GUY CARPENTER

6/7 June 2011

Pitfalls of Curve Fitting for Large Losses

Guy Carpenter

Amit Parmar, Michael Cane

www.guycarp.com

Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Agenda

- Introduction
- Theoretical analysis
 - Data sample size issues
 - Model uncertainty
 - Parameter error
 - Summary
- Real-world analysis
 - UK Motor market fitting
 - Individual clients versus market curve
- Summary
- Questions

Introduction

"Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints"

• For today \rightarrow Curve fitting is a method to model historic claims

- We assume observed losses:
 - Follow a statistical distribution
 - Independent and identically distributed
 - Homogeneous

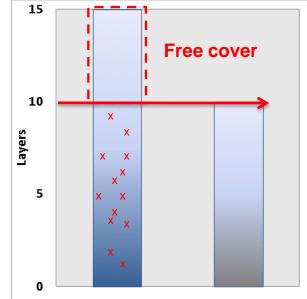
Introduction What is curve fitting used for?

- Understanding the historical data and simplifying data sets
- Modelling where there are few data points
- Understanding the potential tails of claims sets
- Reducing sample variation

Introduction

Why is curve fitting important for actuaries?

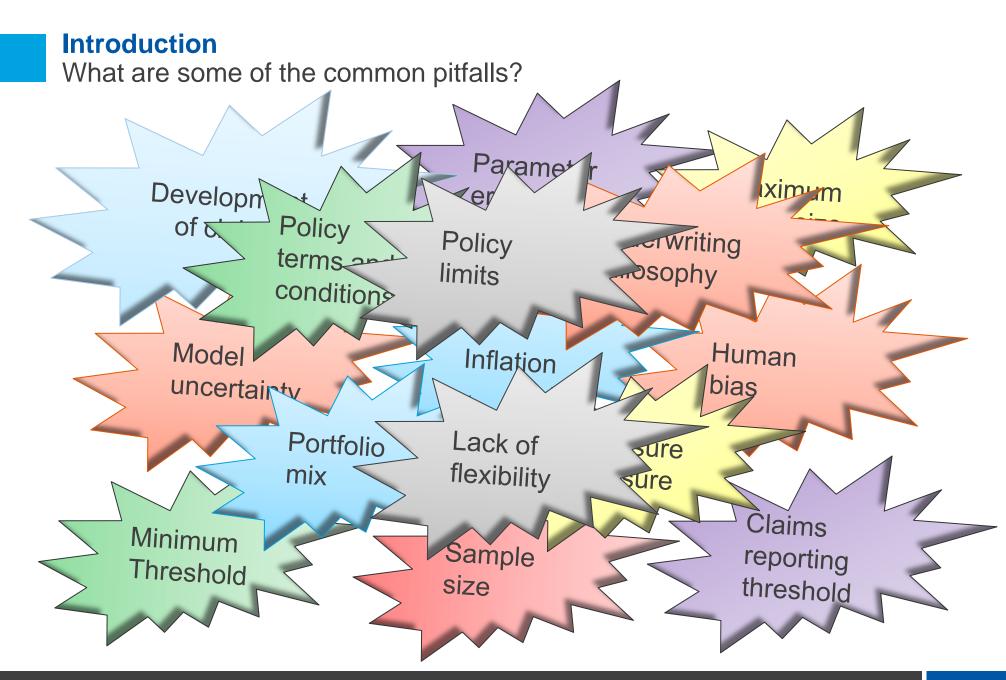
- Inherent advantages to knowing the frequency and severity rather than the expected loss
- Stochastic modelling
- Benchmarking exercises
- Helps with pricing layers above data points
- Helps alleviate free-cover problem in experience rating
- Exposure rating may not be possible
- Fundamental to the output of capital modelling



Introduction

How do we curve fit?

- 1. Consider a number of parametric probability distributions as contenders for explaining your claim set
 - Subjective list
- 2. Estimate parameters for each distribution
 - Method of moments
 - Maximum log-likelihood
 - Least squares estimation
- 3. Specify criteria for choosing fitted distribution
 - Goodness of fit tests
 - Inspection

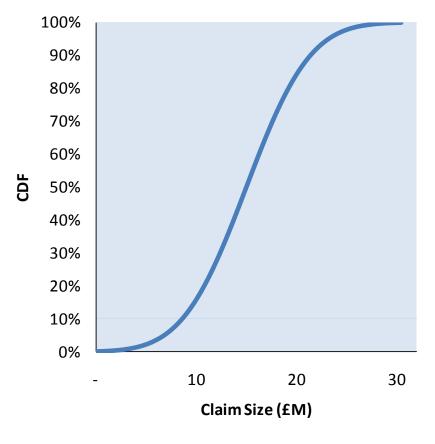


Theoretical analysis

Theoretical analysis

If we sample from:

- A known distribution
- With known parameters



Is it possible to go wrong?

