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Conditional Aggregate Distribution (CAD) Method
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Collective Risk Model (CRM)

 Claim sizes are independent and identically distributed X(i)

 Claim counts N are independent from the X(i)

 Total claims Z=X(1) + … + X(N)

 EZ=EX EN
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 EZ EX EN

 VZ=VZ EN+VN (EX)2

Simulating the CRM

 Problem: When EN is large it can take a long time to simulate 
X(1),…,X(N)

 Common Solution: 

 Split claims sizes into large claim and small claims

 Simulate large counts NL and large claims sizes Y(k) with a CRM

Z Y(1) + Y(N
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— ZL=Y(1) + … Y(NL)

 Simulate total small claims in aggregate

 Small and Large might be left independent or correlated with a copula or 
other mechanism

Correlation of Small and Large Losses for CRM
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CRM Large and Small losses can be correlated
2.
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Large-Small Correlation 56.8%
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Conditional Aggregate Distribution (CADk) Algorithm

1. Simulate total counts N

2. Simulate large counts NL conditional on N

 NL~Binomial because N and X(k) are independent and the X(k) are iid.

 NS=N-NL

3. Simulate large sizes Y(1)…Y(NL)

F (x)=F (x)/(1 F()) ( is the threshold between large and small losses)
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 FY(x)=FX(x)/(1-F())  ( is the threshold between large and small losses)

 ZL =Y(1)+…+ Y(NL)

4. Simulate aggregate small losses conditional on NS

 Simulate an approximation to ZS|NS by drawing from a distribution that 
matches the first k moments of ZS|NS.

 Call this Z ̃S the CAD distribution

5. Deliver {Z̃S, ZL (Y(1),…, Y(NL)}

CAD Method approximates CRM nicely
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Summary of CAD Features

 Advantages of CADk –

 Fast, easy to program.

 Preserves first k moments and Pearson correlation (k>=2).

 Provides structural method for modeling dependence of small, large losses.

 Also, apparently converges.
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 That is, can observe that CAD provides good fits to ZS.

 Here, we assume severity distribution is fixed with distribution of N 
depending consistently on .

 Fits are good even for “middling” values of 

Convergence Theorem
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Mixed Poisson

 N is a mixed Poisson if N~Poisson(), where is a random parameter.

 Write =G, where EG=1 and VarG=c.

 Eg – Negative Binomial, G~Gamma[1/c,c]

 G is the mixing distribution, c the contagion parameter.

 If Z is a mixed Poisson CRM, then so are ZS, ZL, with same G.
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 (ZS ,ZL)=c/[(ZS)(ZL)],  =c.v.
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“Severity is Irrelevant” 

 Limiting behavior of a mixed Poisson CRM is controlled by the mixing 
distribution:

 Theorem (Mildenhall): If Z is a mixed Poisson CRM then Z/EZ→G as 
→∞.

 This is “weak convergence”, aka “convergence in distribution”  
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Convergence Theorem

 Significance to CAD method:  Suppose we use Gamma as the 
CAD-family ZS̃ approximating ZS. 

 Then Z̃S =Gamma[NSa,]=1,...N_S(Gamma[a,]), a, constants.

 This converges to G by Theorem (after normalizing by the mean, 
of course).

 Generalized Convergence Theorem: N mixed Poisson with
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 Generalized Convergence Theorem: N mixed Poisson with 
mixing dist G, Yn random variables s.t. EYn=nm, and Var(Yn)<=njs2

for 0<=j<2. Then YN_/(m)→G as →∞.

 YN_ is defined by YN_ |(N =n)= Yn. 

 Note: variance won’t converge for j>=2.

“Severity, CAD distribution are irrelevant”

 Example 1 – Yn=X1+…+Xn, Xi iid.  Then EYn=nEX, Var(Yn)=nVarX, and 
YN_ is CRM so get Mildenhall’s theorem.

 Example 2 – For CADk with k>=2, set Yn= Z̃S |NS=n.  Then Yn satisfies 
theorem with j=1, and YN_ = Z̃S, so Z̃S converges to G (as does ZS).

 Example 3 – Set Yn = Z̃S +ZL|(NS=n-B,NL=B), where B~Bin(n,q).  This 
shows that CADk converges in an overall sense for k>=1
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shows that CADk converges in an overall sense for k>=1.

 Even a CAD1 method will converge as long as the variance is under 
control (j<2).

 Convergence in evidence for moderately sized portfolios.
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Convergence Theorem

 Proof of Theorem:

 Can take m=1.  Must show that Lim →∞ Y_N_/(t)=G(t), where  is the 
characteristic function X(t) = EeitX.

