

Outline

- Differences and similarities in medical spending across countries
- Modeling spending and data challenges
- Implications for long tailed lines of insurance

Jefferson.

Acknowledgements

- Funding from the Agency for Healthcare Research and Quality
- Lots of great input
 - Casualty Actuarial Society review committee: James Heer (chair), Avi Adler and Jeff Dollinger
 - Indraneel Chakraborty
 - My advisor, Mark Pauly, and my thesis committee, Scott Harrington, Greg Nini, and Jessica Wachter

Differences and similarities across countries

Jefferson.

The U.S. is different in some ways

- High spending > Absolute spending
 - > Percent of GDP
- No universal health insurance
 > Significant uninsured minority
 - Most developed countries have universal or near universal coverage
- Large private sector
 - > Relative to other countries
 - > Public companies concentrated in

 - pharmaceuticalsSome countries have physician private practice

Jefferson.

Other countries face similar challenges

- Unsustainable rates of spending growth
- Multiple rounds of health reform
- Battling stakeholders
- Defining the role of insurance

OECD data allows comparison across countries

- Medical spending in aggregate In national currency unit of each country
 On several dollar bases and PPP
- Breakdown of spending Public versus private
- Other aggregates ≻ GDP
 - > Aging and demography
- Spending data taken as given > No standards across countries

Better models require a lot more data • Each country has approximately 50 data points Many moving parts Multiple policy changes > Demography > Macroeconomic shocks Strong unit roots > In overall spending > In the growth in spending in many countries High autoregressivity? > It's hard to tell > Possible spuriously low standard errors Forecast effects > 1-2 years is ok > 5-10 or more is a problem

Jefferson.

Implications for long tailed lines of insurance Jefferson.

Many lines of business have long tails

- Guaranteed renewability
 - > Given medical trend for computing premiums
 - Guarantee can run 10 years of more
 Early mistakes can be costly
- Workers' compensation
 - Insurer may be paying many years into the future
 Standard of care improves
 - Social inflation—insurers must forecast spending growth (not just inflation)
- Excess casualty reinsurance

 - "Leveraged effect of limits on severity trend"
 Claims below the limit are unobserved
 - > Losses jump from zero to positive
 - Hard to see the trend rate
 - > Excess trend can be above or below true trend rate

Numerical example

- Base case scenario
 - > \$10,005 of expected claims
 - > \$12,000 upfront premium
 - Payments spread over 10 years
 - ≻7% expected trend
 - > 3% discount rate, 3% return on reserves
- Gross load = 20%
 - Initial expected gross surplus of \$1,995
 - > Final expected gross surplus of \$2,681
 - (nominal)

Jefferson.

3 alternative scenarios

- Mean reversion in claims
 > 9% trend in year 1 followed by return to base
 - case nominal premiums
- Mean reversion in trend
 - > 9% trend in year 1 followed by 7% trend thereafter
- Autoregressive trend
 - > 9% trend in year 1 followed by 7.5% trend thereafter

Scenario	Naive premium	Total discounte d claims	Final gross surplus	Time 0 gross surplus	Time 0 gross load
Base case	12000	10005	2681	1995	20%
Mean reverting claims	12000	10021	2659	1979	20%
Mean reverting trend	12000	10215	2400	1785	17%
Autoregressiv e trend	12000	10436	2101	1564	15%

Scenario	Naive premium	Total discounte d claims	Final gross surplus	Time 0 gross surplus	Time 0 gross load
Base case	2400	2001	536	399	20%
Mean reverting claims	2400	2014	519	386	19%
Mean reverting trend	2400	2193	278	207	9%
Autoregressiv e trend	2400	2403	-3	-3	0%

There are some solutions to forecast errors in medical spending

- Prediction markets
 - Bet on aggregates
 - Bet on political outcomes
 - > Hard to connect to different future trend outcomes
- TIPS
 - Inflation hedging bonds
 - > Could be "sliced" to be medical only
 - > Doesn't hedge against quantity changes (most of trend growth)
- Macromarkets
 - > Buy shares in GDP, medical spending growth
 - > Health insurance futures haven't worked
- Government reinsurance for health insurance
 - > Could exacerbate problems in other lines linked to medical care

Jefferson.

Many problems with medical spending are out of our hands

- Medical spending is linked to overall economic growth
- Medical trend is not outrageous in the U.S. > Trend = GDP growth + Rate of aging
 - Fits prior trend well
- GDP growth, demography even less controllable
- PPACA
 - May fix some problems
 - Some problems may spill over from health insurance to other medical claims linked lines

The best solutions involve humility

- PPACA—new business opportunities > ACOs will need risk management services > Chances to profitably manage new populations?
- Challenges involve an uncertain future
 - Will we get more volatility like other countries with publicly funded health care?
 - > Significant trend volatility to deal with here and abroad
 - > Trend breaks and implications for long tailed lines
- Public policy implication—exercise caution

 - In making public policy
 In writing long tailed insurance and reinsurance tied to medical claims

Jefferson.

Next steps

- Paper is available in the CAS E-Forum > http://www.casact.org/pubs/forum/11spforum/
- I continue to work on this problem
- I have a grant proposal in to The Commonwealth Fund to extend this work
 - > Look at financial and non financial similarities of international health care systems
 - Convergence of systems over time