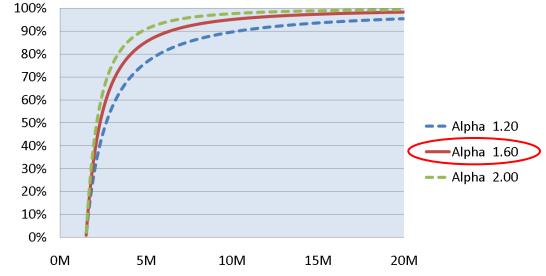
Theoretical analysis Our experiment

- Sample sizes
 - 30, 300 & 3000 ultimate claim data samples

CDF

- Distribution
 - Simple Pareto
- Parameters
 - Alpha = 1.6
 - Lambda = 1,500,000
- Reinsurance structure
 - Common motor programme:

£3m xs £2m £5m xs £5m £15m xs £10m Unlimited xs £25m

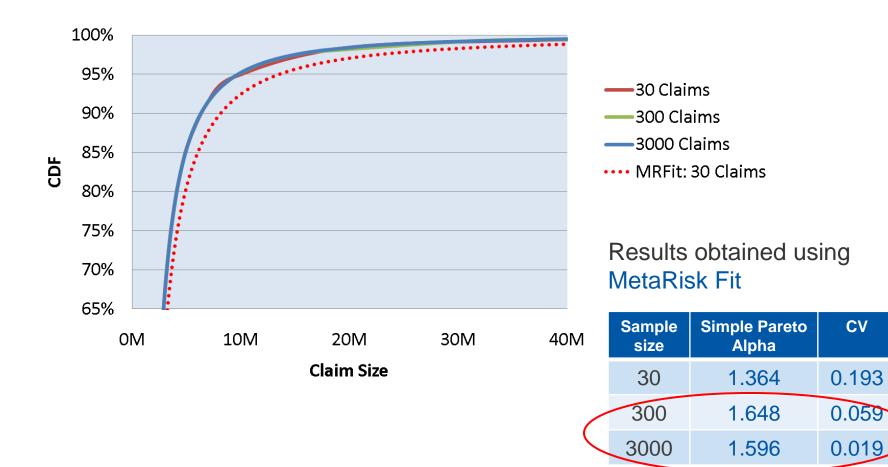


Claim Size

Data sample size issues

Theoretical analysis - Data sample size issues

What are the implications of insufficient data?

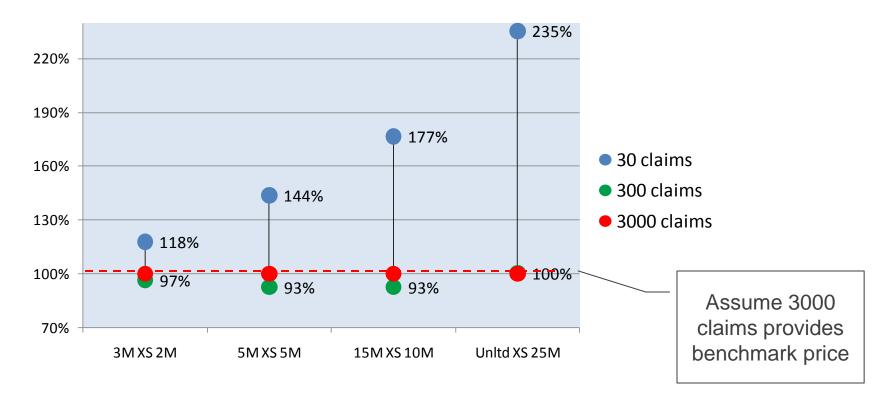


How does the low sample size affect the pricing?

Guy Carpenter

Theoretical analysis - Data sample size issues Loss cost to the layer

Pricing using Simple Pareto distribution from each data set



Significantly mis-priced with small data sample

Guy Carpenter

Model uncertainty

Suppose we have:

• Sufficient data:

- 3000 claim data sample

- What can go wrong?
- Distribution:
 - What are the chances of selecting the correct distribution?

What is the effect on our pricing?

