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Overview

« Conditional Aggregate Distribution (CAD) Method
» Convergence Theorem

« Mixed Poisson Distributions

Conditional Aggregate Distribution (CAD) Method
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Collective Risk Model (CRM)

« Claim sizes are independent and identically distributed X(i)
« Claim counts N are independent from the X(i)
« Total claims Z=X(1) + ... + X(N)

« EZ=EXEN
« VZ=VZ EN+VN (EX)?

Simulating the CRM

« Problem: When EN is large it can take a long time to simulate
X(1),...,.X(N)
+ Common Solution:
Split claims sizes into large claim and small claims
Simulate large counts N, and large claims sizes Y(k) with a CRM
— Z=Y(1) * YNy
Simulate total small claims in aggregate

Small and Large might be left independent or correlated with a copula or
other mechanism

Correlation of Small and Large Losses for CRM

(1l = @) E[XSE[X,](a*(N) = E[N])
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CRM Large and Small losses can be correlated
Large-Small Correlation 56.8%
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Conditional Aggregate Distribution (CAD,) Algorithm

1 Simulate total counts N

2. Simulate large counts N, conditional on N
N_~Binomial because N and X(k) are independent and the X(k) are iid.
Ng=N-N_

s Simulate large sizes Y(1)...Y(N,)
Fy(x)=Fx(x)/(1-F(t)) (tis the threshold between large and small losses)
Z =Y () YN

4. Simulate aggregate small losses conditional on Ng

Simulate an approximation to Zg|Ng by drawing from a distribution that
matches the first k moments of Zg|Ng.

Call this 25 the CAD distribution
5. Deliver {25, Z (Y(1),..., Y(NL)}

CAD Method approximates CRM nicely
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Summary of CAD Features

« Advantages of CAD, —
Fast, easy to program.
Preserves first k moments and Pearson correlation (k>=2).
Provides structural method for modeling dependence of small, large losses.

« Also, apparently converges.
« Thatis, can observe that CAD provides good fits to Z.

« Here, we assume severity distribution is fixed with distribution of N
depending consistently on A.

« Fits are good even for “middling” values of A.

Convergence Theorem

Mixed Poisson

« N is a mixed Poisson if N~Poisson(A), where A is a random parameter.
« Write A=AG, where EG=1 and VarG=c.

Eg — Negative Binomial, G~Gamma[1/c,c]

G is the mixing distribution, ¢ the contagion parameter.

If Z is a mixed Poisson CRM, then so are Zg, Z, with same G.

P(Zs Z0)=clv(ZeV(Z )], v =C.v.




“Severity is Irrelevant”

« Limiting behavior of a mixed Poisson CRM is controlled by the mixing
distribution:

« Theorem (Mildenhall): If Z is a mixed Poisson CRM then Z/[EZ—G as

A—o0,

« This is “weak convergence”, aka “convergence in distribution”

Convergence Theorem

« Significance to CAD method: Suppose we use Gamma as the
CAD-family Zg approximating Zg,

» Then Zg =Gamma([Nga,p]=Z,; \ s(Gammala,p]), a,p constants.

« This converges to G by Theorem (after normalizing by the mean,
of course).

» Generalized Convergence Theorem: N, mixed Poisson with
mixing dist G, Y, random variables s.t. EY,=nm, and Var(Y,)<=nis?
for 0<=j<2. Then Y\ ,;/(Am)—G as 1 —<.

o Yy, is defined by Yy ; [(N; =n)=Y,,.
« Note: variance won’t converge for j>=2.

“Severity, CAD distribution are irrelevant”

o Example 1 - Y, =X +...+X, X iid. Then EY =nEX, Var(Y,)=nVarX, and
Y\ ;. is CRM so get Mildenhall’s theorem.

« Example 2 — For CAD, with k>=2, set Y, = Zg [Ng=n. Then Y, satisfies
theorem with j=1, and Y\, , = Zs, so Zs converges to G (as does Zs).

« Example 3 - Set Y,, = Zg +Z,|(Ng=n-B,N,=B), where B~Bin(n,q). This
shows that CAD, converges in an overall sense for k>=1.

« Even a CAD,; method will converge as long as the variance is under
control (j<2).

« Convergence in evidence for moderately sized portfolios.