 Bounded Convergence Theorem allows switching Lim and E·.

 Poisson characteristic function: e(e^it-2).
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 Expand  in Taylor series. 

 Fact (Durret): X(t)=1+itEX+E[X2]O(t2).

Convergence Theorem

 Last Line of Proof: 

LimY_N_/(t)=E[LimE[Y_n(t/G,NG=n]]

=LimE[ei(t/nG,NG=n]=LimE[eG(e^it-1)]

=LimE[eG(it/+O((t/)^2)]=LimE[eGit]=G(t).

 1st “=” is BCT, 2nd “=” is from earlier steps eliminating other terms with
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 1  is BCT, 2  is from earlier steps eliminating other terms with 
Durrett fact and j<2; 3rd is Poisson char. fcn.; 4th is Durrett fact applied 
to X=1.

Mixed Poisson
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More Mixed Poisson

 So, choice of mixing distribution G is important - Controls 
characteristics of Z (Z̃), ZS (Z̃S), and even ZL, to a lesser extent.

 Choices other than Gamma are allowable.

 Choice of G might reflect an assumption about skewness.

 Note, choosing Gamma is such an assumption (“skew-nu” ratio = 2).
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 Paper gives parameterizations for many possibilities:

 Usual suspects – Gamma, Lognormal (Uniform, Inverse Gaussian).

 High-Skew – Pareto, (shifted) Exponential.

 Discrete – Discrete Uniform, Poisson, Binomial

 Component and shifted versions

 Adding shift drives up skewness and effective minimum value.

CAD with Limited Information

 Generally, do not need full severity distribution to run CAD.

 Start with: EZ (EZS), (Z) ((ZS)), NL), severity distribution for ZL.

 Consistent choice of ,c is then enough to run a CAD2 model.

 That is, can derive formulas for E[ZS|NS], (ZS|NS) that do not involve 
small loss severity.
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 Consistent means you do not obtain a result like EXS>EXL.

CAD with Limited Information

 Derivation of Equations

 E[ZS|NS]=NSEXS=NSEZS/NS)=NS(EZ-EZL)/((1-q))  [q=(NL)/]

 (ZS|NS)=(XS)/sqrt(NS)=sqrt([(NS)(2(ZS)-c)-1]/NS)=…
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=sqrt([(1-q)[(EZ)2((Z)2-c)-(EZL)2((ZL)2-c)]-(EZ-EZL)2]/(NS(EZ-EZL)2)
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Reinsurance Example

 Loss Assumptions: 

 Large loss threshold  = $200k, max. loss = $1m, 

 EZ=$25m, (Z)=0.28, (NL)=21.5

 Empirical distribution for XL, =500, c=0.0625.

 Coverage on ZXoL=ZL- NL,, ZNet=ZS+ NL
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 Coverage

 Section 1 – Stop-Loss $25m xs $20m on ZNet+50%ZXoL.

 Section 2 – Coverage on remaining 50% of ZXoL.

 ZXoL limited to $12.5m per section.

 Premium = $10m of which $1.5m is R\I margin.

 Remainder to EA, PC = 100% of residual EA.

Reinsurance Example

 Used Igloo software to analyze cover with nine different assumptions 
for the mixing distribution G.

 Analysis based on full contract cash flows – premium at time 0, mid-tail 
type payout patterns, discount rate = 3%.

 Rich set of outputs – Summary and percentile statistics, for NPV(Loss), 
NPV(PC) NPV(Income) Prob(Negative NPV) ERD TVaR capital
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NPV(PC), NPV(Income), Prob(Negative NPV), ERD, TVaR capital, 
RoRAC return metric.

 Also, many charts.

 Conclusion:  Though results do not vary greatly, could be enough to 
produce different accept/reject decisions.  Uniform mixing distribution is 
somewhat of an outlier.

Multiple Lines of Business

 Mixed Poisson used for “common shock” correlation model.

 Here, mixing distributions are of the form Gi=G1[c1]G2,i[c2,i], where G1 is 
the common component and the G2,i are the line-specific components.

 Independent (“straight”) product with ci=c1+c2,i+c1c2,i.

 Can also use “twisted product”: Gi=G1[c1]G2,i[c2,i/G1] (Eg: ISO Risk 
L d N i Bi i l i h i k d l)
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Load Negative Binomial with parameter risk model).

 For twisted product ci=c1+c2,i.

 Each formulation results in correlations ij=c1/(ij).

 Multiline CAD with twisted product common shock – Can also impose 
correlation at CAD step.