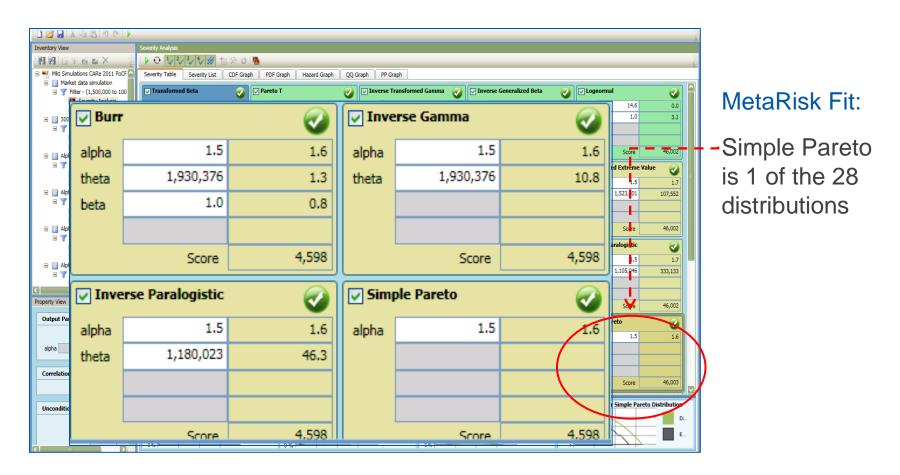
Guy Carpenter

Possible severity distributions

MetaRisk Fit – Severity distributions					
Simple Pareto	Lognormal	Pareto T			
Extreme Value Limit	Generalized Cauchy	Inverse Transformed Gamma			
Exponential	Normal	Split Simple Pareto			
Inverse Paralogistic	Uniform	Transformed Gamma			
Loglogistic	Generalized Extreme Value	Inverse Burr			
Paralogistic	Extremal Pareto	Burr			
Loggamma 🤇	Ballasted Pareto	Transformed Beta			
Gamma	Gamma Power Ger				
Inverse Weibull	Beta Inverse Generalized B				
Inverse Gaussian	Inverse Beta				
Inverse Gamma	overse Gamma Generalized Pareto				
Key: 1-Parameter 2-Parameter 3-Parameter 4-Parameter					

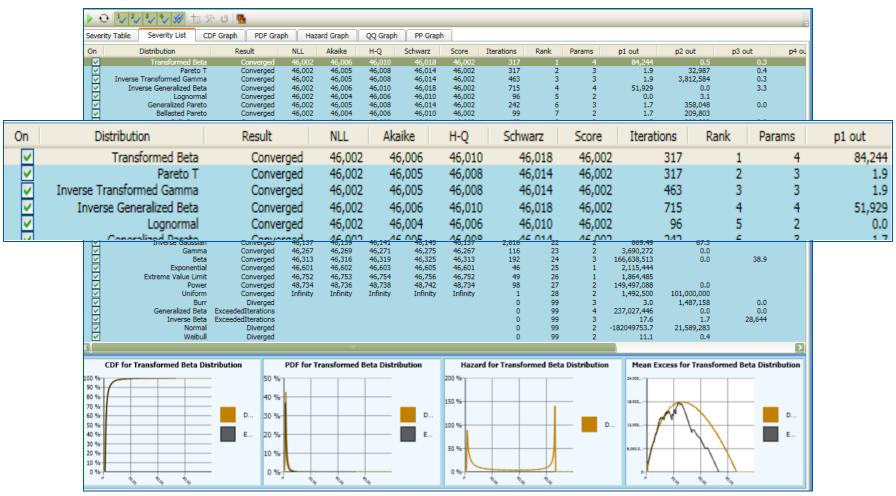
Common distributions used to conduct our analysis

Chances of getting the wrong distribution with sufficient data



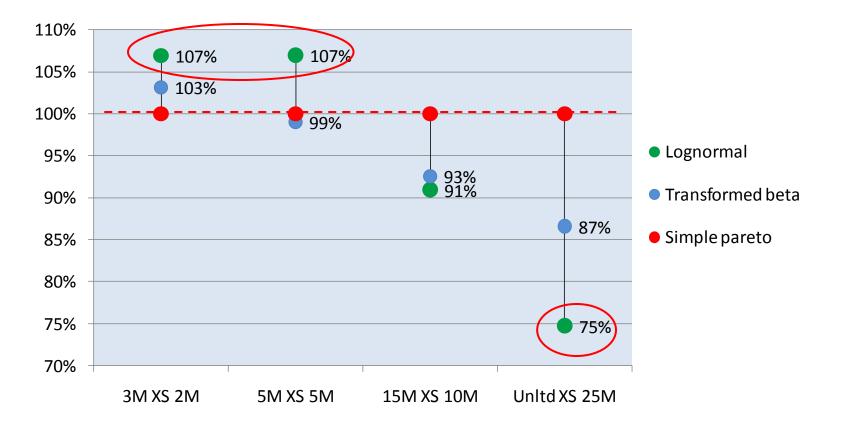
How are the ranks calculated?

