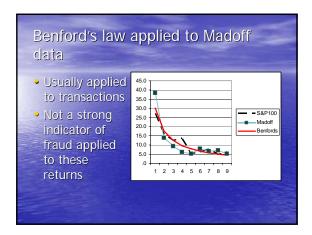
		•	











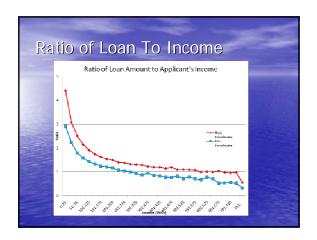
Madoff Case Study Conclusions

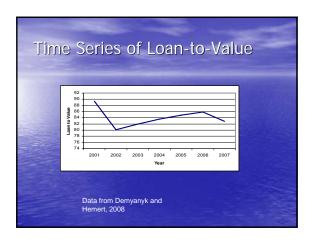
- Simple graphs and descriptive statistics could have detected the scheme
- Virtually all of them would have shown that the Madoff data deviates significantly from statistical patterns for similar assets

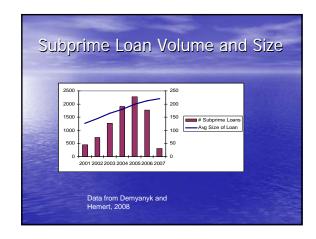
The Mortgage Crisis

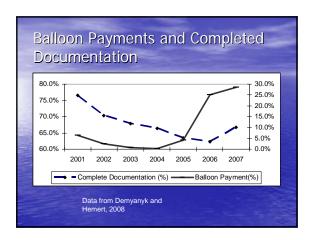
Could simple descriptive statistics
have predicted the meltdown?

ഥച	Descriptive Information from							
-								
\ to	for Florida							
1 10	TOT TOTICAL							
	Applicant_Inco							
		Loan_Amount_000s	me_000s	Ratespread				
	Valid	1773450	1773450	159203				
N	Missing	0	0	1614247				
Mean		206.52	114.20	5.0495				
Median		171.00	75.00	4.7400				
Skewness		18.549	16.011	.827				
Std. Error o	f Skewness	.002	.002	.006				
Kurtosis		1817.752	473.308	.775				
Std. Error o	f Kurtosis	.004	.004	.012				
Minimum		2	2	3.00				
Maximum		45500	9981	30.36				
	5	31.00	28.00	3.0800				
	10	50.00	35.00	3.1700				
	20	90.00	45.00	3.3800				
	30	120.00	54.00	3.6800				
	40	147.00	64.00	4.0900				
Percentiles	50	171.00	75.00	4.7400				
	60	198.00	88.00	5.4100				
	70	229.00	105.00	5.9800				
	80	275.00	136.00	6.5600				
	90	364.00	204.00	7.3600				
	95	468.00	300.00	8.0500				









Observations from HMDA

- HMDA indicates lower income applicants tend to have a higher loan to income ratio
- HMDA cross-state comparison indicates states with a foreclosure problem have consistently higher loan to income ratios compared to states not experiencing a foreclosure problem

Observations from Loan Portfolio Descriptive Statistics

- Subprime loans increased to unprecedented levels
- Loan to value increased
- Documentation decreased
- Balloon payments increased

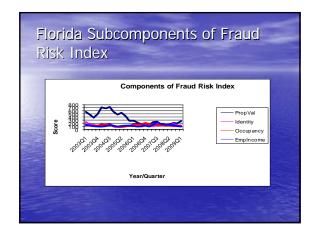
Mortgage Fraud Analysis

Can data and models be used to detect mortgage fraud?

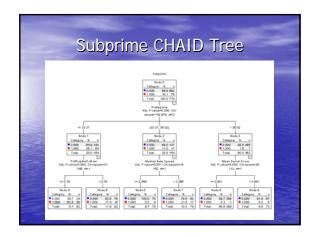
Interthinx Fraud Risk Index

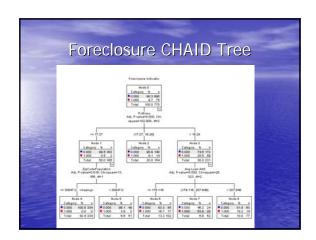
- Uses detailed transaction data from loan applications processed by Interthinx's FraudGUARD System
- Uses relevant external data
 Demographic, address data
 Combination of methods

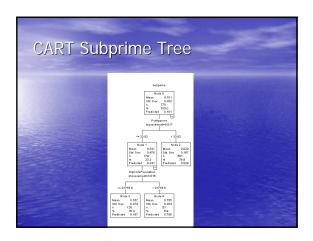
Subcomponents of Fraud Risk Index Property Value Is appraisal value accurate? Identity True identity of loan applicant? Is credit data accurate? Occupancy Is applicant misrepresenting intent to occupy home? Income Is income accurately stated?



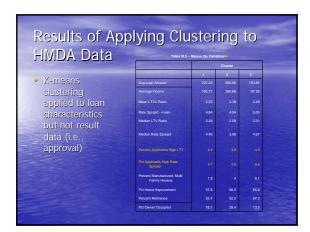
The Data HIMDA Data LISC ZIP Foreclosure Needs Score Subprime component Foreclosure component Disclosure component http://www.housingpolicy.org/foreclosure-response.html Zip Code Demographic Data

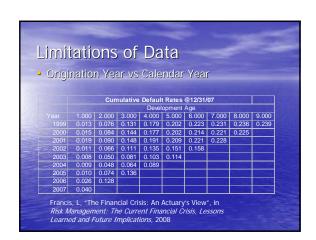






11 1 91 95199	ui e vai iai	ole Rank	
Independent Variable	Importance	Normalized Importance	
Denial Percent	.027	100.0%	
Mean Denial Score	.027	99.9%	
PctApprove	.024	88.5%	
ZipCodePopulation	.020	72.6%	
PctPropNot1-4Fam	.019	69.5%	
Median Rate Spread	.017	61.6%	
PInCom	.016	60.5%	
HouseholdsPerZipcode	.015	56.1%	
Mean LTV Ratio	.014	52.7%	





Data Limitations

- As a result calendar year default rates are usually primarily attributable to earlier origination years
- It is likely that the 2007 default rates are largely driven by conditions in earlier years
- This affects interpretation of tree results

Observations

- Approval/Denial rate was an important variable for foreclosure and subprime problems
 This may be a lagged effect. Low approval rates in 2007 reflect recognition of foreclosure problem originating in prior years when loose underwriting standards led to approval of risky and/or fraudulent loans

 | Providing and interest rate expendence additional property in the property of the property o
- Population and interest rate spread are additional important predictors of subprime problems
- Loan to income is an important predictor of foreclosures

Mortgage Credit Model Assumptions: Do Housing Prices Go Down? Evidence From US Housing Data 900 800 - 700 oil min willing - 300 of - 300 of - 300 oil min willing - 30 150 100 100 1900 1920 2000 2020