Convergence Theorem

« Proof of Theorem:

» Can take m=1. Must show that Lim; _.. ¢y n 1(t)=¢s(t), where ¢ is the
characteristic function ¢y(t) = Ee'-

« Bounded Convergence Theorem allows switching Lim and E-.
« Poisson characteristic function: e*e"-2),

« Expand ¢ in Taylor series.

« Fact (Durret): ¢y (t)=1+tEX+E[X2]O(t2).

Convergence Theorem

« Last Line of Proof:
Limoy_y 5 ()=E[LIME[$y_(/A)IG,N,c=n]]
=LimE[el®n|G,N, gz=n]=LimE[e*C("it-1)]
=LimE[e*S(t:+0r2)|=imE[e®]=¢q(t).

o 18t“="is BCT, 2" “=" is from earlier steps eliminating other terms with
Durrett fact and j<2; 34 is Poisson char. fcn.; 4t is Durrett fact applied
to X=1.

Mixed Poisson




More Mixed Poisson

« So, choice of mixing distribution G is important - Controls
characteristics of Z (), Zs (Zs), and even Z,, to a lesser extent.

« Choices other than Gamma are allowable.
« Choice of G might reflect an assumption about skewness.
« Note, choosing Gamma is such an assumption (“skew-nu” ratio = 2).
« Paper gives parameterizations for many possibilities:
Usual suspects — Gamma, Lognormal (Uniform, Inverse Gaussian).
High-Skew — Pareto, (shifted) Exponential.
Discrete — Discrete Uniform, Poisson, Binomial
Component and shifted versions

« Adding shift drives up skewness and effective minimum value.

CAD with Limited Information

« Generally, do not need full severity distribution to run CAD.
o Start with: EZ (EZs), v(Z) (v(Zs)), MNy), severity distribution for Z, .
« Consistent choice of A,c is then enough to run a CAD, model.

« Thatis, can derive formulas for E[Zg|Ng], v(Zs|Ns) that do not involve
small loss severity.

» Consistent means you do not obtain a result like EXs>EX| .

CAD with Limited Information

« Derivation of Equations
E[ZsINs]=NsEXs=NsEZ/A(Ng)=Ns(EZ-EZ, )/(A(1-q)) [a=A(N)/A]

V(ZsINs)=v(Xs)/sart(Ns)=sqrt([A(Ns)(v*(Zs)-c)-1}/Ns)=...

=sqr([2(1-q)(EZ)2(V(Z)*-c)HEZ X(v(Z, *-0)-(EZ-EZ, )}/ (Ns(EZ-EZ, )?)




Reinsurance Example

« Loss Assumptions:
Large loss threshold t = $200k, max. loss = $1m,
EZ=$25m, v(Z)=0.28, A(N,)=21.5
Empirical distribution for X, 2=500, ¢=0.0625.
Coverage on Zy, =Z - N Zye=Zg+ N,

« Coverage
Section 1 — Stop-Loss $25m xs $20m on Z+50%Zy, -
Section 2 — Coverage on remaining 50% of Zy, .
Zy,, limited to $12.5m per section.
Premium = $10m of which $1.5m is R\ margin.
Remainder to EA, PC = 100% of residual EA.

Reinsurance Example

« Used Igloo software to analyze cover with nine different assumptions
for the mixing distribution G.

« Analysis based on full contract cash flows — premium at time 0, mid-tail
type payout patterns, discount rate = 3%.

« Rich set of outputs — Summary and percentile statistics, for NPV(Loss),
NPV(PC), NPV(Income), Prob(Negative NPV), ERD, TVaR capital,
RoRAC return metric.

« Also, many charts.

« Conclusion: Though results do not vary greatly, could be enough to
produce different accept/reject decisions. Uniform mixing distribution is
somewhat of an outlier.

Multiple Lines of Business

Mixed Poisson used for “common shock” correlation model.

Here, mixing distributions are of the form G;=G,[c,]G,[c,,], where G1 is
the common component and the G, are the line-specific components.

.

Independent (“straight”) product with ¢=c,+c, +¢4Cy).

Can also use “twisted product”: G=G;[c,]G,,[c, /G1] (Eg: ISO Risk
Load Negative Binomial with parameter risk model).

For twisted product ¢=c+c, .

.

Each formulation results in correlations p;=c./(v,v;).

Multiline CAD with twisted product common shock — Can also impose
correlation at CAD step.