3000 claims



Expected loss to the layer

3000 claims

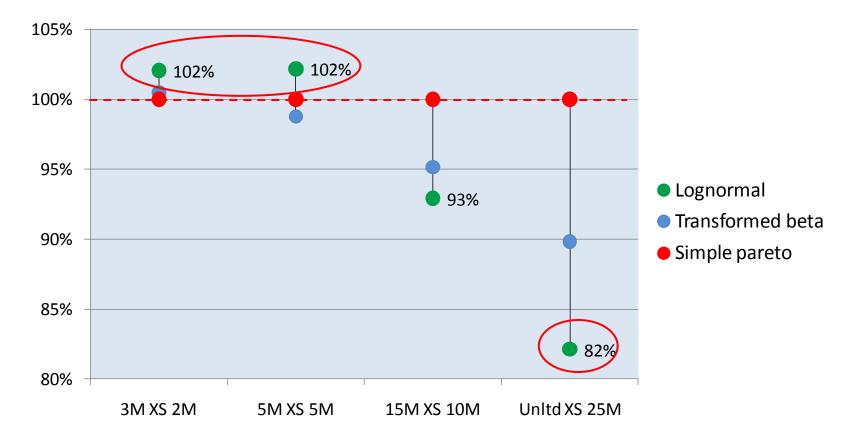


Lognormal: Over-pricing for lower layers; Under-pricing for higher layers

Theoretical analysis – Model uncertainty Standard doviation of loss to the lower

Standard deviation of loss to the layer

3000 claims



Lognormal also underestimates volatility on the higher layers

Guy Carpenter

Parameter error

Theoretical analysis – Parameter error

Suppose we have:

- Sufficient data:
 - 3000 claim data sample
- Correct distribution:
- \checkmark
- Simple Pareto
- What can go wrong?

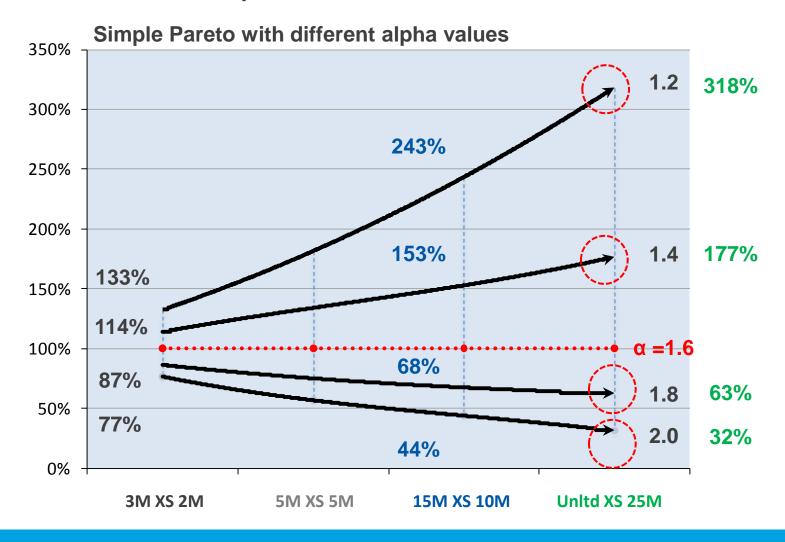
- Incorrect parameters:
 - Instead of $\alpha = 1.6$

- We could pick lower or higher values

What is the effect on our pricing?

Theoretical analysis – Parameter error

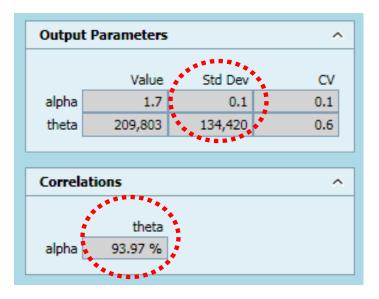
The funnel of uncertainty



How can we deal with this volatility?

Theoretical analysis – Parameter error

Quantifying parameter error

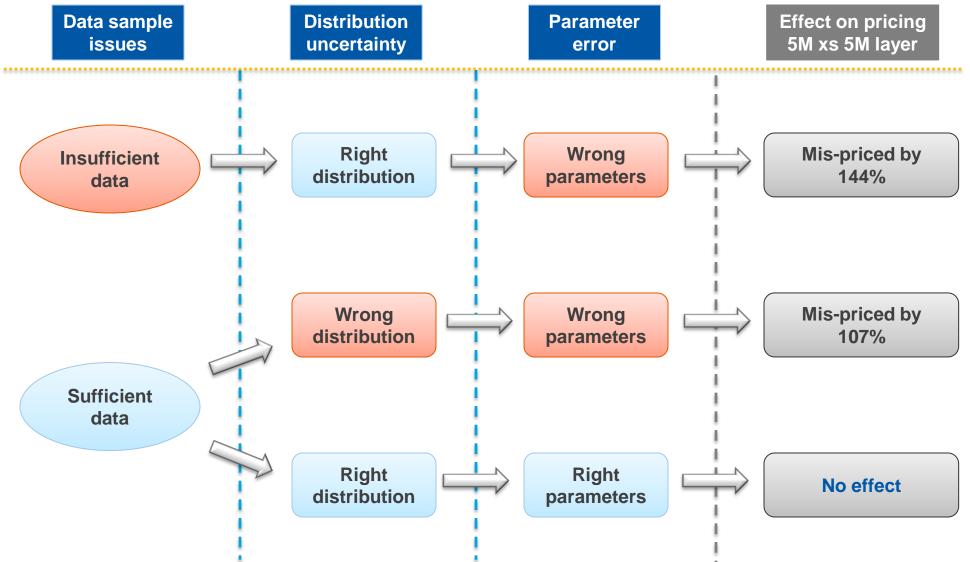


MetaRisk Fit extract -Ballasted Pareto, 3000 claims

- Parameter error is effectively measuring sample size error
- Distortion is accentuated in multiparameter distributions
- Parameter standard deviation and correlation quantifies parameter uncertainties
- We simulate parameters for each run of the model *e.g.*, year of simulation
- We assume a lognormal distribution for parameter uncertainty

Theoretical analysis

Summary



Real-world analysis UK Motor Market

Real-world analysis Setting the scene

Case Study: UK Motor Market

- Benchmarking is particularly important in Europe:
 - No industry data collectors such as ISO / NCCI
- Homogenous line of business
- We have access to approximately 60% of motor market data in the UK
- Unlimited reinsurance coverage
 - Not loss limited
 - Low deductibles
- Compulsory line of business

Real-world analysis Market data statistics

Market data summary statistics					
Number of companies	20				
Analysis threshold	£1,700,000				
Total number of claims	1,285				
Average claim number (per client)	72				
Minimum claim number	9				
Maximum claim size	£30,235,668				
Basis	Report Year				
Years selected	2000 – 2007				

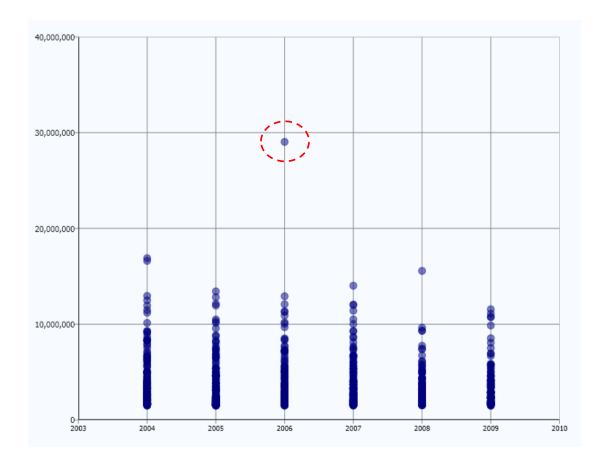
Real-world analysis What data to fit to?

- Minimum threshold: £750,000
- Recent years: Uncertainty increases with LDF assumption
- Older years: Uncertainty increases with inflation assumption
- Inflation: 7.5% pa

		1	2	3	4	5	6	7	8	9	10	11
ort year	2000	118	241	398	607	799	960	1,113	1,285	1,407	1,536	1,554
	2001	131	295	521	731	919	1,092	1,277	1,412	1,548	1,571	
	2002	172	407	629	846	1,046	1,243	1,387	1,532	1,556		
	2003	253	484	712	936	1,161	1,315	1,470	1,495			
	2004	240	480	724	973	1,149	1,319	1,344				
	2005	251	513	771	963	1,150	1,175					
Report	2006	279	547	751		989						
Å	2007	296	512	745	777							
	2008	243	502	536								
	2009	298	333									
	2010	43										

Real-world analysis Largest claim effect

• The largest observed claim has a big influence on the fit

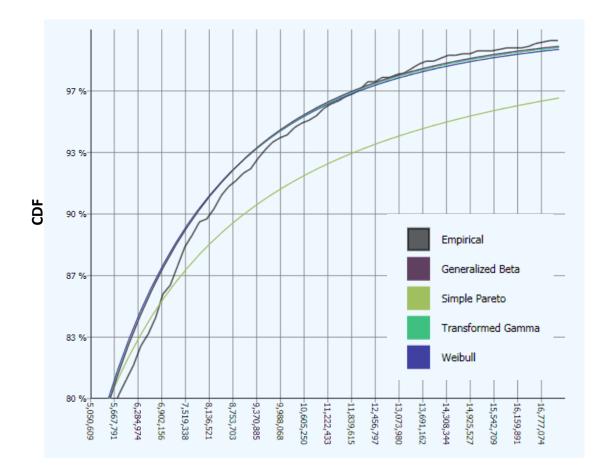


How do we deal with such outliers?

- Remove
- Ignore
- Weighting
- Transform

Real-world analysis

Market empirical vs. possible best fit curves



Distribution	No. of Parameters
Simple Pareto	1
Weibull	2
Transformed Gamma	3
Generalised Beta	4

Real-world analysis What selection criteria to use?

Mathematical tests

- Goodness-of-fit tests such as:
 - 1. Natural Log Likelihood

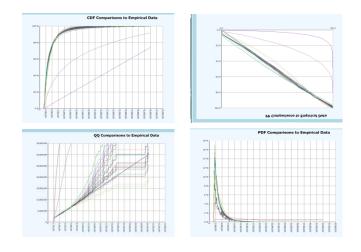
2. Akaike =
$$NLL + K + \frac{K(K+1)}{n-K-1}$$

3. HQ =
$$NLL + \frac{K \cdot \ln(\ln(n))}{2}$$
 for $n > e$

4. Schwartz =
$$NLL + \frac{K \cdot \ln(n)}{2}$$

Where : n = number of data points K = number of parameters

By eye - visual judgement



- E.G.,
 - CDF
 - PDF
 - QQ Graph
 - PP Graph

Choosing the market curve Possible criteria

- Good fit versus over parameterisation
 - Use an information criteria like the H-Q test
- Higher number of parameters may lead to less predictive power
- Parameter CV should be low
- Parameters should be significantly different from zero
- Interpretability of the model and parameters
- Where is the curve going to be used ?

Real-world analysis What part of curve to fit to?

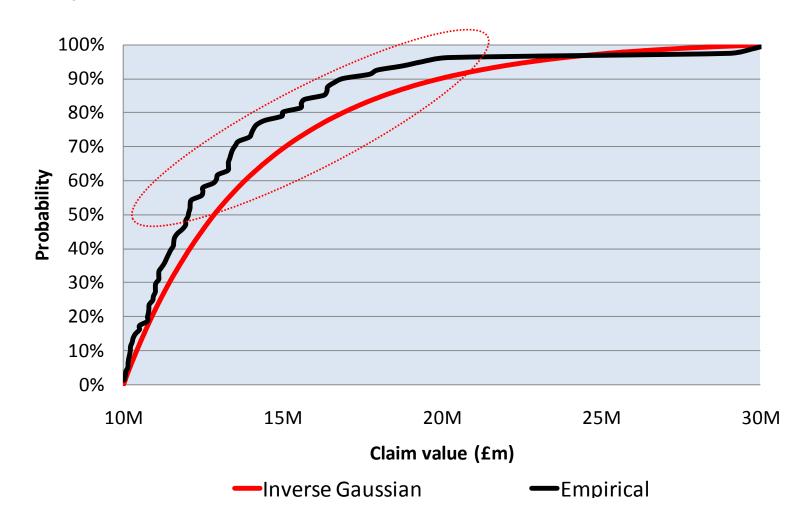


Inverse Gaussian – good fit to the body of the distribution (0 - £10M)

Guy Carpenter

Real-world analysis

What part of curve to fit to?



Although, the fit is heavier at the tail (£10M - £30M)

Guy Carpenter

Generalised Beta

- Has a good fit when looking at the CDF graph
- Best performing in tests

BUT...

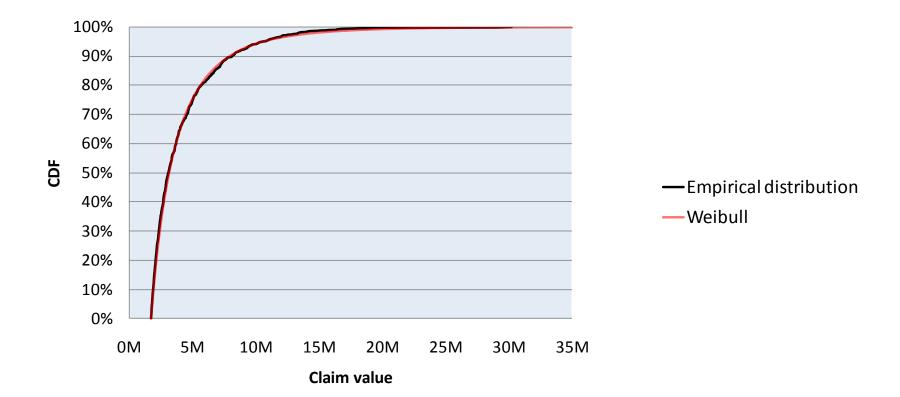
- CVs of parameters are too high
- Beta value is too low

Selected Distribution: Weibull



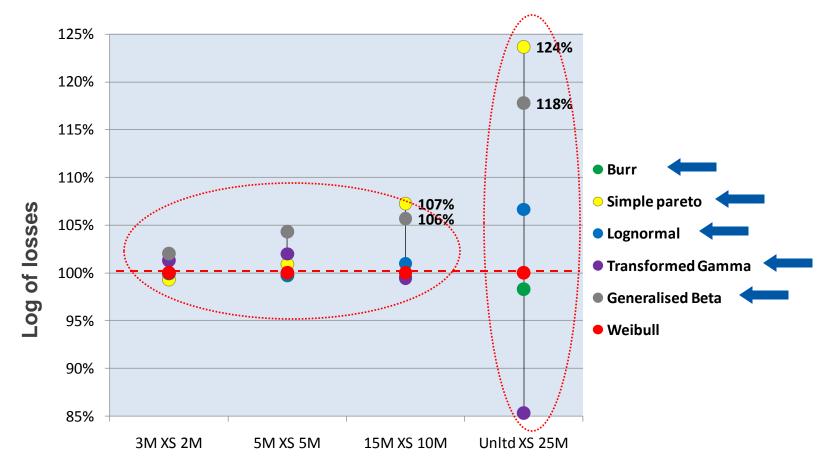
Parameters					
Name	Value	Std Dev	CV		
theta	207,219,025	146,990,162	0.71		
tau	0.72	0.14	0.20		
beta	0.000000114	0.00000083	0.73		
eta	22.67	17.13	0.76		

Real-world analysis Best fit selected – Weibull distribution



		Correl	ations		
Name	Value	Std Dev	CV		beta
theta	548,690	206,009	0.38	theta	0.99
beta	0.53	0.05	0.10		

Real-world analysis Effect on the layers



Burr, Lognormal & Transformed Gamma similar to Weibull

Simple Pareto & Generalised Beta: Over-pricing for higher layers

Guy Carpenter

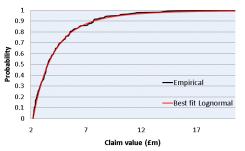
Individual clients' versus market curve

Real-world analysis - Individual clients' vs. Market curve Individual client data statistics

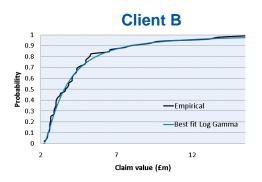
Attribute	Client A	Client B	Client C	Market	
Total number of claims	293	52	12	1,515	
Analysis threshold	£1,700,000				
Maximum claim size	£29,731,529	£16,415,791	£12,090,704	£30,235,668	
Minimum claim size	£1,709,255	£1,736,425	£1,727,721	£1,702,032	
Average claim size	£3,955,290	£4,138,872	£4,853,976	£4,209,709	
Basis	Report Year				
Years	2000 - 2007				

Real-world analysis Client empirical vs. best fit

Client A



Parameters				Correlations	
Name	Value	Std Dev	CV		beta
mu	14.28	0.26	0.02	theta	-0.94
sigma	0.89	0.11	0.12		



Parameters				Correlations	
Name	Value	Std Dev	CV		beta
alpha	2.35	0.51	0.22	theta	0.87
tau	1.70	0.31	0.18		

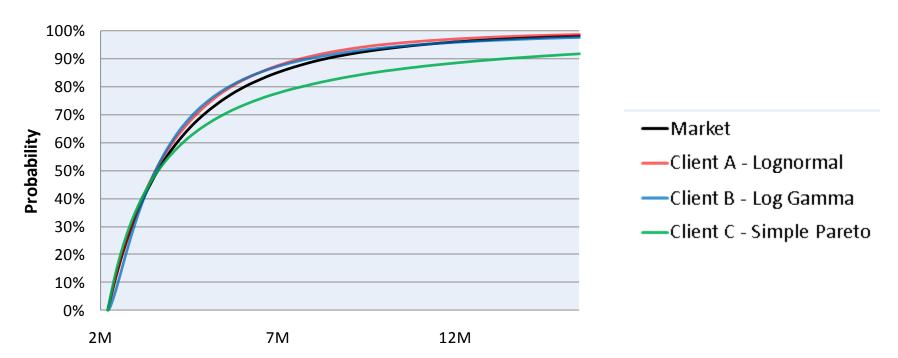
Client C



Parameters					
Name	Value	Std Dev	CV		
alpha	1.07	0.38	0.35		

Real-world analysis

Market Curve vs. Clients' best fit



Claim value

	Layers	3M XS 2M	5M XS 5M	15M XS 10M	Unltd XS 25M
	Market	100%	100%	100%	100%
C	Client A	96%	83%	74%	84%
C	Client B	97%	88%	126%	394%
C	Client C	103%	161%	437%	2558%

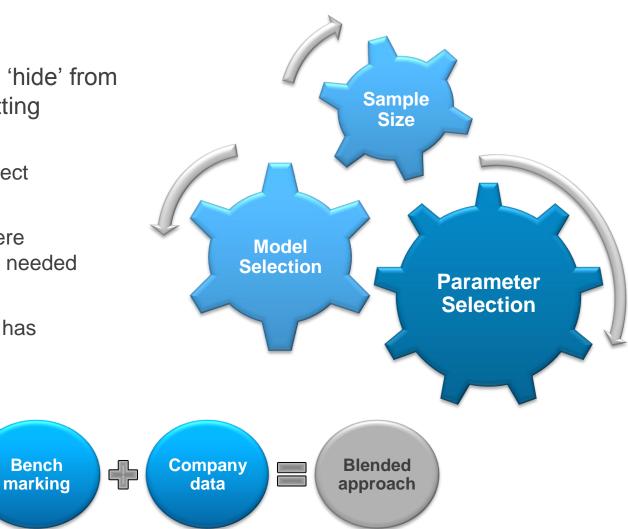
Summary

Summary Key messages

Bad news: Difficult to 'hide' from the pitfalls of curve fitting

- Multiplicative effect
- Implications where curves are most needed
- Model selection has least impact

Good news:



'Ultimately curve-fitting is where science and art meet'

Any questions?

Important Disclosure

Guy Carpenter & Company, LLC provides this report for general information only. The information and data contained herein is based on sources we believe reliable, but we do not guarantee its accuracy, and it should be understood to be general insurance/reinsurance information only. Guy Carpenter & Company, LLC makes no representations or warranties, express or implied. The information is not intended to be taken as advice with respect to any individual situation and cannot be relied upon as such. Please consult your insurance/reinsurance advisors with respect to individual coverage issues.

Readers are cautioned not to place undue reliance on any calculation or forward-looking statements. Guy Carpenter & Company, LLC undertakes no obligation to update or revise publicly any data, or current or forward-looking statements, whether as a result of new information, research, future events or otherwise. The rating agencies referenced herein reserve the right to modify company ratings at any time.

GUY CARPENTER

Statements concerning tax, accounting or legal matters should be understood to be general observations based solely on our experience as reinsurance brokers and risk consultants and may not be relied upon as tax, accounting or legal advice, which we are not authorized to provide. All such matters should be reviewed with your own qualified advisors in these areas.

This document or any portion of the information it contains may not be copied or reproduced in any form without the permission of Guy Carpenter & Company, LLC, except that clients of Guy Carpenter & Company, LLC need not obtain such permission when using this report for their internal purposes.

The trademarks and service marks contained herein are the property of their respective owners.

© 2011 Guy Carpenter & Company, LLC

All Rights Reserved